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Smoothness Implies Determinism in Time Series: A Measure Based Approach
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Statistical differentiability of the measure along the reconstructed trajectory is a good candidate to
quantify determinism in time series. The procedure is based upon a formula that explicitly shows the
sensitivity of the measure to stochasticity. Numerical results for partially surrogated time series and
series derived from the stochastic Lorenz model illustrate the usefulness of the method proposed here.
The method is shown to work also for high-dimensional systems. [S0031-9007(98)07686-8]

PACS numbers: 05.45.+b, 02.30.Cj, 07.05.Kf

There has been a great interest in the last years aimddr physica) invariant measure, which gives the limiting
to detect “determinism” in time series [1-4]. Though distribution of almost all initial conditions.
experimental noise is a common problem in many areas In the deterministic casen(= 0) the “material deriva-
of physics, it can be especially troubling in the field of tive” of the measure (time derivative along the trajectory)
nonlinear time series analysis. For instance, attentiosan be expressed as [9]
has been called to situations where noise can mimic du(x (1)
or mask deterministic (e.g., chaotic) behavior, when the ——==x-Vu. @3]
dynamics of the system is characterized by means of dt _
classical measures of chaos such as Lyapunov exponentdow, the same arguments can be applied to Eq. (1),
K, entropy, and correlation dimension [5,6] (see also [7jnamely,
for a review of these methods and some of their pitfalls). du(x(1))
In searching more reliable and robust methods, different a
aspects of the vector field have been investigated. In )
particular, it has been suggested [1,3] that the continuit%\/henever the vector field(x) can be expressed as
of the vector field is a clear hallmark of determinism. InF ) = —Vé(x) + f(x), with f(x) being orthogonal to
this work we exploit continuity in phase space althoughf‘he 'gradlent term and having no divergence, the measure
from a different point of view. is given by [11,12]

In earlier work [8,9] we used the natural invariant b (x
measure along the system trajectory to detect hidden p(x) = NexI(— 02 )
periodicities in the reconstructed phase space. Here we . . .
extend this technique to stochastic dynamical systems arlftroducing (4) in (3) we arrive at
show how one can quantify the degree of stochasticity in d[In u(x(¢))] 1] 1
time series in terms of the continuity of that density. It dt - n [; IFI* + G(0) - F(X)] (5)
should be noted that although the numerical estimation o . . . . .
the measure presents serious difficulties, it is more reliabléqua.t'or.] (5) provides an _alternatlve_ tool to Investigate
and easier than a similar estimation of the vector field ¢ finding O.f [3].’ accordm_g_ to .Wh.'Ch sm_oothness in
The procedure is based upon a formula that explicitlyphf”lse space |mpI|_es determinism In time series. For we_ak
shows the sensitivity of the measure to stochasticity. noise levels, the first term of the nght-_hand side of (3) is

Consider a stochastic dissipative dynamical systerrqom'nam over the second term. In this case, smoothness

, » . . et - - in phase space implies “continuity” in the left-hand side of
\év(;tga%glﬂglve noise, described by-first-order differential (5), or differentiability of the measure along the trajectory.

. On the other hand, in the case of strong noise levels, the
x =F(x) + nG(), (1) second term is the dominant one and a wild behavior in
wheren > 0 is a small number (noise intensity) aGds)  the measure term must be expected. This is so because
is a vector of independently and identically distributedthe vectorG(z) is uncorrelated with the actual position
random Gaussian variables, of zero mean and correlations the phase space. Although Eq. (5) was derived for a
(Gi(1)Gj(t")y = 6;;6(r — t'). A physical system will vector field obeying some restrictions (see above), our
normally have a small level of random noise, so that numerical results indicate that it can be applied to more
it can be considered a stochastic process rather thangeneral systems.

deterministic one. In a computer study, round-off errors In order to test numerically the continuity of the
should play the role of the random noise. For suitabldogarithmic derivative of the measure along the trajectory
noise andnz, the stochastic time evolution (1) has awe have implemented the method proposed by Pecora
unigue stationary measurg [10]. This is thenatural et al.[13] to carry out statistical evaluations of continuity

=[F + nG@®)] - Vu. 3)

(4)
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and differentiability of functional mappings. In our x=—sx + sy + Gy,
opinion this method is the best suited for our purposes.
Basically, this is a statistics intended to evaluate, in
terms of probability or confidence levels, whether two z=—bz +xy + nG;.
data sets are related by a mapping having the continui
property. A functionf is said to be continuous at a point

