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How Does the Relaxation of a Supercooled Liquid Depend on Its Microscopic Dynamics?

Tobias Gleim, Walter Kob, and Kurt Binder

Institut fur Physik, Johannes Gutenberg-Universitét, Staudinger Weg 7, D-55099 Mainz, Germany
(Received 18 May 1998

Using molecular dynamics computer simulations we investigate how the relaxation dynamics of a
simple supercooled liquid with Newtonian dynamics differs from the one with a stochastic dynamics.
We find that, apart from the early-relaxation regime, the two dynamics give rise to the same
relaxation behavior. The increase of the relaxation times of the system upon cooling, the details of
the a relaxation, as well as the wave-vector dependence of the Edwards-Anderson parameters, are
independent of the microscopic dynamics. [S0031-9007(98)07644-3]

PACS numbers: 61.20.Lc, 61.20.Ja, 64.70.Pf

If the logarithm of a transport quantity, such as the vis-and thus it is not surprising that the two corresponding
cosity, of a good glass former is plotted verslig/T,  dynamics are different. For computer simulations it is,
where T' is temperature and’, is the glass transition however, most simple to change, for a given system, the
temperature, it becomes obvious that this temperature delynamics, and they are therefore ideally suited to investi-
pendence is not universal, since some materials show egate such questions. The only investigation in that direc-
sentially an Arrhenius behavior whereas others show &on we know of is a pioneering study by Léwenal. [4].
strong non-Arrhenius behavior [1]. Also more micro- In that work the authors compared the relaxation dynam-
scopic dynamical properties, such as the Raman spectrurics of a polydisperse system of charged particles which
depend strongly on the material, in that, i.e., the so-calledhove according to a Newtonian dynamics to the one mov-
boson peak is much more pronounced in strong glass forning according to a Brownian dynamics. The outcome of
ers than in fragile glass formers [2]. Thus we can say thathat study was that the relaxation dynamics depends, on
it is well established that the macroscopic as well as th¢he time scale of theg8 relaxation, on the microscopic dy-
microscopic dynamics of supercooled liquids is not uni-namics. However, due to the limited length of the runs
versal at all and must be considered as a material specifand the lack of statistics, no stringent test could be made
property. This insight is, of course, not surprising, sinceas to whether or not the relaxation depends on the micro-
the materials differ in their structure, the masses of the inscopic dynamics. If such a dependence would also exist
dividual atoms, etc., and thus it can be expected that these the « relaxation regime it would be in contrast to the
microscopic quantities will give rise to a different relaxa- prediction of the so-called mode-coupling theory (MCT)
tional and vibrational dynamics. [5,6], according to which the relaxation dynamics at long

What is much less obvious, however, is how thiero-  times should be independent of the microscopic dynamics.
scopic dynamicsffects the vibrational and relaxational Since there is very good evidence that this theory gives, in
dynamics of the system, i.e., whether the relaxational dythe vicinity of the MCT-transition temperatu#e > T,, a
namics is different if the microscopic dynamics is, e.g., areliable description of the dynamics of supercooled simple
Newtonian one or a Brownian one. The answer to thidiquids and even network forming liquids (see [7—9] and
question is most important since it will allow us to gain references therein), such a disagreement between theory
insight to understand which aspects of the relaxation beand computer simulation would be quite disturbing since
havior are, for a given system, universal and which one#& would show that certaifundamentabspects of the the-
are not. This information is in turn relevant for testing theory are not correct. Because of the availability of better
applicability of theories that attempt to describe the slow-computers and algorithms it is possible today to do simu-
ing down of the system upon cooling, i.e., the mechanisntations which are more than a hundred times longer than
for the glass transition. the ones done by Lowest al. Therefore it is possible to

