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Systematic Computation of the Least Unstable Periodic Orbits in Chaotic Attractors
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We show that a recently proposed numerical technique for the calculation of unstable periodic
orbits in chaotic attractors is capable of finding the least unstable periodic orbits of any given
order. This is achieved by introducing a modified dynamical system which has the same set of
periodic orbits as the original chaotic system, but with a tuning parameter which is used to stabilize
the orbits selectively. This technique is central for calculations using the stability criterion for
the truncation of cycle expansions, which provide highly improved convergence of calculations of
dynamical averages in generic chaotic attractors. The approach is demonstrated for the Hénon attractor.
[S0031-9007(98)07731-X]

PACS numbers: 05.45.+b, 75.10.Nr

Unstable periodic orbits in chaotic attractors provide a Series expansions over periodic orbits used for calcula-
useful hierarchical framework for calculations of prop-tions of dynamical averages are typically ordered accord-
erties such as Lyapunov exponents, fractal dimensionsng to the orbit lengthp [1,9,14,15]. Because of slow
and entropies of the attractors [1,2]. Periodic orbits haveonvergence and the fact that the number of orbits in-
been used to characterize the attractors in a variety afreases exponentially witpp, these series often require
low-dimensional dissipative dynamical systems, includ-a huge number of orbits [14,15]. It was recently pro-
ing model systems such as discrete maps [1,2] as weflosed [16,17] that using the cycle expansion framework for
as experimental time series [3—6]. In chaotic Hamilton-generic dynamical systems one can obtain better conver-
ian systems, series expansions over unstable periodic agence by truncating the expansion according to the stability
bits, within the semiclassical approximation, have beerof the orbits [18] rather than their length This proposal
used to calculate the quantum energy level density as wel$ particularly useful since stability truncation does not re-
as properties of the wave functions [7]. Cycle expansiorguire detailed understanding of the symbolic dynamics; it
techniques gave rise to highly improved convergence, patends to preserve the shadowing properties and takes into
ticularly for systems in which the symbolic dynamics is account only the significant orbits of each length [17].
well understood and long periodic orbits are well shad- In this Letter we show that a recently proposed tech-
owed by short ones [8,9]. nigue [19] provides a systematic framework for the calcu-

The calculation of unstable periodic orbits in chaoticlation of the least unstable periodic orbits of any given
dynamical systems is a difficult computational problem.order p. The resulting orbits are sorted according to
The difficulty is that in a chaotic system the numericaltheir Lyapunov exponents starting with the least unstable.
error grows exponentially with the length of the orbit. The technique is highly flexible and can be applied in a
Therefore, only short unstable periodic orbits can bestraightforward manner to a great variety of discrete as
calculated using the standard technigues of map iterationvell as continuous dynamical systems of any dimension.
Moreover, even if some orbits of a given orderare  Therefore, it opens the way for employing the proposal of
calculated, one has no guarantee thWtorbits of this Refs. [16,17] for a great variety of dynamical systems.
order have been found. A numerical technique capable of We will first describe the method. Given &/-
calculating arbitrarily long periodic orbits to any desireddimensional chaotic dynamical systeth 71 = f(7;)
accuracy was introduced in Ref. [10] for the Hénon mapwe generate a set of dynamical systems through the linear
[11] and later applied to a variety of other dynamicaltransformation:
systems [12—-14]. Furthermore, this method provides a - - - -
systematic framework for the calculation of all periodic SeFivr = Fi + Al () = Til, (1)
orbits of any given orderp, in which each orbit is whereA; are invertibleN X N constant matrices which
identified by a unigue binary symbol sequenfs}, can be castin the form; = AC, with0 < A < 1. The
n=1,...,p. The number of unstable periodic orbits matricesC; are orthogonal with only one nonvanishing
of order p for the Hénon map increases exponentiallyentry (1) per row or column. The systemS; are
with p according toN(p) = 2%7, whereK, = 1 is the  equivalento the systent in the sense that there is a one
topological entropy. Therefore, the problem of findingto one correspondence between the fixed point§ aind
all the periodic orbits of orderp requires resources those ofS;. The important advantage of the representation
exponential inp. of Eq. (1), however, is that, using a sufficiently small value
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for the parameten, the fixed points of the transformed casem'?” > m?’. The matrix which has to be used for

systemsS; become stable and therefore can easily b@he stabilization process in this case is

determined by an iterative process. Furthermore, the

radius of convergence of this iterative algorithm turns out C, = -1 0 3)

to be finite. The above procedure can be easily extended : 0o 1)

to the higher iterateg(?)(7) of U [by replacing in Eq. (1)

}withf“’)] allowing us to determine all the ordgrcycles  The eigenvaluesﬂ(lf’z) of the transformed systens,

of U. The parameten is a key quantity here. For a expressed in terms of the eigenvalyag’ of the original

given periodp, it operates as a filter allowing the selective system are ’

stabilization of only those unstable periodic orbits, which

possess Lyapunov exponents smaller than a critical value. (p) _ . A . _ [, (n _ (i

