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Nonlinear waves with basic wave numbers,k1 andk2, are simultaneously excited via two-frequency
parametric excitation of a fluid surface. Three new multiwave states are observed: (1) A superla
state composed ofk1 andk2 whose relative orientation is governed by a temporal resonance conditio
(2) a superlattice built entirely of wave numbersk1 and k1y2, and (3) a state composed of wave
numbers of lengthsk1 and k2 that are uncorrelated in both space and time. The three states exh
interesting temporal as well as spatial behavior and are observed in a variety of frequency combina
[S0031-9007(98)07620-0]

PACS numbers: 47.54.+r, 47.20.Gv, 47.35.+ i, 47.52.+ j
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Since the discovery that complex behavior in spac
and time can arise in a controlled deterministic system
both the mechanisms that create disorder and their char
terization have captured the interest of physicists. Unt
recently, most studies of disorder in driven dissipativ
systems have concentrated on the limiting cases of eith
pattern-forming systems where a single spatial mode
excited or on the case where a system is highly turb
lent and many spatial and temporal degrees of freedo
are excited concurrently. In the single mode case, the u
derlying spatial behavior of the system is dictated by th
excited mode and complexity in the system evolves as
result of its secondary instabilities. Well-known example
of such systems are Rayleigh-Benard convection, Couet
Taylor flow, electroconvection, and the Faraday instabi
ity. The intermediate case, where a system is unstable to
finite number of nonlinearly interacting spatial and tempo
ral modes, has not been widely studied. In this paper w
take a step in this direction by the experimental study o
a system in which two different unstable modes are exte
nally excited. We will show that qualitatively new spa-
tial and temporal behavior occurs in the near vicinity o
the instability onset as nonlinear superlattice-type phas
arise. The existence of these states points to a large cl
of previously unanticipated spatial and temporal state
that may prove to be of general significance in nonlin
ear systems where multiple interacting spatial modes a
excited.

A convenient experimental system with which to stud
interacting spatial modes is that of parametrically drive
surface waves. As first noted by Faraday, sinusoid
acceleration of a fluid layer with angular frequencyv

in the direction of gravity induces a pattern, having a
wave numberk, on the fluid surface. Nonlinear wave
interactions can be studied in this system by driving th
fluid layer at two commensurate frequencies,v1 ­ nv0
and v2 ­ mv0 where n and m are relatively prime
integers. We will always assume thatv2 . v1. The
general form of the excitation acceleration function is
0031-9007y98y81(20)y4384(4)$15.00
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where the angle,x, describes the degree of mixing
between the two modes. The first to apply two-frequen
excitation to surface waves were Edwards and Fau
[1] who observed a quasicrystalline pattern having 1
fold symmetry ink space in a narrow range off near
the system’s bicritical point. Linear stability analysis o
this system was later performed by Bessonet al. [2] by
extension of the Kumar and Tuckerman [3] analysis f
single-frequency forcing. Their predictions for the critica
acceleration,ac, were verified for a number of different
fluid viscosities and driving frequency combinations [1,2
Additional experiments using two-frequency excitation
were performed by Muller [4] who showed that for
fixed frequency ratio ofv2yv1 ­ 2 triangular patterns
could be stabilized relative to hexagonal patterns by t
addition of a small third frequency component. Usin
a two-mode approximation to a Mathieu-type equatio
Zhang and Vinals [5] derived an amplitude equatio
description whose phase diagram qualitatively agrees w
these experiments. Lifshitz and Petrich [6] also obtain
stable two-frequency states having 2-, 4-, 6-, and 12-fo
symmetries, as observed in [1], together with two wa
number nonsymmetric states by modeling two interacti
waves with a generalized Swift-Hohenberg equation.