In real experiments it is of course difficult to investi- investigate the question of how the long-time dynamics of
gate how the microscopic dynamics affects the dynamica system depends on the microscopic dynamics on a quali-
of the system at long times, since usually it is not possibleatively completely different level, and in the present paper
to change the former without also influencing other mi-we report the results of such an investigation.
croscopic quantities like, e.g., the masses of the particles The system considered is a 80:20 mixture of 1000
or the interaction between the atoms. Experimentally d ennard-Jones particles consisting of two species of par-
Brownian type dynamics can be realized, e.g., by colloidaticles,A andB. All the particles have the same massnd
fluids [3], while atomic liquids have a Newtonian dynam- the interaction between two particles of typeB € {A, B}
ics. However, the structure and interparticle forces intheses given by V,g(r) = 4€45[(0ap/r)'? — (0ap/r)°]
two types of systems are quite distinct from each otherwith ess = 1.0, 0aa = 1.0, €ap = 1.5, oa = 0.8,
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egg = 0.5, and oz = 0.88, with a cutoff radius of One of the simplest quantities to characterize the dy-
2.50,p. In the following we will always use reduced namics of the system is the diffusion constént of the
time units witho 44 andes4 the units of length and energy, particles, which we calculated from the mean squared dis-
respectively (setting the Boltzmann constaptequal to  placement of a tagged particle. Forthe ND the temperature
1.0). Time is measured in units Qfafmm/48eAA. The dependence ab, has been determined before [8] and it
volume of the box is kept constant with a box length ofwas shown that, at low temperatures, it is given by a power
9.4. Two types of microscopic dynamics are investi-law, i.e.,D, « (T — T,.)?, a functional form predicted by
gated: a Newtonian one and a stochastic one (describ@dCT. (HereT,. > 0is the so-called critical temperature of
below). In the Newtonian dynamics (ND) we integrate MCT.) It is, however, desirable to compare the tempera-
Newton’s equation of motion with the velocity form of ture dependence @, for the ND with the one for the SD
the Verlet algorithm with a time step of 0.02. After without making reference to any theory, and thus we cal-
equilibrating the system in the canonical ensemble weulated the ratiaDs np/Dasp and show its temperature
turn off the heat bath and start the production run in thedependence in Fig. 1. Note that we plot this ratio versus
microcanonical ensemble. For this kind of dynamics thel' — T., whereT,. = 0.435 is the critical temperature from
temperature dependence of the relaxation behavior has dhe MCT analysis [8], instead df, but we emphasize that
ready been studied in great detail in the temperature rangbis representation of the data has nothing to do with MCT
50=T = 0.466 [8]. Because of an improvement of butis only a convenient way to expand the abscissa at low
the hardware and computer codes it is, however, possibkemperatures. From this figure we see that this ratio shows
today to perform simulations which extend over a timea noticeable temperature dependence at high temperatures
range that exceed the ones of the previous investigatiortaut becomes essentially constant (within the error bars) for
by a factor of 8, giving now a total oft X 107 time temperature$ = 0.8. We note that in the temperature in-
steps, and thus allowing us to equilibrate the system derval0.446 = T = 0.8 the diffusion constants change by
lower temperatures than has been possible before, a@most three decades [11]. Since the rdd@np/Da.sp
hence to perform more accurate tests. Therefore we haways constant to within about 30% we conclude that the
determined the dynamics of the system als@ at 0.452  temperature dependence of the diffusion constants is inde-
and 0.446. pendent of the microscopic dynamics to within a few parts
The stochastic dynamics (SD) we considered is defineth 10*. A similar result is found for thes particles. We
as follows: Apart from the deterministic forces that also mention that at the two lowest temperatures the dif-
originate from the interaction potential given above, eacHusion constants do no longer follow the power law found
particle j is also subject to a Gaussian distributed whiteat slightly higher temperatures. This is indirect evidence
noise force;(r) with zero mean, i.e{n;(¢)) = 0, and a  that also the processes that destroy this power law are in-
damping force which is proportional to the velocity of the dependent of the microscopic dynamics.
particle. Thus the equation of motion for partigleeads A further quantity that is very useful to characterize the
dynamics of the system is the (incoherent) intermediate
=3 ‘ S N S scattering functionF,(q,r) for wave vectorg [8]. For
mri+ ; Vo171 = 7 ¢y + i, (1) the SD we show the time dependence of this quantity in

where the damping constafiis given from the fluctuation

dissipation theorem, i.e(n;(r) - 9,(¢')) = 6kgT{6(t — 40

1')8;;. The value off was set to 10, which is sufficiently 2 351

large that the presented results for the SD do not depend on &

{ anymore (apart from a trivial change of the time scale). 30 1

Equations (1) were solved with a Heun algorithm [10].