X if Vie>0,36>0 such thatll x = xo [| <6 = Normal(Og), zero mean, and standard deviatien

llhjel ()r?ull_ r{ (Xglh”e:is&s -er(r:]i(feic:jls ulttshearceastgs;[r?dwﬁ%?:nﬁg.rhe parameters used in the calculations are 10.0,
yp » SP Y, = 28.0, andb = 2.66, which give chaotic behavior in

functional relation between points along the trajectory an he casep = 0
”}g n;igzul;e g)gsésrét-;?'?lg]done by means of the statistics Numerical integration of the Lorenz system was carried
prop y ' out by means of the modified Euler method. The time

0 1 Z 0 . 6 integration step was 0.01. Time series with 16 384 data
col€) = n cole. j) (6) points and their respective surrogates were subsequently

y=—y+rx —xz+ 1nGy, (9)

t¥he parametem represents the noise level, ang(r)
are uncorrelated Gaussian noises, such that) €

n,

P generated. The reconstruction was performed by the usual
and P time-delay method [18,20,21], with a time delay given by
Oco(e,j)=1—- —, (7)  the first zero of the autocorrelation estimate and on an

Pmax embedded phase space of dimension three. The natural

where p; is the probability that all of the points in th®  heasureu(x(1)) along the trajectory was calculated by
set, around the point; € x(), fall at random in thee  means of the Epanechnikov kernel density estimator [22]
set around’“"%x’). The likelihood that this will happen with a sphere of radius 5% of the attractor extent. In
must be relative to the most likely event under the nullevaluating the continuity statistics, we avera@eo(e, j)
hypothesis,pmax (see Ref. [13]). Wher®co(e,j) =1  overn, points [see Eq. (6)] randomly distributed in the
we can confidently reject the null hypothesis, and assumgajectory, typicallyl0% of the total record.

that there exists a continuous function. As in the work The results for the continuity statistics of the time
of Pecoraet al. [13] the € scale is relative to the standard derivative of the measure corresponding to the recon-
deviation of the density time series, aad= [0, 1]. Plots  structed attractor from the coordinate of the Lorenz sys-
of ®c(e) versuse can be used to quantify the degreetem are illustrated in Fig. 1. The results of Fig. 1a show
of statistical continuity of a given function. In order to
characterize the continuity statistics by means of a single

parameter we have also calculated 1.0 . x coordinate 7]
! 0.8 [ —— 10% e
0= f Oco(e)de . (8) —— 100% R

0 0.6 I — 10% + 100% .
The limiting values of® ., namely, 0 and 1, correspond o "/
to a strongly discontinuous and a fully continuous func- © 04 | ]
tion, respectively. 0.2 | 1

The preceding procedure has been first tested on the ' (@)

Lorenz system. We investigate the effects of tuned o
stochasticity either by introducing an additive stochastic 1.0 :
term in the Lorenz system or by partial surrogation of time — n=0
series derived from the deterministic Lorenz system. The 0.8 | ---- n=30=3 e
latter is done by replacing the factor éxg), with ¢ € 06 L 100% ,'/// i
random [0, 27r], commonly introduced in the shuffling °y y
step of Fourier phases [14], by &pa), with « € © 04| VA
[0,1]. In this way, the “degree” of randomization of the //
Fourier phases is varied from 0% to 100%. This study is 0.2 o ()]
carried out for an embedding dimension of three, which e EIS
is greater than the correlation dimension of the Lorenz 0.001 0.010 0.100 1.000
attractor [15]. The effects of changing the embedding €

dimension are investigated on time series generated from
either the Lorenz or a high-dimensional system and theiFIG. 1. Continuity statistics as defined in Eq. (7) for the time

surrogates. Finally, we show how the method can bdlerivative of the measure along the trajectory corresponding

i i ; . ot 0 the reconstructed attractor from the coordinate of the
applied to mixed series containing both deterministic andLorenz system. (a) Results for the original time series, for

