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Bohr’s Correspondence Principle and the Area Spectrum of Quantum Black Holes
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During the last twenty-five years evidence has been mounting that a black-hole surface area h
a discrete spectrum. Moreover, it is widely believed that area eigenvalues areuniformly spaced.
There is, however, no general agreement on thespacingof the levels. In this Letter we use Bohr’s
correspondence principle to provide this missing link. We conclude that the area spacing of a black ho
is 4h̄ ln 3. This is the unique spacing consistent both with the area-entropythermodynamicrelation for
black holes, with the Boltzmann-Einstein formula instatistical physics,and withBohr’s correspondence
principle. [S0031-9007(98)07615-7]
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The necessity in a quantum theory of gravity wa
already recognized in the 1930s. However, despite t
flurry of activity on this subject we still lack a complete
theory of quantum gravity. It is believed that black hole
may play a major role in our attempts to shed some lig
on the nature of a quantum theory of gravity (such as t
role played by atoms in the early development of quantu
mechanics).

The quantization of black holes was proposed long a
in the pioneering work of Bekenstein [1]. The idea wa
based on the remarkable observation that the horizon a
of nonextremal black holes behaves as a classicaladia-
batic invariant. In the spirit of the Ehrenfest principle [2],
any classical adiabatic invariant corresponds to a qua
tum entity withdiscretespectrum, Bekenstein conjecture
that the horizon area of a nonextremal quantum black h
should have a discrete eigenvalue spectrum.

To elucidate thespacing of the area levels it is in-
structive to use a semiclassical version of Christodoulou
reversible processes. Christodoulou [3] showed that
assimilation of a neutral (point) particle by a (nonextremal)
black hole is reversible if it is injected at thehorizonfrom
a radialturning pointof its motion. In this case the black-
hole surface area is left unchanged and the changes
the other black-hole parameters (mass, charge, and an
lar momentum) can be undone by another suitable (
versible) process. (This result was later generalized
Christodoulou and Ruffini for charged point particles [4]

However, as was pointed out by Bekenstein in h
seminal work [5], the limit of apoint particle is not a
legal one inquantumtheory. In other words, the particle
cannot be both at the horizon and at a turning poi
of its motion; this contradicts theHeisenberg quantum
uncertainty principle. As a concession to quantum theor
Bekenstein ascribes to the particle afinite proper radiusb
while continuing to assume, in the spirit of Ehrenfest
theorem, that the particle’s center of mass follows
classical trajectory. Bekenstein [5] has shown that t
assimilation of a finite size neutral particle inevitabl
causes an increase in the horizon area. This increas
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minimized if the particle is captured when its center o
mass is at a turning point a proper distanceb away from
the horizon [5]:

sDAdmin  8pmb , (1)

where A is the black-hole surface area andm is the
rest mass of the particle. For a point particleb  0
and one findsDAmin  0. This is Christodoulou’s result
for a reversible process. However, a quantum particle
subjected to quantum uncertainty. A relativistic quantu
particle cannot be localized to better than its Compto
wavelength. Thus,b can be no smaller than̄hym. This
yields a lower bound on the increase in the black-ho
surface area due to the assimilation of a (neutral) te
particle

sDAdmin  8pl2
p , (2)

wherelp  s G
c3 d1y2h̄1y2 is the Planck length (we use gravi

tational units in whichG  c  1). It is easy to check
that the reversible processes of Christodoulou and Ruffi
and the lower bound Eq. (2) of Bekenstein are valid on
for nonextremal black holes. Thus, for nonextremal blac
holes there is auniversal(i.e., independent of the black-
hole parameters) minimum area increase as soon as
introduces quantum nuances to the problem.

The universal lower bound Eq. (2) derived by Beken
stein is valid only forneutralparticles [5]. Recently, Hod
[6] analyzed the capture of a quantum (finite size)charged
particle by a black hole and found a similar lower boun
The lower bound on the area increase caused by the
similation of a charged particle is given by [6]

sDAdmin  4l2
p . (3)

As was noted by Bekenstein [5] (for neutral particles
the underlying physics which excludes a completely r
versible process is theHeisenberg quantum uncertainty
principle. However, for charged particles it must be
supplemented by another physical mechanism [6]—
Schwinger discharge of the black hole (vacuum polariza-
tion effects). Without this physical mechanism one cou
have reached the reversible limit.
© 1998 The American Physical Society 4293
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It is remarkable that the lower bound found for charge
particles is of the same order of magnitude as the o
given by Bekenstein for neutral particles, even thou
they emerge fromdifferent physical mechanisms. The
universality of the fundamental lower bound (i.e., its
independence on the black-hole parameters) is clea
a strong evidence in favor of auniformly spaced area
spectrum for quantum black holes (see Ref. [7]). Henc
one concludes that the quantization condition of the blac
hole surface area should be of the form