The time step used was 0.008, which is small enough to 25 1

ensure that theequilibrium properties of the system are

the same for the ND and the SD. Also for this dynamics 20 1

the runs at the lowest temperature extended dver 10’ 15 |

time steps. At the lowest temperatures the SD is so slow

that, within the time span of the runs, the system does not 10 1

equilibrate. Therefore we used at each temperature the 200X Tapof Taso
ND to equilibrate the system, and used the SD only for S 1 0
the (equilibrium) production runs. In order to improve the 10 10 10 =T,

statistics of the results we averaged at each temperatul':? , S
. . G. 1. Temperature dependence of the ratio of the diffusion
over eight independent runs (ND as well as SD). The €Mz nstant for theA particles for the ND and SD (circles).

peratures investigated were 5.0, 4.0, 3.0, 2.0, 1.0, 0.8, 0.8quares: Ratio for ther-relaxation time of the incoherent
0.55, 0.5, 0.475, 0.466, 0.452, and 0.446. intermediate scattering function.
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Fig. 2 for all temperatures investigated (solid lines). Thethe fact that the curve fof' = 0.466 for the ND lies
value of ¢ is 7.20, the maximum of the static structure almost on top of the curve for the SD f@r = 0.55, and
factor for theA-A correlation [8]. It can be seen that on by the fact that for both types of dynamics the time-
lowering the temperature the relaxation behavior changetemperature superposition principle holds (see Refs. [8]
qualitatively in that at high temperatures the decay ofand [11]), i.e., that for a given dynamics the shape of the
F(q,t) is essentially an exponential (apart from the timecorrelation function does, in the-relaxation regime, not
dependence at very short times), whereas it shows a platedepend on temperature. Therefore we conclude that not
at low temperatures. The time for which the correlationonly is the temperature dependence of the time scale of
function decays to zero increases quickly with decreasinthe o relaxation independent of the microscopic dynamics
temperature, indicating the dramatic slowing down of thebut also those details of the {)relaxation process that give
relaxation dynamics of the system upon cooling. Thisrise to the stretching of the correlation function. The same
strong dependence of the dynamics on temperature has alsssult is found for the coherent intermediate scattering
been seen in the case of the ND [8]. We emphasize thdtinction and other values af.
these curves are adlquilibrium curves. We now turn our attention to thg relaxation, i.e., the
Also shown in the figure isF(g,7) for the ND at relaxation regime in which the correlation function is in the
three different temperatures (dashed curves). We firsticinity of the plateau. From Fig. 2 we recognize that, for
compare the SD and ND in the-relaxation regime, i.e., low temperatures, the way the curves approach the plateau
the time regime where the correlation function decays, atlepends strongly on the microscopic dynamics in that for
low temperatures, from the mentioned plateau. From théhe SD this approach is very gentle, whereas for the ND
figure we see that at the highest temperatilire<(5.0) the it is quite abrupt. This difference does not exist for the
ND gives rise to a relaxation that is about a factor of 7 fastetate B relaxation, i.e., when the correlation functions start
than the one for the SD. This factor increases upon coolingp fall under the plateau. This can be seen by plotting
the system and reaches about 20—30 at low temperaturdle relaxation functions versugr(T), which is done in
Thus from the point of view of thebsolute valueof  Fig. 3 for the SD and the ND for the lowest temperature
the a-relaxation timesr(T), the two types of dynamics investigated. We see that this scaling of time makes the
are very different. §(T) can be defined, e.g., as the time two correlation functions fall on top of each other in the
the correlator takes to decay to'! of its initial value.] late 3-relaxation regime.
However, if we look at theéemperature dependenad MCT predicts thatin the g-relaxation regimeand
7(T), we come to a different conclusion. In Fig. 1 we alsoasymptotically close to the critical temperatufe the
show the ratiars np/74.sp @and find that this ratio becomes shape of the correlation functions is given by the so-
independent of" for temperatures smaller than 1.0. Thuscalled 8 correlator, a function that can be computed
the ratio shows a similar dependence on temperature as thgthin the framework of the theory [5]. The form of
one for the diffusion constants. this B8 correlator depends on one parameter, the so-called
From Fig. 2 we also see that the shape of the correlatioaxponent parameter, which has been computed for the
functionsin the a-relaxation regimeis independent of present system to be= 0.71[12]. Using this theoretical
the microscopic dynamics. This can be recognized byalue ofA we fitted the correlation curves in thgeregime
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FIG. 2. Time dependence of the incoherent intermediatd=IG. 3. F(q,t) at the lowest temperature investigated versus
scattering function for the SD for all temperatures investigatedescaled time/7(T) for the SD (bold solid line) and the ND
(solid lines) and the ND for selected temperatures (dashebold dashed line). Dashed lineB correlator forA = 0.71.
lines). Dotted line: B correlator+ leading corrections at long times.
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with the corresponding correlator, and the resulting fitis 1.0