Our experiments are performed using Dow-Cornin
200 silicone oil with a kinematic viscosity ofn ­ 23 cS
(centistoke). Using the apparatus described in [7], w
conducted our experiments in thin fluid layers of heig
0.155 cm so as to both reduce effects of lateral bound
enforced quantization and to damp out long waveleng
modes. Our fluid cells are circular with a 14.4 cm
diameter and constructed of black-anodized aluminu
machined to10 mm flatness. Thev1yv2 combinations
used in our experiments were (in Hz) 30y40, 30y50,
30y55, 30y70, 40y50, 40y60, 40y70, 41y60, 45y60,
50y60, 50y70, 50y75, 50y80, 30y70, 40y70, 50y70, and
50y80. Most of our detailed experiments were performe
with f ­ 0, but no qualitative variation of our results
© 1998 The American Physical Society
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was observed whenf was varied. The temperature of th
working fluid was regulated via attached thin-film heate
to 30 6 0.05 ±C.

To visualize the fluid surface, we employed a nov
imaging technique. A cylindrical screen, concentric wi
the experimental cell, upon which light intensity was va
ied as a function of the height above the fluid, provide
illumination. A CCD camera was mounted on the cylin
der axis. At each point on the fluid surface, the local slo
reflects only a single point from the cylinder surface on
the CCD. Since the lighting provides a unique intensi
at each height along the cylinder, the intensity reflected
each point is uniquely mapped to the projection of its slo
in the direction of the cylinder axis. The CCD, mounte
1.4 m above the fluid, was computer triggered, thereby e
abling us to photograph distinct phases of the moving p
tern. A typical two-frequency phase diagram is present
in Fig. 1. Together with square and hexagonal phas
seen in previous experiments, we observe three new sta
spatially subharmonic superlattices (SSS) [8], two-mo
superlattices (2MS) [8], and spatially and temporally u
locked states (“unlocked” states).

Subharmonic superlattice states occur over a w
range ofx in the two-frequency phase diagram where th
lower frequency,v1, is dominant. SSS were observe
for all odd-odd and even-odd frequency ratios tested, b
were not seen for odd-even ratios. As Fig. 1 indicate
these states can occur forv2 amplitudes far below the
single-frequency threshold fork2 states. The transition
to these states from the primary hexagonal instability
(within ø1%) nonhysteretic and occurs via propagatin
fronts. In Fig. 2a we present a sequence of SSS sta
taken at different times for constant values of the drivin

FIG. 1. A typical two-frequency phase diagram (obtained f
v1yv2 ­ 40y60 Hz). Together with square and hexagon
phases, we observe three new states, SSS, 2MS, and spa
and temporally unlocked states (unlocked states). Symb
describe transition lines measured for fixedx. A thin 2MS
transition region (dotted triangles) to hexagons is also se
(inset) A comparison ofk (in cm21), calculated using the two-
frequency linear calculation (line) [2], with measured values
a function ofx (in degrees).
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parameters. Although the state’s appearance changes
time, spatial Fourier spectra reveal that the state resu
from the interaction of two specific spatial scales; a wa
numberk1 corresponding to the parametric frequencyv1,
and its spatial subharmonic,k1y2. The SSS spectra show
that while thek1 wave vector has a 6-fold symmetry
the k1y2 wave vector has broken this symmetry (i.e
consisting of hexagons with “missing” wave vectors a
seen in the right panel of Fig. 2a).

This results in the stripes seen in Fig. 2a. The SS
states exhibit spatial phase locking; at a given tempo
phase thelocations of the spectral peaks are fixed, al
though their relative amplitudes (hence their appearan
will vary. Wave numbers,k2, corresponding tov2, are
notably absent in the SSS spectra. The presence ofv2,
however, is reflected in the state’s time dependence.
observed in [1,2], the basic frequency of the hexagonal
stability preceding the SSS state is eitherv0 or v0y2 de-
pending on whetherv1 is an even or odd multiple ofv0.
Upon transition to SSS states, temporal period doubli
relative to the primary instability occurs for most state
(The even-odd states 30y55, 40y50, 40y60, 40y70, and
50y75 Hz have a basic frequency ofv0y2, whereas the
odd-odd ratios 30y70 and 50y70 Hz have a fundamental
v0y4 frequency.) For other frequency ratios the state
underlying time dependence is more complex. Upon i
crease of thev1 amplitude, the SSS become unstable
slow temporal “breathing” modulations at length scale
comparable to the system size. These modulations
pear to be qualitatively similar to transverse amplitud
type modulations seen in single-frequency patterns [9].

