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Spatial and Temporal Dynamics of Two Interacting Modes
in Parametrically Driven Surface Waves
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Nonlinear waves with basic wave numbets,and k,, are simultaneously excited via two-frequency
parametric excitation of a fluid surface. Three new multiwave states are observed: (1) A superlattice
state composed df; andk, whose relative orientation is governed by a temporal resonance condition,
(2) a superlattice built entirely of wave numbeks and k;/2, and (3) a state composed of wave
numbers of length&, and k, that are uncorrelated in both space and time. The three states exhibit
interesting temporal as well as spatial behavior and are observed in a variety of frequency combinations.
[S0031-9007(98)07620-0]

PACS numbers: 47.54.+r, 47.20.Gv, 47.35.+i, 47.52.+]

Since the discovery that complex behavior in space Alcod y)codw 1) + sin(y)codwat + )], (1)
and time can arise in a controlled deterministic systemyhere the angle,y, describes the degree of mixing
both the mechanisms that create disorder and their charagatween the two modes. The first to apply two-frequency
terization have captured the interest of physicists. Untikygitation to surface waves were Edwards and Fauve

recently, most studies of disorder in driven dissipative[l] who observed a quasicrystalline pattern having 12-
systems have concentrated on the limiting cases of eithggq symmetry ink space in a narrow range @ near
pattern-forming systems where a single spatial mode ighe system’s bicritical point. Linear stability analysis of
excited or on the case where a system is highly turbugis system was later performed by Bessaial. [2] by
lent and many spatial and temporal degrees of freedorgytensijon of the Kumar and Tuckerman [3] analysis for
are excited concurrently. In the single mode case, the unsingle-frequency forcing. Their predictions for the critical
derlying spatial behavior of the system is dictated by theyccelerationg,, were verified for a number of different
excited mode and complexity in the system evolves as fiq viscosities and driving frequency combinations [1,2].
result of its secondary instabilities. Well-known examplesaqditional experiments using two-frequency excitations
of such systems are Rayleigh-Benard convection, Couettggere performed by Muller [4] who showed that for a
Taylor flow, electroconvection, and the Faraday instabilfixed frequency ratio ofw,/w; = 2 triangular patterns
ity. The intermediate case, where a system is unstable toguld be stabilized relative to hexagonal patterns by the
finite number of nonlinearly interacting spatial and tempo-gddition of a small third frequency component. Using
ral modes, has not been widely studied. In this paper wg two-mode approximation to a Mathieu-type equation,
take a step in this direction by the experimental study ofzhang and Vinals [5] derived an amplitude equation
a system in which two different unstable modes are exterdescription whose phase diagram qualitatively agrees with
nally excited. We will show that qualitatively new spa- these experiments. Lifshitz and Petrich [6] also obtained
tial and temporal behavior occurs in the near vicinity ofstable two-frequency states having 2-, 4-, 6-, and 12-fold
the instability onset as nonlinear superlattice-type phasesymmetries, as observed in [1], together with two wave
arise. The existence of these states points to a large clagamber nonsymmetric states by modeling two interacting
of previously unanticipated spatial and temporal statesvaves with a generalized Swift-Hohenberg equation.
that may prove to be of general significance in nonlin- Our experiments are performed using Dow-Corning
ear systems where multiple interacting spatial modes argoo silicone oil with a kinematic viscosity of = 23 ¢S
excited. (centistoke). Using the apparatus described in [7], we
A convenient experimental system with which to studyconducted our experiments in thin fluid layers of height
interacting spatial modes is that of parametrically driven0.155 cm so as to both reduce effects of lateral boundary
surface waves. As first noted by Faraday, sinusoidaénforced quantization and to damp out long wavelength
acceleration of a fluid layer with angular frequeney modes. Our fluid cells are circular with a 14.4 cm
