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Bohr’s Correspondence Principle and the Area Spectrum of Quantum Black Holes

Shahar Hod

The Racah Institute for Physics, The Hebrew University, Jerusalem 91904, Israel
(Received 4 August 1998

During the last twenty-five years evidence has been mounting that a black-hole surface area has
a discrete spectrum. Moreover, it is widely believed that area eigenvaluesuai®rmly spaced.
There is, however, no general agreement ongpacingof the levels. In this Letter we use Bohr's
correspondence principle to provide this missing link. We conclude that the area spacing of a black hole
is4nrIn3. This is the unique spacing consistent both with the area-entt@ynodynamicelation for
black holes, with the Boltzmann-Einstein formulastatistical physicsand withBohr’s correspondence
principle. [S0031-9007(98)07615-7]

PACS numbers: 04.70.Dy, 03.65.Bz

The necessity in a quantum theory of gravity wasminimized if the particle is captured when its center of
already recognized in the 1930s. However, despite thenass is at a turning point a proper distacaway from
flurry of activity on this subject we still lack a complete the horizon [5]:
theory of quantum gravity. It is believed that black ho_Ies (AA)min = 87 b, (1)
may play a major role in our attempts to shed some light . .
on the nature of a quantum theory of gravity (such as thgvhereA is the black-hole surface area and is the

role played by atoms in the early development of uantun’ieSt mass of the particle. 'Fgr a point partidie= 0
mecﬁar%lics) y y P q and one findsAAin, = 0. This is Christodoulou’s result

The quantization of black holes was proposed long ag(t)or a reversible process. Hovyever, a quantum particle is
in the pioneering work of Bekenstein [1]. The idea Wassubjected to quantum uncertainty. A relativistic quantum

based on the remarkable observation that the horizon aré)frt'clle c?hnnoTthbe Iocalléed to bet'her tt?]:z Its C_:rohmpton
of nonextremal black holes behaves as a classida- Vave'engtn. ush can be no smaller / - IS

batic invariant In the spirit of the Ehrenfest principle [2], yields a lower bound on the_m_cre_ase in the black-hole
any classical adiabatic invariant corresponds to a quarﬁurface area due to the assimilation of a (neutral) test
tum entity withdiscretespectrum, Bekenstein conjectured particle

that the horizon area of a nonextremal quantum black hole (AA)min = 8717, 2)

should have a discrete eigenvalue spectrum. wherel, = (g)l/zﬁl/z is the Planck length (we use gravi-

To _elucidate thespa_lcing C_)f the area Ievels_ it is in- tational units in whichG = ¢ = 1). It is easy to check
structive to use a semiclassical version of Chrlstodoulou’§hat the reversible processes of Christodoulou and Ruffini

re"?rs.ib'? Processes. Christodo_ulou [3] showed that th‘c?ind the lower bound Eq. (2) of Bekenstein are valid only
assimilation of a neutrafoiny particle by a (nonextremal) for norextremal black holes. Thus, for nonextremal black
black hole is reversible if it is injected at therizonfrom | o\ "< are is aniversal (i.e inde;;endent of the black-

a radialturning pointpf its motion. In this case the black- hole parameters) minimum area increase as soon as one
hole surface area is left unchanged and the changes IRtroduces quantum nuances to the problem

the other black-hole parameters (mass, charge, and angu-rhe universal lower bound Eq. (2) derived by Beken-

lar momentum) can be_ undone by another swta_ble (reétein is valid only fomeutral particles [5]. Recently, Hod
versible) process. (This result was later generalized b

; . . . 6] analyzed the capture of a quantum (finite siclerged
Christodoulou and Ruffini for charged point particles [4]')Ea]1rticleyby a black Fr:ole and f?)und a si(milar IOWIE?; gound.

quever, as_was pplnted out .by Bekens'tem In hISThe lower bound on the area increase caused by the as-
seminal work [5], the limit of apoint particle is not a  gmiation of a charged particle is given by [6]
legal one inquantumtheory. In other words, the particle

cannot be both at the horizon and at a turning point (AA)min = 41;27' 3)

