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Excitation of Solitons by Adiabatic Multiresonant Forcing
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It is shown that stable, large amplitude, spatially coherent solutions of the nonlinear Schrédinger
equation can be excited by a weak forcing composed of an oscillation and a standing wave with a
slowly varying frequency. The excitation involves autoresonant transition from a growing amplitude,

uniform state to spatially modulated solution approaching the soliton, as the frequency increases in time.
[S0031-9007(98)07585-1]

PACS numbers: 42.65.Tg, 03.40.Kf, 52.35.Mw

The ac-driven, damped nonlinear Schrodinger equaene of the driver components passes the resonance with a
tion (NLSE) iy, + ¢ + ||? = —iTy + f, where linear NLSE wave. The linear dispersion relation of the
f(t) = e exp(i At) was proposed originally [1] as a model dissipationless NLSE i& + k> = 0, and, therefore, the
describing dipolar excitations in one-dimensional condenresonances witlh, or £; components of the driver are ex-
sates. Later this equation was used in other applicationpected whem = 0 or A = —k3, respectively. Suppose
including ferromagnets in rotating magnetic fields [2], A is increasing in time and one passks= 0 resonance
long Josephson junctions in ac fields [3], and rf-drivenfirst (this is the scenario of our excitation scheme). We
plasmas [4]. Among a variety of solutions of driven illustrate such a case in Fig. 1, showihg found numeri-
NLSE, the simplest are stationary, phase-locked statesally by a standard spectral method [10]. The driving fre-
¢ = a(x)exp(iAr), where a(x) satisfiesa,, — Aa + guency wasA(r) = d + Agsin(w1)/(2Ty)] for |¢t] = Ty
lal?’a = —iTa + e. The existence and stability of these and A = d + Ao, for r > T,, and we used, = 300,
solutions were addressed previously [1,5,6]. Inthe present = 3, Ag = 4.5, L = 7, g9; = 0.05. Finally, we ne-
work, we suggest a simple way of adiabatic excitationglected damping in this example and applied zero initial
(from zero) of the phase-locked states by slowly varyingconditions (at) = —7,). Since, initially,0 > A > —k3,

a single parameter, i.e., by chirping the frequency of thethe system passed the linear resonance= 0 first (at
forcing. The proposed scheme is based on imposing = ¢, = —140). One can see in the figure that a quasi-
the periodic boundary conditiog(x,7) = ¢(x + L,t)  uniform (flat) NLSE solution is excited in the vicinity of
and spatially modulating the amplitude of the driving this linear resonance. The solution grows at later times, but

force. In particular, we shall study the cagéx,r) = remains flat until, at = #, = —30, it develops a spatially
e(x)exdie(r)], where A() = ¢, is a slow function of modulated profile and, beyomd> 300, assumes an almost
time, e(x) = gy + &; cogkox), andkg = 27 /L. solitory form. Additional results from the same calcula-

Our approach to controlling the nonlinear wave excita-tions are presented in Fig. 2, showing the evolution of the
tion process is based on the autoresonance effect, whichaximum value ofy| over0 = x = L and the phase mis-
reflects a natural tendency of the nonlinear system to prenatch A = [arg/) — ¢ (1)]mod27 at x = L/2. The
serve, under certain conditions, the resonance with external
perturbations despite variation of the system’s parame-
ters. Applications of this idea to Korteweg—de Vries, sine-
Gordon, and other nonlinear wave systems exist in the__

literature [7,8]. Recently, the autoresonance was also stud >- 4
ied in the context of generating spatially modulated NLSE - 3
solutions [9]. However, the proposed scheme required anQ -
special choice of initiahnd boundary conditions, as well E 2]
as spaceand time variation of parameters of the driver. S
Instead, in the present work, we formulate an initial value & 1
problem, vary the frequency of the drivenly,and include <2C

a weak dissipation in our analysis. 40%>

We shall use vanishing initial conditions and view the
driver as a perturbation. In this case, the initial evolution
of our solution comprises Bnear wave excitation prob-
lem. Since the driver is a combination of an oscillation
and a standing wave with slowly varying frequencies, one
expects this linear excitation to be effective at times wherFIG. 1. Two-stage autoresonant excitation of a solitory wave.
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FIG. 2. Evolution of|¢|max and A (at x = L/2). Curvea

shows the effect of dissipation.

