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Excitation of Solitons by Adiabatic Multiresonant Forcing
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It is shown that stable, large amplitude, spatially coherent solutions of the nonlinear Schrödi
equation can be excited by a weak forcing composed of an oscillation and a standing wave w
slowly varying frequency. The excitation involves autoresonant transition from a growing amplitu
uniform state to spatially modulated solution approaching the soliton, as the frequency increases in
[S0031-9007(98)07585-1]
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The ac-driven, damped nonlinear Schrödinger equ
tion (NLSE) ict 1 cxx 1 jcj2c ­ 2iGc 1 f, where
fstd ­ ´ expsiLtd was proposed originally [1] as a mode
describing dipolar excitations in one-dimensional conde
sates. Later this equation was used in other applicatio
including ferromagnets in rotating magnetic fields [2
long Josephson junctions in ac fields [3], and rf-drive
plasmas [4]. Among a variety of solutions of drive
NLSE, the simplest are stationary, phase-locked sta
c ­ asxd expsiLtd, where asxd satisfies axx 2 La 1

jaj2a ­ 2iGa 1 ´. The existence and stability of thes
solutions were addressed previously [1,5,6]. In the pres
work, we suggest a simple way of adiabatic excitatio
(from zero) of the phase-locked states by slowly varyin
a single parameter, i.e., by chirping the frequency of th
forcing. The proposed scheme is based on impos
the periodic boundary conditioncsx, td ­ csx 1 L, td
and spatially modulating the amplitude of the drivin
force. In particular, we shall study the casefsx, td ­
´sxd expfiwstdg, whereLstd ­ wt is a slow function of
time, ´sxd ; ´0 1 ´1 cossk0xd, andk0 ­ 2pyL.

Our approach to controlling the nonlinear wave excit
tion process is based on the autoresonance effect, wh
reflects a natural tendency of the nonlinear system to p
serve, under certain conditions, the resonance with exte
perturbations despite variation of the system’s param
ters. Applications of this idea to Korteweg–de Vries, sin
Gordon, and other nonlinear wave systems exist in t
literature [7,8]. Recently, the autoresonance was also st
ied in the context of generating spatially modulated NLS
solutions [9]. However, the proposed scheme require
special choice of initialand boundary conditions, as well
as spaceand time variation of parameters of the driver
Instead, in the present work, we formulate an initial valu
problem, vary the frequency of the driveronly,and include
a weak dissipation in our analysis.

We shall use vanishing initial conditions and view th
driver as a perturbation. In this case, the initial evolutio
of our solution comprises alinear wave excitation prob-
lem. Since the driver is a combination of an oscillatio
and a standing wave with slowly varying frequencies, o
expects this linear excitation to be effective at times wh
0031-9007y98y81(20)y4357(4)$15.00
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one of the driver components passes the resonance wit
linear NLSE wave. The linear dispersion relation of th
dissipationless NLSE isv 1 k2 ­ 0, and, therefore, the
resonances with́0 or ´1 components of the driver are ex-
pected whenL ø 0 or L ø 2k2

0 , respectively. Suppose
L is increasing in time and one passesL ­ 0 resonance
first (this is the scenario of our excitation scheme). W
illustrate such a case in Fig. 1, showingjcj found numeri-
cally by a standard spectral method [10]. The driving fre
quency wasLstd ­ d 1 L0 sinfsptdys2T0dg for jtj # T0
and L ­ d 1 L0, for t . T0, and we usedT0 ­ 300,
d ­ 3, L0 ­ 4.5, L ­ p, ´0,1 ­ 0.05. Finally, we ne-
glected damping in this example and applied zero initi
conditions (att0 ­ 2T0). Since, initially,0 . L . 2k2

0 ,
the system passed the linear resonanceL ­ 0 first (at
t ­ t1 ø 2140). One can see in the figure that a quas
uniform (flat) NLSE solution is excited in the vicinity of
this linear resonance. The solution grows at later times, b
remains flat until, att ­ t2 ø 230, it develops a spatially
modulated profile and, beyondt . 300, assumes an almost
solitory form. Additional results from the same calcula
tions are presented in Fig. 2, showing the evolution of th
maximum value ofjcj over0 # x # L and the phase mis-
match D ­ fargscd 2 wstdg mod2p at x ­ Ly2. The

FIG. 1. Two-stage autoresonant excitation of a solitory wav
© 1998 The American Physical Society 4357
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FIG. 2. Evolution of jcjmax and D (at x ­ Ly2). Curve a
shows the effect of dissipation.

curvea in the same figure representsD obtained by adding
a small dissipation,G ­ 0.005 (the smoothed slow evolu-
tion of jcjmax was the same with and without dissipation
One can see that, beyondt ­ t1, the phases of the solu-
tions are locked to that of the driver, and bothjcj andD

oscillate around slowly varying averaged values. Finall
in Fig. 3, we show a part of the evolutions245 , t , 5d
in the same example as the dissipative case in Fig. 2,
with ´1 ­ 0, i.e., when the driver is a purely temporal os
cillation. One can see the portion of the flat solution, as
Fig. 1. Nevertheless,jcj does not exhibitstationaryspa-
tial profile beyondt2, but transforms into a breather-like
solution. The following theory explains these results.