An  gl2
pn; n  1, 2, . . . , (4)

whereg is a dimensionless constant.
It should be recognized that the precise values of t

universal lower bounds Eqs. (2) and (3) can be ch
lenged. These lower bounds follow from the assumpti
that the smallest possible radius of a particle is precis
equal to its Compton wavelength. Actually, the particle
size is not so sharply defined. Nevertheless, it should
clear that the fundamental lower bound must be of t
same order of magnitude as the one given by Eq. (
i.e., we must haveg  Os4d. The small uncertainty in
the value ofg is the price we must pay for not giv-
ing our problem a full quantum treatment. In fact, th
analyses presented in Refs. [5,6] are analogous to the w
known semiclassical determination of a lower bound
the ground state energy of the hydrogen atom [2]. Bo
analyses consider aclassicalobject (an electron or a tes
particle) subjected to the Heisenberg uncertainty princip
The analogy with usual quantum physics suggests the n
step—awaveanalysis of black-hole perturbations.

The evolution of small perturbations of a black ho
are governed by a one-dimensional wave equation. T
equation was first derived by Regge and Wheeler for p
turbations of the Schwarzschild black hole [8]. Furthe
more, it was noted that, at late times, all perturbations a
radiated away in a manner reminiscent of the last pu
dying tones of a ringing bell [9–11]. To describe thes
free oscillations of the black hole the notion of quasino
mal modes was introduced [12]. The quasinormal mo
frequencies (ringing frequencies) are characteristic of
black hole itself.

The perturbation fields outside the black hole a
governed by a one-dimensional Schrödinger-like wa
equation (assuming a time dependence of the forme2iwt):

d2C

dr2
p

1 fw2 2 V srdgC  0 , (5)

where the tortoise radial coordinaterp is related to the
spatial radiusr by drp  drys1 2

2M
r d and the effective

potential is given by

V srd 

µ
1 2

2M
r

∂ ∑
lsl 1 1d

r2 1
s

r3

∏
, (6)

whereM is the black-hole mass,l is the multipole mo-
ment index, ands  2, 0, 26 for scalar, electromagnetic
and gravitational perturbations, respectively.
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The black hole’s free oscillations (quasinormal modes
correspond to solutions of the wave equation (5) with th
physical boundary conditions of purely outgoing waves a
spatial infinity (rp ! `) and purely ingoing waves cross-
ing the event horizon (rp ! 2`) [13]. The quasinormal
modes are related to the pole singularities of the scatte
ing amplitude in the black-hole background. The ringing
frequencies are located in the complex frequency plan
characterized by Imswd , 0. It turns out that for a given
l there exist an infinite number of quasinormal modes fo
n  0, 1, 2, . . . characterizing modes with decreasing re
laxation times (increasing imaginary part) [14,15]. On
the other hand, the real part of the frequency approach
a constant value asn is increased.

Our analysis is based onBohr’s correspondence prin-
ciple (1923): “transition frequencies at large quantum
numbers should equal classical oscillation frequencies
Hence, we are interested in the asymptotic behavior (i.e
the n ! ` limit) of the ringing frequencies. These are
the highly damped black-hole oscillations frequencies
which are compatible with the statement (see, for ex
ample, [16]) “quantum transitions do not take time” (le
w  wR 2 iwI , then t ; w21

I is the effective relaxa-
tion time for the black hole to return to a quiescen
state. Hence, the relaxation timet is arbitrarily small as
n ! `.)

The determination of the highly damped quasinorma
mode frequencies of a black hole is not a simple tas
This is a direct consequence of an exponential divergen
of the quasinormal mode eigenfunctions atrp ! `. In
fact, the asymptotic behavior of the ringing frequencies
known only for the simplest case of a Schwarzschild blac
hole. Nollert [17] found that the asymptotic behavior o
the ringing frequencies of a Schwarzschild black hole
given by

Mwn  0.043 712 3 2
i
4

µ
n 1

1
2

∂
1 Ofsn 1 1d21y2g .

(7)

It is important to note that the highly damped ringing
frequencies depends only upon the black-hole mass and
independentof l ands. This is a crucial feature, which
is consistent with the interpretation of the highly dampe
ringing frequencies (in then ¿ 1 limit) as characteristics
of the black holeitself. The asymptotic behavior Eq. (7)
was later verified by Andersson [18] using an independe
analysis.