FIG. 2. Typical sequences of the SSS (a) and 2MS (
superlattice states taken at constant values of the driv
parameters for the frequency ratio 40y60 Hz. The SSS spatial
Fourier spectra are composed solely of wave numbersk1,
corresponding tov1y2, and k1y2, while the 2MS spectra are
composed ofboth k1 andk2. In both states thelocationsof the
peaks are fixed. Semicircles of radiik1 andk1y2 are drawn in
(a) andk1 andk2 in (b).
4385
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Two-mode superlattices generally occur in regions
phase space where the higher frequency,v2, is dominant.
As for SSS states, the transition to 2MS is nonhystere
and occurs via propagating fronts. As Fig. 2b indicate
2MS are qualitatively different than SSS as they resu
from spatial phase locking ofboth k1 andk2. The values
of k1 and k2 measured throughout the phase diagra
states are within1% 2% of the values predicted by
the two-frequency numerical code of Tuckerman [10
(see the inset in Fig. 1). These values are significan
different than the values ofk excited by single-frequency
excitation. The 2MS states are periodic in time with
basic frequency ofv0 or v0y2 for, respectively, odd-
odd or odd-even values ofn and m in Eq. (1). Thus,
these states inherit the basic periodicity of both
the underlying primary bifurcations. Like the SSS, th
state’s appearance changes qualitatively with time w
the spatial wave numbers having fixedlocationsand time-
dependentamplitudes.

Although the two driving frequencies determine th
lengths ofk1 and k2, their relative orientations are gov-
erned by nonlinear interactions between them. 2MS sp
tra, as shown in Fig. 3, are composed of peaks of lengthk1
andk2 and their linear combinations. The strongest se
ondary peaks are given by$k3 ­ $k2 2 $k1, where the value
of k3 is consistent with the linear value ofk calculated
for a single-frequency excitation [11] at the difference fre
quencyv3 ­ v2 2 v1. This suggests that the orientation
of the wave vectors building the 2MS is selected by nonli
ear interactions that are resonant both in space and ti
Three-wave resonant interactions have been predicted

FIG. 3. Althoughv1 and v2 determine the length ofk1 and
k2, in 2MS, their relative orientations are determined by th
condition: $k3 ­ $k2 2 $k1 where the length ofk3 is determined
by the temporal resonance condition:v3 ­ v2 2 v1. 2MS
patterns for (a) 50y80, (b) 45y60 (left of unlocked region), and
(c) 40y60 Hz (dotted triangles in Fig. 1) are shown togethe
with the triads, $k3 ­ $k2 2 $k1, observed in their respective
spectra.
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occur in nonlinear interactions of surface waves [12] a
are well known in the physics of plasmas. States sim
lar to 2MS have also been observed when an optical be
passes through a nonlinear medium [13]. The existen
of this resonance condition is nontrivial, since the temp
ral resonance condition precisely determines the relat
orientation ofk1 andk2. Unlike, for example, the higher
harmonics ofk1 andk2 observed in the spectrum, the sele
tion of k3 via the temporal resonance condition yieldingv3
cannot be accounted for by experimental artifacts such
possible nonlinearities in the imaging. We have observ
this three-wave resonance condition for all frequency
tios tested. As in SSS, the dominant 2MS wave vector
tains its initial symmetry, while the basic symmetry of th
other excited wave vector state is broken with its relati
orientations determined by the above resonance condit
Examples are shown in Fig. 3 where the dominant wa
vectors arek2 in (a) and (b) andk1 in (c). These have, re-
spectively, square, hexagonal, and hexagonal symmetr
which are retained. The basic symmetry of the nondom
nant wave vector,k1 in (a) and (b) andk2 in (c), is broken.
Unlike the SSS states, when the amplitude of the drivi
is increased, the 2MS lose stability by the formation of u
correlated domains in a way similar to the optical patter
observed in [13]. This suggests that instability of the sta
occurs when the spatial correlation length becomes sma
than the system size.