We proceed by discussing the flat, phase-locked pa
of the solutions in Figs. 1–3. By writingc ­ Asx, td 3

exphifwstd 1 Fsx, tdgj, ImsA, Fd ­ 0, NLSE yields

FIG. 3. Evolution of jcj for purely temporal forcingf ­
´0 expsi

R
L dtd. The autoresonance is destroyed att ø 230

due to the modulational instability.
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At 1 AFxx 1 2AxFx ­ 2´ sinF 2 GA ,

AFt 2 Axx 1 AF2
x 1 LA 2 A3 ­ 2´ cosF .

(1)

Assuming analmost flat solution of (1) and using the
periodicity condition, we expandA andF in the Fourier
series and leave only the spatially independent par
and small first spatial harmonics in the expansions:A ø
A0std 1 RefA1std expsik0xdg F ø F0std 1 RefF1std 3

expsik0xdg, jA1j ø A0, jF1j ø 1. Then by linearizing

A0t ­ 2GA0 2 ´0 sinF0 ,

F0t ­ A2
0 2 L 2 s´0yA0d cosF0 ,

(2)

and

A1t 2 A0k2
0F1 ­ 2GA1 2 ´0F1 cosF0 2 ´1 sinF0 ,

A0F1t 1 sF0t 1 k2
0 1 L 2 3A2

0dA1 (3)

­ ´0F1 sinF0 2 ´1 cosF0 .

By setting I ; A2
0, u ; F0, Eqs. (2) can be written as

It ­ 2Hu 2 2GI; ut ­ H1, where HsI, ud ; 1
2 I2 2

LstdI 2 2´0I1y2 cosu. Note thatHsI , ud has the charac-
teristic form ofsingle resonanceHamiltonian (expressed
in terms of the action-angle variables) in a nonlinear res
nance problem [11]. It is known that, by varyingLstd, this
dynamical problem may exhibit temporal autoresonanc
[12], provided one starts from a sufficiently smallI and
passes the linear resonanceL ­ 0 in time. In autoreso-
nance, the angleu s­ F0d remains locked nearu ­
0smod2pd, while the action of the oscillator (and there-
fore,A0) self-adjusts to preserve the approximatenonlinear
resonance conditionA2

0 ­ I ø Lstd despite the variation
of L. Also, bothI andu perform slow autoresonant os-
cillations around the smooth averages with characteris
frequency ofOs´1y2d. This dynamical analog explains
the excitation of the flat, phase-locked solutions of NLS
seen in Figs. 1–3 at timest1 , t , t2 ø 230.

The evolution in all our examples enters a new stag
when the driving frequency passes (att ­ t2) the value
L ­ 1

2 k2
0 , i.e., when the amplitude of the flat state become

A0 ø L1y2 ­ 221y2k0. In analyzing this effect, we must
discuss the behavior of the spatial modulationsA1 andF1

in the developed stagesA0k2
0 ¿ ´d of the flat autoresonant

solution. These modulations are described by Eq. (3
where one viewsA0 andF0 as known. To lowest order in
´, we useA2

0 ø Lstd andF0 ø 0 in (3), yielding

A1t 2 L1y2k2
0F1 ­ 2GA1 ,

L1y2F1t 1 sk2
0 2 2LdA1 ­ 2´1 .

(4)

Next, we define theslowquasisteady state

A1 ­ ´1s2L 2 k2
0d21,

F1 ­ G´1fL1y2k2
0s2L 2 k2

0dg21,
(5)

and write the solutions of (4) in the formA1 ­ A1 1

dA1, F1 ­ F1 1 dF1, wheredA1 anddF1 are assumed
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to be small and evolving as exps2i
R

n dtd. Then, by
neglecting the slow time dependence of the coefficients
(4), one obtains local characteristic equationn2 1 iGn ­
k2

0sk2
0 2 2Ld. The latter can be recognized as describin

the modulational instability of the flat solution [13]. In
the G ­ 0 case, the instability condition isk2

0 2 2L ,

0, i.e., for increasingL, one expects a modulationally
unstable behavior beyondt ­ t2, where Lst2d ­ 1

2 k2
0 .