We note that the numerical limit Reswnd !
0.043 712 3M21 (as n ! `) agrees (to the available
data given in [17]) with the expression ln3ys8pd. This
identification is supported by thermodynamic and sta
tistical physics arguments discussed below. Using th
relations A  16pM2 and dM  E  h̄w one finds
DA  4l2

p ln 3. Thus, we conclude that the dimensionles
constantg appearing in Eq. (4) isg  4 ln 3 and the area
spectrum for the quantum Schwarzschild black hole
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An  s4l2

p ln 3dn; n  1, 2, . . . . (8)
This result is remarkable from astatistical physicspoint

of view. The semiclassical versions of Christodoulou’
reversible processes Refs. [5,6], which naturally lead
the conjectured area spectrum Eq. (4), are at the level
mechanics, not statistical physics. In other words, the
arguments did not relay in any way on the well known
thermodynamic relation between black-hole surface ar
and entropy. In the spirit of the Boltzmann-Einstein for
mula in statistical physics, Mukhanov and Bekenstei
[7,16,19] relategn ; expfSBHsndg to the number of mi-
crostates of the black hole that correspond to a pa
ticular external macrostate (SBH being the black-hole
entropy). In other words,gn is the degeneracy of the
nth area eigenvalue. The accepted thermodynamic re
tion between black-hole surface area and entropy [5] ca
be met with the requirement thatgn has to be an integer
for everyn only when

g  4 ln k; k  1, 2, . . . . (9)
Thus, statistical physics arguments force the dimensio
less constantg in Eq. (4) to be of the form Eq. (9). Still,
a specific value ofk requires further input, which was not
available so far. This Letter provides a first independen
derivation of the value ofk. It should be mentioned that
following the pioneering work of Bekenstein [1] a numbe
of independent calculations (most of them in the last fe
years) have recovered the uniformly spaced area spectr
Eq. (4) [20–27]. However, there is no general agreeme
on the spacing of the levels. Moreover,none of these
calculations is compatible with the relationg  4 ln k,
which is a direct consequence of the accepted therm
dynamic relation between black-hole surface area and e
tropy. The relationg  4 ln 3 derived in this Letter is the
only one consistent both with the area-entropy thermo
dynamic relation, with statistical physics arguments, an
with Bohr’s correspondence principle.

The universality of black-hole entropy (i.e., its direct
thermodynamic relation to black-hole surface area) an
the universality of the lower bounds Eqs. (2) and (3
(i.e., their independence of the black-hole parameter
suggest that the area spectrum Eq. (8) should be va
for a generic Kerr-Newman black hole. Moreover, ou
analysis leads to a natural conjecture on the asympto
behavior of the highly damped quasinormal modes of
generic Kerr-Newman black hole. Using the first law o
black-hole thermodynamics,

dM  QdA 1 VdJ , (10)
where Q 

1
4 sr1 2 r2dyA and V  4payA [r6 

M 6 sM2 2 a2 2 Q2d1y2 are the black hole’s (event and
inner) horizons anda  JyM is the black-hole angular
momentum per unit mass], one finds

Reswnd ! 4Q ln 3 1 Vm , (11)
as n ! `, where m is the azimuthal eigenvalue of the
field. The asymptotic behavior of the Kerr-Newman
s
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ringing frequencies was not determined directly so f
This is a direct consequence of the numerical complex
of the problem. It is of great interest to compare th
conjectured asymptotic behavior given in this Letter wi
the results of direct numerical computations.

In summary, using a semiclassical version
Christodoulou’s reversible processes (see Refs. [5,6])
can derive a fundamental lower bound on the increa
in black-hole surface area. Theuniversality of the
fundamental lower bound (i.e., its independence of t
black-hole parameters) is a strong evidence in favor o
uniformly spaced area spectrum for quantum black hol
However, the spacing between area eigenvalues can
be determined to better than an order of magnitude (
results presented in Ref. [6] suggest that the area spa
is of order 4l2

p). This is a direct consequence of th
semiclassical nature of these analyses. An analogy w
usual quantum physics suggests the next step—awave
analysis of black-hole perturbations. Applying Bohr
correspondence principle to the ringing frequencies wh
characterize a black hole, we derive the missing link. W
find the area spacing to be4l2

p ln 3, which is in excellent
agreement with the value predicted by the semiclass
analysis [6]. Moreover, this result is remarkable fro
a statistical physicspoint of view. The area spacing
4l2

p ln 3 derived in this Letter is theuniquevalue consis-
tent both with the area-entropythermodynamicrelation,
with statistical physicsarguments (namely, with the
Boltzmann-Einstein formula), and withBohr’s correspon-
dence principle.
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