stochastic regions. . . . the series partially1(0%) or totally surrogated1(00%), and for
The Lorenz system [19] with an additive stochastica combination of both.” (b) Results for the Lorenz system with
term can be written as noise [see Eq. (9)] and for its surrogate series.
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that the time derivative of the measure in the original seincrease withm. The decrease of is stronger in the
ries is “more continuous” (in a statistical sense) than insurrogate series, although it is likely that the difference
its surrogate. Partial surrogatioh0f%) decreases the de- between the two should decrease for large enomgh
gree of continuity of the time derivative of the measureThe behavior ofé in the high-dimensional system is
in an extent lower than total surrogation, as expected. Ofar more intricate (see Fig. 3b). Fat well below the
the other hand, the results show that the continuity of thattractor dimension the measure for the surrogate series
totally surrogated series show almost no dependence seems to be more continuous than that for the original
whether it has been derived from the original series oseries. The reason for this rather odd behavior has to be
from a partially surrogated series. The results for the stofound in the heavy crossing of trajectories that occur at
chastic Lorenz system reported in Fig. 1b clearly shown far below the attractor dimension [7]. In those cases,
that the stochastic terms in the Lorenz system significantlgurrogation seems to have a smoothing effect. Instead,
decrease the statistical continuity of the time derivativefor m > 6 the behavior is similar to that of the Lorenz
of the measure. Surrogation of the stochastic series pregystem, although the difference between the original and
duces a further decrease of continuity, indicating that théhe surrogated records is substantially smaller. This point
series still has some degree of determinism. The degredeserves further study that is actually in progress.
of stochasticity of a time series can be quantified by cal- A distinctive feature of our method is the possibility of
culating the integral of the continuity statistics as definedusing it in different ranges of a given time series. In this
in Eqg. (8). Figure 2a shows how steeplydecreases with way we can examine short records and evaluate its stochas-
the percentage of surrogation. Similarydecreases with ticity. Bearing this in mind we have devised the follow-
the standard deviation of the Gaussian noise in the Lorening example: Suppose we have a time series which is half
system (Fig. 2b), as expected (without loss of generalitydeterministc and half stochastic. Could our method dis-
we taken = 1, and tune the degree of noise only by thecriminate both behaviors in the same time series? In order
standard deviationr). Thus, the magnitude can be used to answer this question, we have generated a single time
to evaluate the relative stochasticities of a set of experiseries (16 384 points) with the first half coming from the
mental time series. x coordinate of the deterministic Lorenz system, and the
A point of crucial relevance is how the above resultssecond half coming from its surrogate (100% randomiza-
change with the embedding dimensiam. We have tion) time series. We have applied the continuity statistics
investigated this question on the Lorenz system and oover four regions in the density record (two randomly se-
the high-dimensional system proposed in [23]. In thelected in the first half and two in the second half). Fig-
latter case we used the set of parameters that gives ame 4 shows the results. It is then clear that the statistics
attractor dimension of7.5 [1]. The resulting time series utilized here can discriminate stochastic from deterministic
were analyzed with a time delay given by the first zero
of the autocorrelation estimate, and the measure was

evaluated on spheres of radius 10% of the attractor extent. 1.0 T T T
The results for the Lorenz system depicted in Fig. 3a 08"
show that# decreases with the embedding dimension. -4
This is a consequence of working with a fixed sphere o 067
radius for allm and of the numerical noise that should 0.4
0.2
10— T T T —
(a) (b) 0.0
0.8 P eoe 1 0.8i
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FIG. 2. Integral of the continuity statistics [as defined in FIG. 3. Integral of the continuity statistics [see Eg. (8)] as

Eqg. (8)] for time series derived from the Lorenz system. Thea function of the embedding dimension for time series (filled
results correspond to (&) a partially randomized series wittsymbols), and their surrogates (empty symbols), derived from
increasing degree (percentage) of randomization; and (b) éa) the Lorenz system, and (b) the high-dimensional system
stochastic Lorenz system with increasing standard deviation gfroposed in Ref. [23]. The error bars in the results for the
the Gaussian noise in Eq. (9) amd= 1. surrogate series account for averages over five realizations.
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FIG. 4. Continuity statistics for the time derivative of the
measure corresponding to the coordinate of the Lorenz
system. The time series was formed by joining the original
time series (first half) to its fully randomized series (second
half). See text.

behavior. Figure 4 also shows the statistic for the whol
time series (same number of reference points randoml
selected along the time series). The results are midw

tic regions in experimental time series.
In brief, we have proposed a method to identify deter-
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