shown in Fig. 3. It has been shown that, for temperatures”ﬁ—; 0.9 i 3
slightly aboveT,, the time window in which the theoretical 08 3y

curve describes the data well can be extended considerably, ' AA correlation

if also thecorrectionsto the 8 correlator are taken into 0.7 5 \ A particles 3
account [5,9]. The result of a fit to our SD data with 0.6 1 / \ 3
the B correlator and the first correction at long times is 054 % \. . ’:‘3\\ E
included in Fig. 3 as well. We recognize that the fit with 04 - A2\ ]
the B correlator alone describes the SD data well over 0.3 1 N i
about 3.5 decades in time. This time window is expanded ' NN

at large times by about half a decade by taking into 0.2 =3 ]
account the corrections to th@ correlator (time window 0.14 ® 3
between the two arrows). From the figure we see that the 0.0 : : : : :
theoretical curves fit the ND data well only in thete 3- 0.0 40 80 120 160 200 240

relaxation regime, whereas they do a poor job in the early a
B-relaxation regime since the asymptotic law is completelyFIG. 4. Wave-vector dependence of the nonergodicity pa-
obscured by the phonons [8]. For the SD, however, théameter for the SD and ND (filled and closed symbols,

Lo . . respectively). The squares and circles correspond to the in-
early 8 relaxation is described very well by MCT in that coherent and coherent intermediate scattering functions, respec-

the approach to the plateau is described well by fhe tively. The two solid lines are the prediction of MCT for this
correlator. The reason for this better agreement is that igystem.

the SD the phonons are strongly damped and thus interfere

much less with the asymptotic laws of the theory on the ) . o

time scale in which the correlators approach this plateau®9ime the relaxation behavior for the SD is in very good

Thus we find that the relaxation dynamics of the SD is@greement with the one predicted by MCT and that this

qualitatively much more similar to the one of colloidal theory is also able to give avery accurate prediction of the

systems [3] than is the one for the ND. q depen_dence of the nonergodlcny parameters. '
The last quantity we discuss is the dependence of ~ We give thgnks to W. Gotze for"valuable d|scu55|qns,

f., the so-called Edwards-Anderson or nonergodicity paand to W. Gotze as WeII_as H. Léwen for constructive

rameter (NEP). This quantity is related to the height ofcOmments on a draft of this paper. Part of this work was

the plateau in the correlation functions and can be measuPported by the DFG under SFB 2621.
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