Therefore, starting the search for unstable periodic orbits” > -l \/t Hpi D= pal,

within a certain periodp with a value ofA = 0(107') (4)

and gradually lowering. we obtain the list of all unstable (») (») _ _ () (»)

orbits of orderp, starting with the least unstable orbit and Where = mj; — ma; . Since typically p1™ > p;

sorted with increasing values of their Lyapunov exponentsone can use the approximation (M) = (m;} +
Next, we focus on two-dimensional systems. Denote,\?)y = (,\") + p\7) = p'” Inserting this in the

. . . . 22
the sta_bﬂﬂy mgtnx of some pe(rpl?dm orbit of order expressions forpif;) and using [Pilj)]z > 4p§p)p§p>
by M, its matrix elements byn

ij » Wherei,j =12, 3 detailed analysis of the possible cases leads to the
and the stability eigenvalues off by pi”’ and p3”. statementp.”) = am!?’, where « is a factor of order
Without loss of generality we assurhei”’| > [p5”]. In unity. As can be seen frompi3 the only excep-
Ref. [19] a minimal set of matrice$Cilk = 1,...,5}  tion to this situation occurs itn'l /m\” = —1 + e,
which is necessary and sufficient to achieve stabilizatiof hare 0 < ¢ <« 1 which is certainly rare in chaotic

for any kind of hyperbolic fixed points was provided.

(p) . .
e - : ; . systems. We then have= Bp,"" with B being a
The hyperbolic fixed points with reflection (namely, Elxed factor of O(1). If the square root in Eq. (4) is real

ints f hich at | f the ei I Lo :
points for which at least one of the eigenvaluegs -, we have 12 > 4(p§p) ~ (- pép)) and it immedi-

(p) . . : (p) (p) .
is n ive whil > 1 an < 1) which .
p2 1S (?,9"’“ e whilelp, | a dlp>™| < 1) whic ately follows that the relevant larger elgenvalwép)
satisfyp;”” < 0 become stable in the transformed system

() _ 1 _ (p) . .
ofEq. (1)ifwe used, = AC, with C, = 1, wherel isthe = OPEYS#1 =1 = Aypy” /2 with y being a factor of

unit2 X 2 matrix. After a little algebra a simple relation O(1). If the square root is imaginary the real part of

(p) : . . A
between the eigenvaluas(l"z) of the stabilized systerfi "', which is responsible for the stabilization, obeys

(p) (p) :
and the eigenvalueﬁfg) in the original systenU can be Re(’“l_ )=1- (),‘,)ypl(,,)/z' Exceptional  cases here
obtained: ’ are given bymy, /m;;” =1 — €, where 0 < € < 1.
M<1172> =1- 0 - pil;)). ) Although there is no strict monotonic ordering the above
- () ' N arguments clearly demonstrate that a monotonic ordering
The Stab'“ty Cond|:[|0m1,2 <1 |eadS to the Crl-tIC-a| Value occurs to a good approxn’na‘“on In add|t|on we have
pe =2/A — 1 which represents an upper limit for the performed a random matrix simulation for the original
magnitude of the eigenvaluqsi,’;) of the fixed points stability matrices respecting the above constraints due
which are stabilized for a givem. This means that to hyperbolicity and calculated the distribution of the

only those orbits for Whicﬁpﬁpﬂ < p. become stable resulting prefactorg occurring in the eigenvalues of the

for the corresponding.. Therefore, varying\ we can transformed system. The results of this analysis confirm

selectively extract those periodic orbits which posses#he above-obtained conclusions. The cases involving the

stability eigenvalues less or equal to a given threshol@ther matricegCy} can be treated analogously.

value. To demonstrate the power of the above method we now
The stabilization process for the case of hyperbolic fixec®Pply it to the Hénon map. To examine the spectrum of

points with reflection anqbgp) > 0 or without reflection Lyapunov exponents we first calculated all the periodic

involves the matrice$Cy|k = 2,...,5} [19]. For these ©rPits up top = 23 for the Hénon map [11]
cases no exact monotonic relationship like Eq. (2) can be
derived. However, apart from exceptional cases (see be-
low), a selective stabilization procedure is possible similawith the parameterss = 1.4 and » = 0.3, using the

to the case of the matri€;: the overall tendency is again method described in [10]. The total nhumber of orbits
that large values ok stabilize only the least unstable pe- obtained is 118407 (including cyclic permutations and
riodic orbits and with decreasing value dfwe get more repetitions of lower cycles). For each one of these orbits
and more of the increasingly unstable periodic orbits. Tove calculated the Lyapunov exponeht= log(lp|)/p.,

derive this let us consider without loss of generality thewhere p (in absolute value) is the largest eigenvalue of

4350
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FIG. 2. The Lyapunov exponents for all the orbits of order
p = 20 in the strange attractor ai = 1.4 and b = 0.3 as

a function of the (decimal representation of the) symbol
sequence, converted into the Gray code. The vacant domains
in the plot correspond to pruned periodic orbits.