Let us now turn to the unlocked state that appears arou
the region of bistability ofk1 and k2. In Fig. 4a we
present typical photographs of an unlocked state with
corresponding spatial spectrum. The spatial behavior
the state varies rapidly in time. In contrast to the SSS a
2MS states, in the unlocked state no orientational ord
is apparent. Although, as in 2MS states, bothk1 and k2
exist simultaneously in the spectrum, neither spatial n
temporal mode locking occurs. This is apparent in the
power spectra, where, generally, entire circles of radiik1
andk2 are observed. Is the unlocked state a well-defin
region of phase space or simply a narrow transition regi
between 2MS and hexagonal phases? To address
question, we define, as in [14], the following “orientationa
correlation function” for a given value ofk:

Cksud ; Saffksadfksa 1 udgySaffksadfksadg , (2)

wherefksad is the Fourier transform of the wave numbe
k at the polar angleu. As both the 2MS and hexago
nal states have clear orientational order,Cksud is a
sensitive probe of the unlocked regime, providing in
formation about the type and degree of orientation
symmetry within a given state. We quantify the degree
orientational order in a given pattern by means
the orientational amplitude, Qk ­ 1y2fmaxCksud 2

minCksudg, which varies between 0 and 1 for, respe
tively, minimal and maximal orientational order. In
Fig. 4 we present mean values ofQk, over a single
period, for bothk1 andk2 along the linex ­ 58±, which
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FIG. 4. In the unlocked state no orientational order is appa
ent. As in 2MS states,k1 and k2 exist simultaneously, but
unlocked state spectra are diffuse and show little angular co
relation. (a) (left–right) Typical views of an unlocked state
observed for 40y60 Hz driving at different times. The spec-
trum (center) corresponds to the pattern on the left. Throug
out the unlocked phase the correlation amplitude,Qk drops
significantly although the angular correlation function,Cksud,
indicates a small amount of residual order. (b) (upper)Qk1

(triangles) andQk2 (squares), averaged over a single perio
along the linex ­ 58± for 40y60 Hz driving as a function of
the driving amplitude,A. This line traverses the square, 2MS,
unlocked, and hexagonal phases. The symmetry of the differe
phases is highlighted byCksud, for k1 (grey line) andk2 (black
line) computed for typical states (u is in degrees). The power
(log scale) ofk2 relative tok1 in eachCksud is 8.3 (square), 1.1
(2MS), 0.9 (unlocked), and 0.2 (hexagon).

passes through the square, 2MS, unlocked, and hexago
phases.

As apparent from Fig. 4a, the orientational amplitud
drops sharply as the boundary between the 2MS and u
locked phases is crossed. Surprisingly, however, the re
resentativeCksud plots in Fig. 4 indicate a small amount
of residual order in the latter phase. A transition from th
square symmetry, which dominates bothk1 andk2 in the
2MS state, to a small degree of mixed square and hexag
nal order within the unlocked state is evident. After the
transition to the unlocked phase,Qk remains at the same
level until reaching the hexagonal phase boundary. A
this point Qk increases significantly, and pure hexagona
symmetry is observed in the correspondingCksud. Thus,
we see that the unlocked phase corresponds to a bro
well-defined region of phase space that is characteriz
by a lack of orientational order.

In conclusion, in the above experiments we have begu
to address the basic question of what types of states a
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selected by a dissipative nonlinear system when nonline
waves having two different basic wavelengths, but infinit
degeneracy, are simultaneously excited. We find that,
the relative “weights” of the waves are varied via their
excitation amplitudes, three qualitatively different types
of multiwave states arise as either primary or seconda
bifurcations. These states are qualitatively similar t
states observed in both nonlinear optics [13] and rece
simulations [6]. These states exhibit interesting spatia
and temporal behavior not observed in systems in whic
only a single basic mode is excited. It remains to be see
whether the routes to spatial and temporal complexity
observed in this particular system, are taken by addition
driven dissipative systems.
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