in the direction of gravity induces a pattern, having adiameter and constructed of black-anodized aluminum
wave numberk, on the fluid surface. Nonlinear wave machined tol0 um flatness. Thaw;/w, combinations
interactions can be studied in this system by driving theused in our experiments were (in Hz) /20, 3¢50,
fluid layer at two commensurate frequencies, = nwo  30/55, 3¢/70, 40/50, 4¢/60, 4Q/70, 41/60, 4560,
and w, = mwy Where n and m are relatively prime 50/60, 5¢/70, 5¢/75, 50/80, 3¢/70, 4¢/70, 5¢/70, and
integers. We will always assume that, > ;. The 50/80. Most of our detailed experiments were performed
general form of the excitation acceleration functionis  with ¢ = 0, but no qualitative variation of our results
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was observed whei was varied. The temperature of the parameters. Although the state’s appearance changes with
working fluid was regulated via attached thin-film heaterstime, spatial Fourier spectra reveal that the state results
to 30 = 0.05°C. from the interaction of two specific spatial scales; a wave
To visualize the fluid surface, we employed a novelnumberk; corresponding to the parametric frequengy,
imaging technique. A cylindrical screen, concentric withand its spatial subharmonik, /2. The SSS spectra show
the experimental cell, upon which light intensity was var-that while thek; wave vector has a 6-fold symmetry,
ied as a function of the height above the fluid, providedthe k,/2 wave vector has broken this symmetry (i.e.,
illumination. A CCD camera was mounted on the cylin- consisting of hexagons with “missing” wave vectors as
der axis. Ateach point on the fluid surface, the local slopeseen in the right panel of Fig. 2a).
reflects only a single point from the cylinder surface onto This results in the stripes seen in Fig. 2a. The SSS
the CCD. Since the lighting provides a unique intensitystates exhibit spatial phase locking; at a given temporal
at each height along the cylinder, the intensity reflected byhase thelocations of the spectral peaks are fixed, al-
each point is uniquely mapped to the projection of its slopghough their relative amplitudes (hence their appearance)
in the direction of the cylinder axis. The CCD, mountedwill vary. Wave numbersk,, corresponding tav,, are
1.4 m above the fluid, was computer triggered, thereby emotably absent in the SSS spectra. The presence,pf
abling us to photograph distinct phases of the moving pathowever, is reflected in the state’s time dependence. As
tern. A typical two-frequency phase diagram is presentedbserved in [1,2], the basic frequency of the hexagonal in-
in Fig. 1. Together with square and hexagonal phasestability preceding the SSS state is eitlgyor w,/2 de-
seen in previous experiments, we observe three new statggending on whethew; is an even or odd multiple aby.
spatially subharmonic superlattices (SSS) [8], two-modédJpon transition to SSS states, temporal period doubling
superlattices (2MS) [8], and spatially and temporally un-relative to the primary instability occurs for most states.
locked states (“unlocked” states). (The even-odd states BB5, 4¢/50, 40/60, 40/70, and
Subharmonic superlattice states occur over a wid®&0/75 Hz have a basic frequency afy/2, whereas the
range ofy in the two-frequency phase diagram where theodd-odd ratios 3070 and 5070 Hz have a fundamental
lower frequency,w;, is dominant. SSS were observed w(/4 frequency.) For other frequency ratios the state’s
for all odd-odd and even-odd frequency ratios tested, buiinderlying time dependence is more complex. Upon in-
were not seen for odd-even ratios. As Fig. 1 indicates,crease of thes; amplitude, the SSS become unstable to
these states can occur far, amplitudes far below the slow temporal “breathing” modulations at length scales
single-frequency threshold fd, states. The transition comparable to the system size. These modulations ap-
to these states from the primary hexagonal instability igpear to be qualitatively similar to transverse amplitude-
(within =1%) nonhysteretic and occurs via propagatingtype modulations seen in single-frequency patterns [9].
fronts. In Fig. 2a we present a sequence of SSS states
taken at different times for constant values of the driving
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FIG. 1. A typical two-frequency phase diagram (obtained for