of its motion; this contradicts théleisenberg quantum As was noted by Bekenstein [5] (for neutral particles)
uncertainty principle As a concession to quantum theory the underlying physics which excludes a completely re-
Bekenstein ascribes to the particléirite proper radius»  versible process is theleisenberg gquantum uncertainty
while continuing to assume, in the spirit of Ehrenfest'sprinciple. However, for charged particles it must be
theorem, that the particle’s center of mass follows asupplemented by another physical mechanism [6]—a
classical trajectory. Bekenstein [5] has shown that thé&schwinger discharge of the black holea¢uum polariza-
assimilation of a finite size neutral particle inevitably tion effects). Without this physical mechanism one could
causes an increase in the horizon area. This increase lieve reached the reversible limit.
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It is remarkable that the lower bound found for charged The black hole’s free oscillations (quasinormal modes)
particles is of the same order of magnitude as the oneorrespond to solutions of the wave equation (5) with the
given by Bekenstein for neutral particles, even thoughphysical boundary conditions of purely outgoing waves at
they emerge frondifferent physical mechanisms. The spatial infinity ¢. — o) and purely ingoing waves cross-
universality of the fundamental lower bound (i.e., its ing the event horizonr{ — —) [13]. The quasinormal
independence on the black-hole parameters) is clearlynodes are related to the pole singularities of the scatter-
a strong evidence in favor of aniformly spaced area ing amplitude in the black-hole background. The ringing
spectrum for quantum black holes (see Ref. [7]). Hencefrequencies are located in the complex frequency plane
one concludes that the quantization condition of the blackeharacterized by Ifiw) < 0. It turns out that for a given
hole surface area should be of the form [ there exist an infinite number of quasinormal modes for

A, = ylf,n; n=12,..., (4 n= O 12 character_izing mo_des with decreasing re-
wherey is a dimensionless constant. laxation times (increasing imaginary part) [14,15]. On

It should be recognized that the precise values of th&he other hand, the real part of the frequency approaches

universal lower bounds Egs. (2) and (3) can be chal@ constant value asis increased. _
lenged. These lower bounds follow from the assumption OUr analysis is based dBohr’s correspondence prin-
that the smallest possible radius of a particle is precisel§iPle (1923): “ransition frequencies at large quantum
equal to its Compton wavelength. Actually, the particle’sn“mbers shoulql equal classmal oscnlatlo_n frequenue_s.
size is not so sharply defined. Nevertheless, it should bE/€NCe, We are interested in the asymptotic behavior (i.e.,
clear that the fundamental lower bound must be of thé"€# — « limit) of the ringing frequencies. These are
same order of magnitude as the one given by Eq. (3)t,he. highly dampeq bIaqk-hoIe oscillations frequencies,
i.e., we must havey = O(4). The small uncertainty in which are compatible with the statement (see, for ex-
the value ofy is the price we must pay for not giv- ample, [16]) “quantum transitions do not take time” (let

ing our problem a full quantum treatment. In fact, the = Wr — iws, then7 = w; ' is the effective relaxa-
analyses presented in Refs. [5,6] are analogous to the wéPn time for the black hole to return to a quiescent
known semiclassical determination of a lower bound orState. Hence, the relaxation timeis arbitrarily small as
the ground state energy of the hydrogen atom [2]. BotH! — *.) L _ .
analyses consider eassicalobject (an electron or a test The determination of the highly damped quasinormal

particle) subjected to the Heisenberg uncertainty principlelde frequencies of a black hole is not a simple task.

The analogy with usual quantum physics suggests the nextis is a dlrgct consequence of an ex_ponentlal divergence

step—awaveanalysis of black-hole perturbations. of the quasinormal mode eigenfunctionsrat— . In
The evolution of small perturbations of a black h0|efact, the asymptotlc.behawor of the ringing frequgnmes is

are governed by a one-dimensional wave equation. Thiknown only for the simplest case of a Schw_arzschlld_ black

equation was first derived by Regge and Wheeler for per20le. Nollert [17] found that the asymptotic behavior of

turbations of the Schwarzschild black hole [8]. Further-the ringing frequencies of a Schwarzschild black hole is

more, it was noted that, at late times, all perturbations ar8iVen by

radiated away in a manner reminiscent of the last pur i 1 _

dying tones of a ringing bell [9—11]. To describe these"n = 00437123 = (” + E) +O0lin + )72,

free oscillations of the black hole the notion of quasinor- @)

mal modes was introduced [12]. The quasinormal mode

frequencies (ringing frequencies) are characteristic of th& is important to note that the highly damped ringing
black hole itself. frequencies depends only upon the black-hole mass and is

The perturbation fields outside the black hole ardndependendf /ando. This is a crucial feature, which
governed by a one-dimensional Schrédinger-like waveS consistent with the interpretation of the highly damped

equation (assuming a time dependence of the foFfti’): ringing frequencies (in the > 1 limit) as characteristics
e of the black holeitself. The asymptotic behavior Eq. (7)