Nevertheless, we see the onset and evolution of t
instability in Fig. 3 only. In this casé1 ­ 0 andA1 ­
F1 ­ 0 during the excitation of the flat state [see Eq. (5)
Therefore, startingt ­ t2, the instability develops from
numerical noise (or small initial conditions, if applied)
Beyondt2, the resonance is destroyed and a new damp
breather-like state is observed. In contrast, if´1 fi 0,
Eq. (5) predicts a significant increase ofA1 (andF1 in the
dissipative case) as one approaches the instability thresh
sL ! 1

2 k2
0d, and one may expect violation of our linearize

analysis and a differentnonlinear evolution, as seen in
Figs. 1 and 2. We must use afully nonlinear treatment
of the drivenmodulatedwave in analyzing this case.

Our new physical picture is based on interpreting the s
lution of (1) at any given time as being aslightlyperturbed
solution of the same system of equations, but with the tim
derivatives, the forcing term, and the dissipation set to ze
In other words, we writeA ø r, F ø f, wherer andf

satisfy
rfxx 1 2rxfx ­ 0 ,

rxx 2 rf2
x 2 Lstdr 1 r3 ­ 0 ,

(6)

with Lstd fixed at a given time. Equation (6) describe
a two degrees of freedom Hamiltonian problem, whe
one interpretsx as “time,” while r and f are the po-
lar coordinates of a quasiparticle moving in the centr
force potential wellVeffsrd ­ 2

1
2 Lr2 1

1
4 r4. This prob-

lem is integrable, since the angular momentumM ; r2fx

and the energyE ; 1
2 sr2

x 1 M2yr2d 1 Veffsrd are con-
served (inx). We focus on oscillating solutions of the
problem and introduce the canonical action-angle variab
sJ , Qd andsM, jd, where the first pair describes purely “ra
dial” oscillations [14] of the quasiparticle, while the sec
ond is associated with the azimuthal motion. Since t
pair of actionshJ, Mj is conserved, one can use it or, a
ternatively, the pairhE, Mj for labeling the solutions of
(6). Then, the desired solutions of system (1) are appro
mated byAsx, td ø rfEstd, Mstd, Qsx, tdg and Fsx, td ø
ffEstd, Mstd, Qsx, td, jsx, tdg, where the “energy”E and
the “angular momentum”M are slowly varying in time.
The goal is to find the temporal evolution of these labelin
parameters. We shall use our recent theory [9] in solvi
this problem, but, first, give a qualitative description of th
results in Fig. 1 in terms of our dynamical analog.

We view the evolution in Fig. 1 as reflecting a continu
ous,slow(in real time) change of almost “radial”sM ø 0d
oscillatory motion of the quasiparticle in the central forc
potential Veffsr , Ld. We notice that the driving terms
´ cosF and´ sinF in (1), if added on the right-hand side
in
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of our dynamical system (6), can be interpreted as repr
senting an additional “uniform” driving force of strength
´ ­ ´0 1 ´1 cossk0xd and pointing in thef ­ 0 direction
in the “plane” of motion. The resonance of the quasipa
ticle with this force plays an important role as the poten
tial Veff evolves in time. We illustrate this evolution in
Fig. 4, showingVeff for different values ofLstd. Curve
a in the figure corresponds to a negative valueL ­ 21.5.
Initially, at t ­ t0, the quasiparticle is located at the bot-
tom of this potential well and has zero energyE and an-
gular momentumM. A simple calculation shows that for
L , 0, the natural wave number (recall,x plays the role
of “time” in the dynamical problem) of small “radial” os-
cillations of the quasiparticle at the bottom of the well is
2jLj. Then, sincek0 . 2jLj in the initial excitation stage
st0 , t , t1d, the component́ 1 cossk0xd of the driving
force is out of resonance. Consequently, the actionsJ
and M are nearly conserved and the particle remains
the bottomsJ ø 0d of the potential well (the open circle
on curvea). As the result, the amplitudeA ø r remains
small for L , 0. At t ­ t1, L becomes positive. This
affects the form of the potentialVeff, and the new form
is represented by curvesb and c sL ­ 0.8, 2d in Fig. 4.
Now the minimum of the potential is negative and move
to increasing radii,r ­ r0 ­ L1y2std. At the same time,
the natural “wave number” of small “radial” oscillations
at the bottom of the potential well is again2L. There-
fore, the driving forcé 1 cossk0xd is still nonresonant, as
long as2L , k2

0 , st1 , t , t2d. The particle stays at the
bottom of the potential wellsJ ø 0d, and, consequently,
moves to larger radiir0 (the open circles on curvesb and
c). SinceA ø r0, this stage corresponds to a growing am
plitude, flat (x-independent) solution of NLSE. Note that
the constant component́0 of the driving force slightly
tilts the quasipotential in thef ­ 0 direction, braking the