FIG. 1. The Lyapunov exponents of all the periodic orbits of
orderp = 1,...,23 as a function ofp for the Hénon attractor
ata = 1.4 andb = 0.3.

the matrixM = M,, --- MM, where
—2x, b To demonstrate how the periodic orbits are stabilized as
M, = 1 0 6)  the tuning parametex is decreased we chose to present
the results for the periogp = 16. The total number
are the Jacobian matrices of the map. The Lyapunowf prime periodic orbits (namely, not including cyclic
exponents of all orbits of order = 1,...,23 asafunction  permutations and repetitions of smaller cycles) for=
of p are shown in Fig. 1. We observe that in this attractori6 is 102. For a small value of = 10~* and 500 starting
the two fixed points have the largest Lyapunov exponentgoints on the attractor we get all the 102 orbits stabilized.
and are thus the most unstable. The other LyapunoVo examine the stabilization process we start with=
exponents form a band that becomes denser and broadgos and gradually lower it. This way, for each periodic
asp increases. We also observe a small number of orbitsrbit we identify the critical value o below which the
with unusually small Lyapunov exponents. Such orbitsorbit is stabilized. In Fig. 3, we present for all orbits
appear for orders 13, 16, 18, and 20. of period p = 16 the Lyapunov exponent of each orbit
To examine the dependence of Lyapunov exponents ofs the critical value ofA below which this particular
the symbol sequence we plot the Lyapunov exponents for
all the periodic orbits of ordep = 20 vs the sequential
number of the orbit from 0 t@*° — 1 (Fig. 2). The TABLEI. The two periodic orbits with the lowest Lyapunov
orbits are ordered such that for every two adjacent orbitexponents for orderp = 16,...,23, for the Hénon map with
in the plot the symbol sequences are different in only* = 1.4andb = 0.3. Thex andy coordinates (coord.) of one
one bit. This allows us to examine how the Lyapunovpo'nt of each orbit are shown as well as the Lyapunov exponent
o . : (Lyap. exp.) of the orbit.
exponents change when one bit is switched in a lon

(S
b

symbol sequence. To achieve this the symbol sequendgeriod x coord. y coord. Lowest Lyap. exp.
{s,} for each orbit is considered as a Gray code sequence 16 1.414 441 0.525 388 0.261873
[20]. A Gray to binary transformatiofy,,} — {s/} is then 16 0.207904 —1.293373 0.259960
used and the decimal representatiodsgt is given in the 17 1.168372 0.719909 0.380900
horizontal axis of Fig. 2. 17 0.956 694 0.775439 0.379981
To stabilize the periodic orbits in the Hénon attractor 18 —1.255278 1.588 681 0.285758
it turns out that one needs only two of the matri€gs 18 —1.256032 1.588953 0.284 727
_ _ . - 19 0.475407 0.932648 0.365918
namely,C; = 1 andC; = —C,. Using A values in the
0.05.0.002 d £500 . . 19 0.608 248 0.683230 0.365689
range (0.05,0.002) and a set o 00 starting points on 20 0.999 632 0.778785 0.279102
the attractor we were able to find, for each of the pe- g 0.687520 —0.496536 0278732
riods p = 1,...,23, within a few seconds of computa- 21 1.433765 —0.639919 0.323827
tion on a desktop workstation, the two least unstable peri- 21 1.018516 0.377002 0.323259
odic orbits. The results fop = 16,...,23 are presented 22 1.184577 0.641833 0.300455
in Table | which shows the period, the, y) coordinates 22 0.641792 0.655127 0.300439
of one point of each orbit, and its Lyapunov exponent 23 1.416001 0.524 053 0.295087
23 1.596043 —0.481690 0.294 950

nP = (nlpi”D/p.
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orbit is stabilized. Orbits stabilized with the matn proposal [16,17] that in cycle expansion calculations for
are shown in full circles, while orbits stabilized with generic dynamical systems better convergence can be ob-
C; are shown in empty circles. We observe that fortained by truncating the expansion according to the stabil-
orbits stabilized withC; the Lyapunov exponents increase ity of the orbits rather than their length. In particular,
monotonically asA is lowered. For orbits stabilized stability truncation does not require detailed understand-
with C3 monotonicity is not strict; however, the general ing of the symbolic dynamics; it tends to preserve the
trend is the same. The nearly monotonic tendency of thehadowing properties and takes into account only the sig-
Lyapunov exponents va& demonstrates the suitability of nificant orbits of each length, leaving out an exponential
our approach to determine, with varyingthe set of least number of insignificant orbits.
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