— + w2 = V()Y =0, (5) was later verified by Andersson [18] using an independent
dr; analysis.
where the tortoise radial coordinate is related to the We note that the numerical limit Re,) —
spatial radius: by dr, = dr/(1 — 22) and the effective 0.0437123M "' (as n — =) agrees (to the available

potential is given by data given in [17]) with the expression 3fi(8#). This
DM\ I(L + 1) o identification is supported by thermodynamic and sta-
V(r) = (1 - T)[ 2 ;] (6) tistical physics arguments discussed below. Using the

relations A = 16wM?> and dM = E = hiw one finds
where M is the black-hole masg, is the multipole mo- AA = 4112, In3. Thus, we conclude that the dimensionless
ment index, andr = 2,0, —6 for scalar, electromagnetic, constanty appearing in Eq. (4) iy = 4In3 and the area
and gravitational perturbations, respectively. spectrum for the quantum Schwarzschild black hole is
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given by ringing frequencies was not determined directly so far.
A, = (411% In3)n; n=12.... (8) This is a direct consequence of the numerical complexity

This result is remarkable fromsatistical physicpoint ~ Of the problem. It is of great interest to compare the
of view. The semiclassical versions of Christodoulou’sconjectured asymptotic behavior given in this Letter with
reversible processes Refs. [5,6], which naturally lead tdhe results of direct ngmerlcal computations. _
the conjectured area spectrum Eq. (4), are at the level of I[N summary, using a semiclassical version of
mechanics, not statistical physics. In other words, thes&hristodoulou’s reversible processes (see Refs. [5,6]) one
arguments did not relay in any way on the well knowncan derive a fundamental lower bognd on the increase
thermodynamic relation between black-hole surface areld black-hole surface area. Thaniversality of the
and entropy. In the spirit of the Boltzmann-Einstein for- fundamental lower bound (i.e., its independence of the
mula in statistical physics, Mukhanov and BekensteirPlack-hole parameters) is a strong evidence in favor of a
[7,16,19] relateg, = exgSgu(n)] to the number of mi- uniformly spaced area spectrum for quantum black holes.
crostates of the black hole that correspond to a partiowever, the spacing between area eigenvalues cannot
ticular external macrostateSg{y being the black-hole be determined to _better than an order of magnitude (the
entropy). In other wordsg, is the degeneracy of the results presented in Ref. [6] suggest that the area spacing
nth area eigenvalue. The accepted thermodynamic relds of order4/;). This is a direct consequence of the
tion between black-hole surface area and entropy [5] cafémiclassical nature of these analyses. An analogy with

be met with the requirement that, has to be an integer Usual quantum physics suggests the next stepwage
for everyn only when analysis of black-hole perturbations. Applying Bohr’s

y = 4Ink; k=12 ... (9 correspondence principle to the ringing frequencies which
characterize a black hole, we derive the missing link. We
ind the area spacing to b#2 In 3, which is in excellent
agreement with the value predicted by the semiclassical
f’;\nalysis [6]. Moreover, this result is remarkable from

Thus, statistical physics arguments force the dimensio
less constany in Eq. (4) to be of the form Eq. (9). Still,
a specific value ok requires further input, which was not
available so far. This Letter provides a first independen i . . . :
derivation of the value of. It should be mentioned that & Statistical physicspoint of view. The area spacing

following the pioneering work of Bekenstein [1] a number 4el]r71 tI nbi)t(:le\r/:/\iﬁd thetgrSelé.e;;Gi:(;;ny?&q dui\;?:]l:geﬁgg;s
of independent calculations (most of them in the last fewf® L ) y ; '
th statistical physicsarguments (namely, with the

ears) have recovered the uniformly spaced area spectru ! . . )
)éq. (é‘?) [20-27]. However, there isynopgeneral agrgemen?oltzmann-Emstem formula), and witohr's correspon-

. ence principle
on the spacing of the levels. Moreovergne of these . . .
calculatiopns isgcompatible with the relation = 4Ink, | thank Avraham E. Mayo for helpful discussions. This

which is a direct consequence of the accepted therm(iieseamh was supported by a grant from the Israel Science

dynamic relation between black-hole surface area and e -oundation.

tropy. The relationy = 41n 3 derived in this Letter is the

only one consistent both with the area-entropy thermo-

dynamic relation, with statistical physics arguments, and
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