FIG. 4. PotentialVeffsr , Ld in the dynamical analog. (a) L ,
0; the quasiparticle is at the bottom of the well. (b,c) 0 ,

L , 1
2 k2

0 . The particle is still at the boom of the well.
(d,e) L . 1

2 k2
0 , “radial” oscillations, conservingK ø k0.
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central symmetry, and forcing the quasiparticle to rema
at the azimuthal anglef ­ 0 continuously, as it moves
to larger “radii.” Finally, as the frequencyL passes (at
t ­ t2) the value of 1

2 k2
0 , the wave numberk0 of the

driver crosses the resonance with the natural wave nu
ber of small “radial” oscillations near the bottom ofVeff
and one efficiently excites these oscillations. Beyond th
linear resonance, the system enters thespatial autoreso-
nanceregime, i.e., the state when, fort . t2, the nonlin-
ear wave numberK ; ≠EsJ, Mdy≠J remainsnearly the
same as that of the driving modulationsk0d, despite the
variation of the system’s parameters. SinceK depends on
Lstd parametrically, the labeling parametersE and/orM
must vary in time in order to satisfy the autoresonance co
dition KsE, M, Ld ø k0. One finds (see below) thatM
remains small, so only the “energy”E departs from the
minimum value in the potential well and the dynamica
system develops “radial” oscillations of increasing ampl
tude [the motion shown by thick solid lines on the po
tentials d sL ­ 3.75d and e sL ­ 5.5d in Fig. 4]. The
corresponding NLSE solution assumes a phase-locke
spatially modulated form. Finally, as one further increase
the driving frequencyL, the system approaches the separ
trix of the “radial” oscillations, meaning the emergence o
the soliton solution. This completes the qualitative pictur
of the excitation process seen in Fig. 1. Next, we expla
the observed stability of this process.

We shall neglect the dissipation, for simplicity, in study
ing the stability issue. Then, the problem reduces to a pa
ticular case of a more general stability theory [9] for driven
phase-locked, standing wave solutions of NLSE. We d
scribe our temporal evolution problem via Whitham’s [15
averaged variational principled

R
L dt ­ 0, whereL is

the Lagrangian of the original driven problem, average
over the fast angular variable (the canonical angleQ of
the “radial” oscillations of the quasiparticle in our appli-
cation). This Lagrangian depends on slow variables a
parameters only; i.e.,L ­ L fE, M, j, m; Lstdg, where
m ; Q 2 k0x is the phase mismatch of the spatial oscilla
tions. WhenL is known, the variations with respect toE,
M, j, andm yield evolution equations for the slow inde-
pendent variables. We shall useL derived in [9], neglect
the time variation ofL in studying the stability, assume the
existence of a phase-locked steady stateE, m ­ 0, M ­ 0,
j ­ 0, and add perturbationsdE, dM, dm, anddj. Then
linearized variational equations for the perturbed variabl
are [16]

KEdE 1 KLdjt ­ 0 ,

dMt 2 s2k0d21kr2ldmtt ­ 2k0´1a1dm ,

kr22ldM 2 s2k0d21dmt ­ 0 ,
(7)

k0sJLEdEt 1 JLLdjttd ­ 2s´0a0 2 ´1a1ddj ,

where JsE, Ld is the action ofpurely “radial” sM ­ 0d
oscillations, k· · ·l denotes the averaging overQ, s· · ·d
represents evaluation atE ­ E and M ­ 0, while
a0,1 are the zero and first harmonic coefficients (bot
4360
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real) in the Fourier expansion ofr ­ rsQd. Sys-
tem (7) yields dmtt ­ 2gmdm and djtt ­ 2gjdj,
where gm ; ´1a14k2

0fkr2l 2 kr22l21g21 and k0gj ;
s´0a0 2 ´1a1d sJLL 2 JLEKLyKEd21. For stability,
both gj and gm must be positive. One finds thatgm

is always positive, but the positiveness ofgj requires
´0a0 2 ´1a1 . 0 throughout the excitation process
requiring a sufficiently large value of́0. This is the
necessary condition for having a continuous doub
phase locking,j ø 0 and m ø 0, in our system. Our
calculations also show that sufficiently weak dissipatio
in the problem does not destroy the autoresonance.

In conclusion, we have described the excitation a
control of phase-locked, spatially modulated solutions
NLSE by usingtwo-componentautoresonant forcing. We
have presented a simple dynamical analog associated w
the problem and studied the stability of the proposed ex
tation scheme via averaged variational principle. It see
promising to apply similar ideas to driven systems fo
which NLSE is a small amplitude approximation. Ex
perimental observation of autoresonantly excited nonline
waves also comprises a challenging goal for future studi
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