curvea in the same figure represemsobtained by adding
a small dissipation]’ = 0.005 (the smoothed slow evolu-
tion of || max Was the same with and without dissipation)
One can see that, beyond= 1, the phases of the solu-
tions are locked to that of the driver, and bdih and A

oscillate around slowly varying averaged values. Finally

in Fig. 3, we show a part of the evolutidr-45 < ¢ < 5)
in the same example as the dissipative case in Fig. 2,

with &1 = 0, i.e., when the driver is a purely temporal os- 0(
cillation. One can see the portion of the flat solution, as i

Fig. 1. Neverthelesdis| does not exhibistationaryspa-
tial profile beyondr,, but transforms into a breather-like
solution. The following theory explains these results.
We proceed by discussing the flat, phase-locked pa
of the solutions in Figs. 1-3. By writingg = A(x, 1) X
expli[¢(t) + ®(x,1)]}, Im(A, ) = 0, NLSE vyields
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FIG. 3. Evolution of || for purely temporal forcingf =
goexpi [ Adt). The autoresonance is destroyed:at —30
due to the modulational instability.
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A + AP, + 24, D, = —esin® —TA,
1
AD, — A, + AD? + AA — AP (1)

Assuming analmost flat solution of (1) and using the
periodicity condition, we expand and® in the Fourier
series and leave only the spatially independent parts
and small first spatial harmonics in the expansiohss
Ao(l) + Rd:Al(l‘) eXF(iko)C)] o = CD()(Z‘) + Rd:(bl(t) X
expikox)], |1A1] < Ap, |®] < 1. Then by linearizing

Ao = —FA() — & sin(I)o,
Do, = AF — A — (g9/Ag) cOsDy,

—gcosd .

2)
and

Ay — Aokl ®,
Ag®y; + (P,

—T'A; — g9®; cosdy — ¢ sinCIJO,

+ k3 + A — 3AY)A, (3)

80(131 sind)o — &1 COSCDO .

By settingl = A3, 6 = ®,, Egs. (2) can be written as
I, = —Hy — 2T'I;, 6, = H,, where H(I,0) = 31> —
A()I — 2&9I'/?cosh. Note thatH(/, 6) has the charac-
teristic form ofsingle resonancéiamiltonian (expressed

in terms of the action-angle variables) in a nonlinear reso-
nance problem [11]. Itis known that, by varyindz), this
dynamical problem may exhibit temporal autoresonance
112], provided one starts from a sufficiently smalland
sses the linear resonante= 0 in time. In autoreso-
lﬁtance, the angle (= ;) remains locked neap =
mod2), while the action of the oscillator (and there-
n!‘ore,Ao) self-adjusts to preserve the approximadalinear
resonance conditioAj = I ~ A(¢) despite the variation

of A. Also, bothI andé perform slow autoresonant os-
cillations around the smooth averages with characteristic
rtﬁequency ofO(¢'/?). This dynamical analog explains
the excitation of the flat, phase-locked solutions of NLSE
seenin Figs. 1-3 attimes < t < 1, = —30.

The evolution in all our examples enters a new stage

when the driving frequency passes (at 1,) the value

A = g, i.e., when the amplitude of the flat state becomes
Ag = A2 = 2712k, In analyzing this effect, we must
discuss the behavior of the spatial modulatidnsand ®,

in the developed staqaok§ > ¢) of the flat autoresonant
solution. These modulations are described by Eg. (3),
where one viewd, and®, as known. To lowest order in

e, we used} = A(r) and®, = 0 in (3), yielding

A]t - A1/2k3q)1 = —FAl . (4)
APDy, + (K — 2M)A = —¢.
Next, we define thalow quasisteady state
Ar = g1A — k)7,
5)