w/wy = 40/60 Hz). Together with square and hexagonal FIG. 2. Typical sequences of the SSS (a) and 2MS (b)
phases, we observe three new states, SSS, 2MS, and spatiadlyperlattice states taken at constant values of the driving
and temporally unlocked states (unlocked states). Symbolparameters for the frequency ratio/40 Hz. The SSS spatial
describe transition lines measured for fixgd A thin 2MS  Fourier spectra are composed solely of wave numbdrs
transition region (dotted triangles) to hexagons is also seercorresponding taw;/2, and k;/2, while the 2MS spectra are
(inset) A comparison of (in cm™!), calculated using the two- composed obothk; andk,. In both states théocationsof the
frequency linear calculation (line) [2], with measured values agpeaks are fixed. Semicircles of radii andk;/2 are drawn in

a function of y (in degrees). (a) andk; andk, in (b).
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Two-mode superlattices generally occur in regions ofoccur in nonlinear interactions of surface waves [12] and
phase space where the higher frequengy,is dominant. are well known in the physics of plasmas. States simi-
As for SSS states, the transition to 2MS is nonhysteretitar to 2MS have also been observed when an optical beam
and occurs via propagating fronts. As Fig. 2b indicatespasses through a nonlinear medium [13]. The existence
2MS are qualitatively different than SSS as they resulbf this resonance condition is nontrivial, since the tempo-
from spatial phase locking dfoth k; andk,. The values ral resonance condition precisely determines the relative
of k; and k, measured throughout the phase diagranorientation ofk; andk,. Unlike, for example, the higher
states are withinl%-2% of the values predicted by harmonics ok; andk, observed in the spectrum, the selec-
the two-frequency numerical code of Tuckerman [10]tion of k3 via the temporal resonance condition yielding
(see the inset in Fig. 1). These values are significantlgannot be accounted for by experimental artifacts such as
different than the values df excited by single-frequency possible nonlinearities in the imaging. We have observed
excitation. The 2MS states are periodic in time with athis three-wave resonance condition for all frequency ra-
basic frequency ofwy or wy/2 for, respectively, odd- tiostested. Asin SSS, the dominant 2MS wave vector re-
odd or odd-even values of and m in Eqg. (1). Thus, tains its initial symmetry, while the basic symmetry of the
these states inherit the basic periodicity of both ofother excited wave vector state is broken with its relative
the underlying primary bifurcations. Like the SSS, theorientations determined by the above resonance condition.
state’s appearance changes qualitatively with time wittExamples are shown in Fig. 3 where the dominant wave
the spatial wave numbers having fixedationsand time-  vectors ar&; in (a) and (b) and; in (c). These have, re-
dependenamplitudes spectively, square, hexagonal, and hexagonal symmetries,

Although the two driving frequencies determine thewhich are retained. The basic symmetry of the nondomi-
lengths ofk; and k,, their relative orientations are gov- nant wave vectork; in (a) and (b) and; in (c), is broken.
erned by nonlinear interactions between them. 2MS speddnlike the SSS states, when the amplitude of the driving
tra, as shown in Fig. 3, are composed of peaks of lehgth is increased, the 2MS lose stability by the formation of un-
andk, and their linear combinations. The strongest seceorrelated domains in a way similar to the optical patterns
ondary peaks are given lﬂ{ = k} — k,, where the value observed in [13]. This suggests that instability of the state
of k3 is consistent with the linear value @f calculated occurs when the spatial correlation length becomes smaller
for a single-frequency excitation [11] at the difference fre-than the system size.
quencyws = w, — w;. This suggests that the orientation ~ Let us now turn to the unlocked state that appears around
of the wave vectors building the 2MS is selected by nonlinthe region of bistability ofk; and k. In Fig. 4a we
ear interactions that are resonant both in space and timgresent typical photographs of an unlocked state with its
Three-wave resonant interactions have been predicted gorresponding spatial spectrum. The spatial behavior of
the state varies rapidly in time. In contrast to the SSS and
2MS states, in the unlocked state no orientational order
is apparent. Although, as in 2MS states, béthand &,
exist simultaneously in the spectrum, neither spatial nor
temporal mode locking occurs. This is apparent in their
power spectra, where, generally, entire circles of ragii
andk, are observed. Is the unlocked state a well-defined
region of phase space or simply a narrow transition regime
between 2MS and hexagonal phases? To address this
question, we define, as in [14], the following “orientational
correlation function” for a given value af:

Ci(0) = Zal fi(a)fila + 0)]/Zal frla)fi(a)], (2)

wheref;(«a) is the Fourier transform of the wave number
k at the polar angle. As both the 2MS and hexago-
nal states have clear orientational ordé€n(6) is a
sensitive probe of the unlocked regime, providing in-
- - formation about the type and degree of orientational
FIG. 3. Althoughw; and w, determine the length of, and  symmetry within a given state. We quantify the degree of
ky, in 2MS, their relative orientations are determined by thegientational order in a given pattern by means of

condition: k3 = k, — lgl where the length ok; is determined ; ; ; — _
by the temporal resonance condition; = w, — w;. 2MS the orientational amplitude Q; = 1/2[maxCy(0)

patterns for (a) 5080, (b) 4560 (left of unlocked region), and r_nlan(G)_],_Whlch vares l_Jetween_ 0 and 1 for, respec-
(c) 40/60 Hz (dotted triangles in Fig. 1) are shown togethertl\_/ely, minimal and maximal orientational ordgr. In
with the triads, k3 = k, — k;, observed in their respective Fig. 4 we present mean values @f;, over a single
spectra. period, for bothk; andk, along the liney = 58°, which
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selected by a dissipative nonlinear system when nonlinear
waves having two different basic wavelengths, but infinite
degeneracy, are simultaneously excited. We find that, as
the relative “weights” of the waves are varied via their
excitation amplitudes, three qualitatively different types
of multiwave states arise as either primary or secondary
bifurcations. These states are qualitatively similar to
states observed in both nonlinear optics [13] and recent
simulations [6]. These states exhibit interesting spatial
and temporal behavior not observed in systems in which
only a single basic mode is excited. It remains to be seen
whether the routes to spatial and temporal complexity,
observed in this particular system, are taken by additional
driven dissipative systems.
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Academy of Science Grants No. Z#3-2 and No. 9050
93. We thank L.S. Tuckerman for the use of her linear
stability code.
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FIG. 4. In the unlocked state no orientational order is appar-
ent. As in 2MS statesk; and k, exist simultaneously, but

unlocked state spectra are diffuse and show little angular cor-
relation. (a) (left—right) Typical views of an unlocked state
observed for 4060 Hz driving at different times. The spec- [1]
trum (center) corresponds to the pattern on the left. Through-
out the unlocked phase the correlation amplitude, drops o
significantly although the angular correlation functiar,(6), [2]
indicates a small amount of residual order. (b) (upper)
(triangles) andQy, (squares), averaged over a single period [3]
along the liney = 58° for 40/60 Hz driving as a function of

the driving amplitudeA. This line traverses the square, 2MS, [4]
unlocked, and hexagonal phases. The symmetry of the different
phases is highlighted bg, (0), for k; (grey line) andk, (black (5]
line) computed for typical state® (is in degrees). The power

(log scale) ofk, relative tok; in eachC;(0) is 8.3 (square), 1.1 [6]
(2MS), 0.9 (unlocked), and 0.2 (hexagon).

[7]

passes through the square, 2MS, unlocked, and hexagonéﬁﬂ
phases.

As apparent from Fig. 4a, the orientational amplitude [9]
drops sharply as the boundary between the 2MS and un-
locked phases is crossed. Surprisingly, however, the rep-
resentativeCy () plots in Fig. 4 indicate a small amount [10]
of residual order in the latter phase. A transition from the[11]
square symmetry, which dominates bdthandk, in the
2MS state, to a small degree of mixed square and hexago-
nal order within the unlocked state is evident. After the
transition to the unlocked phas@, remains at the same
level until reaching the hexagonal phase boundary. At
this point Q, increases significantly, and pure hexagonal
symmetry is observed in the correspondifigd). Thus, 2
we see that the unlocked phase corresponds to a broa[gj,
well-defined region of phase space that is characterizeg3]
by a lack of orientational order.

In conclusion, in the above experiments we have begufi4]
to address the basic question of what types of states are
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