61 = FS][AI/ZI{(%(ZA - k(z))]_l,

and write the solutions of (4) in the form; = A +
6A;, D = &, + 6P, wheresA, andsd, are assumed
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to be small and evolving as ekpi [ vdt). Then, by of our dynamical system (6), can be interpreted as repre-
neglecting the slow time dependence of the coefficients isenting an additional “uniform” driving force of strength
(4), one obtains local characteristic equation+ i'v = & = gy + £, cogkox) and pointing in thep = 0 direction
ki(k3 — 2A). The latter can be recognized as describingn the “plane” of motion. The resonance of the quasipar-
the modulational instability of the flat solution [13]. In ticle with this force plays an important role as the poten-
the I' = 0 case, the instability condition i&3 — 2A <  tial V. evolves in time. We illustrate this evolution in
0, i.e., for increasingA, one expects a modulationally Fig. 4, showingV. for different values ofA(z). Curve
unstable behavior beyond = r,, where A(r;) = %k(z) a in the figure corresponds to a negative value= —1.5.
Nevertheless, we see the onset and evolution of thifnitially, at r = 7y, the quasiparticle is located at the bot-
instability in Fig. 3 only. In this case; = 0 andA; =  tom of this potential well and has zero energyand an-
@, = 0during the excitation of the flat state [see Eg. (5)].gular momentund. A simple calculation shows that for
Therefore, starting = t,, the instability develops from A < 0, the natural wave number (recafl,plays the role
numerical noise (or small initial conditions, if applied). of “time” in the dynamical problem) of small “radial” os-
Beyonds,, the resonance is destroyed and a new dampedillations of the quasiparticle at the bottom of the well is
breather-like state is observed. In contrastgif# 0,  2|Al. Then, since, > 2|Alin the initial excitation stage
Eqg. (5) predicts a significant increaseAf(and®; inthe  (fp < r < t;), the component; cogkox) of the driving
dissipative case) as one approaches the instability thresholdrce is out of resonance. Consequently, the actibns
(A — %ké), and one may expect violation of our linearizedand M are nearly conserved and the particle remains at
analysis and a differemonlinear evolution, as seen in the bottom(J = 0) of the potential well (the open circle
Figs. 1 and 2. We must usefally nonlinear treatment on curvea). As the result, the amplitudé ~ r remains
of the drivenmodulatedvave in analyzing this case. small for A < 0. At ¢ =1, A becomes positive. This
Our new physical picture is based on interpreting the soaffects the form of the potentidf., and the new form
lution of (1) at any given time as beingstightly perturbed  is represented by curvdsandc (A = 0.8,2) in Fig. 4.
solution of the same system of equations, but with the timéNow the minimum of the potential is negative and moves
derivatives, the forcing term, and the dissipation set to zerdo increasing radiir = ro = A'/2(r). At the same time,
In other words, we writel = r, ® = ¢, wherer and¢  the natural “wave number” of small “radial” oscillations

satisfy at the bottom of the potential well is agai\. There-
Fur + 21y = 0, fore, the driving forces; cogkyx) is still nonresonant, as
5 3 (6) longas2A < kg, (1, <t < 1,). The particle stays at the
Fae = 1y — A)r + 17 =0, bottom of the potential wellJ = 0), and, consequently,

with A(z) fixed at a given time. Equation (6) describesmoves to larger radik, (the open circles on curvésand
a two degrees of freedom Hamiltonian problem, where). SinceA = ry, this stage corresponds to a growing am-
one interpretsx as “time,” while r and ¢ are the po- plitude, flat ¢-independent) solution of NLSE. Note that
lar coordinates of a quasiparticle moving in the centrathe constant componenf, of the driving force slightly
force potential welVg (r) = —%Ar2 + %r“. This prob- tilts the quasipotential in thé = 0 direction, braking the
lem is integrable, since the angular momentuim= r2¢,
and the energy = 3(r2 + M?/r?) + Ve(r) are con-
served (inx). We focus on oscillating solutions of the
problem and introduce the canonical action-angle variable:
(J,0)and(M, &), where the first pair describes purely “ra-
dial” oscillations [14] of the quasiparticle, while the sec-
ond is associated with the azimuthal motion. Since the
pair of actions{J, M} is conserved, one can use it or, al-
ternatively, the pai{E, M} for labeling the solutions of
(6). Then, the desired solutions of system (1) are approxi-
mated byA(x, ) = r[E(t),M(z), ®(x,1)] and ®(x,1) =
GLE(),M(1),O(x,1), £(x, 1)], where the “energy’E and
the “angular momentumM are slowly varying in time.
The goal is to find the temporal evolution of these labeling
parameters. We shall use our recent theory [9] in solvingﬁ g : :
this problem, but, first, give a qualitative description of the - : : : ; : : : :
results in Fig. 1 in terms of our dynamical analog. 105 0 05 1 15 2 25 3 35
We view the evolution in Fig. 1 as reflecting a continu- RADIAL VARIABLE, r
ous_,slow(ln rea_ll time) change _Of al_mos.t “radialM =~ 0) FIG. 4. PotentiaV.(r, A) in the dynamical analog.af A <
oscillatory motion of the quasiparticle in the central forceo: the cluasiparticle is at the bottom of the wellb,d 0 <
potential Verr(r, A). We notice that the driving terms A < 1kj. The particle is still at the boom of the well.
g cos® ande sin® in (1), if added on the right-hand sides (d,e A > 1kg, “radial” oscillations, conserving =~ k.
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central symmetry, and forcing the quasiparticle to remairreal) in the Fourier expansion of = r(0). Sys-
at the azimuthal anglee = 0 continuously, as it moves tem (7) yields Su, = —géu and 8¢&, = —g¢d¢,
to larger “radii.” Finally, as the frequency passes (at where g+ = ga14k3[(r?) — (r"2)7 17! and kogé =
t = 1) the value of%ké, the wave numbek, of the (gqag — e1a1) (Jan — JaeKa/Kg)~'. For stability,
driver crosses the resonance with the natural wave nunboth g¢ and g* must be positive. One finds that
ber of small “radial” oscillations near the bottom &f;;  is always positive, but the positiveness gf requires
and one efficiently excites these oscillations. Beyond theya, — £,a; > 0 throughout the excitation process,
linear resonance, the system enters gpatial autoreso- requiring a sufficiently large value ofy,. This is the
nanceregime, i.e., the state when, for> r,, the nonlin-  necessary condition for having a continuous double
ear wave numbek = 9E(J,M)/dJ remainsnearly the phase locking,é = 0 and u = 0, in our system. Our
same as that of the driving modulatidky), despite the calculations also show that sufficiently weak dissipation
variation of the system’s parameters. Siteepends on in the problem does not destroy the autoresonance.
A(r) parametrically, the labeling parametdfsand/or M In conclusion, we have described the excitation and
must vary in time in order to satisfy the autoresonance coneontrol of phase-locked, spatially modulated solutions of
dition K(E,M,A) = ko. One finds (see below) thaf  NLSE by usingtwo-componenautoresonant forcing. We
remains small, so only the “energy¥ departs from the have presented a simple dynamical analog associated with
minimum value in the potential well and the dynamicalthe problem and studied the stability of the proposed exci-
system develops “radial” oscillations of increasing ampli-tation scheme via averaged variational principle. It seems
tude [the motion shown by thick solid lines on the po-promising to apply similar ideas to driven systems for
tentialsd (A = 3.75) ande (A = 5.5) in Fig. 4]. The which NLSE is a small amplitude approximation. Ex-
corresponding NLSE solution assumes a phase-lockegerimental observation of autoresonantly excited nonlinear
spatially modulated form. Finally, as one further increasesvaves also comprises a challenging goal for future studies.
the driving frequencw, the system approaches the separa- This work was supported by Grant No. 94-00064 from
trix of the “radial” oscillations, meaning the emergence ofthe U.S.-Israel Binational Science Foundation (BSF),
the soliton solution. This completes the qualitative picturelerusalem, Israel.
of the excitation process seen in Fig. 1. Next, we explain
the observed stability of this process. ) o
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ticular case of a more general stability theory [9] for driven, ' :
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