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We investigate the geometry of the critical fluctuations for a general system undergoing a the
mal second order phase transition. Adopting a generalized effective action for the local descripti
of the fluctuations of the order parameter at the critical point (T ­ Tc) we show that instantonlike
configurations, corresponding to the minima of the effective action functional, build up clusters wit
fractal geometry characterizing locally the critical fluctuations. The connection between the corr
sponding (local) fractal dimension and the critical exponents is derived. Possible extension of the lo
geometry of the system to a global picture is also discussed. [S0031-9007(98)07547-4]
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In a system undergoing a second order phase tran
tion, coherent fluctuations at all scales occur at the critic
point. The understanding of the geometry of these flu
tuations is a long-standing problem [1]. The self-similarit
of the critical fluctuations suggests the formation of clus
ters, with a nonvanishing value of the order paramete
which have a fractal structure [2,3]. Simple geometric
arguments lead to the conclusion that the fractal dimensio
describing the critical clusters, reflects the scaling pro
erties of the underlying fluctuations and therefore can
related to the critical exponents characterizing the pha
transition [3]. Rigorous mathematical derivation and
deeper understanding of the origin of such a relation
however, missing in the general case. Some important
forts have been performed concerning the geometry of t
critical clusters in the Ising and Potts models [4] where th
order parameter is described through a discrete field va
able. For the more general case of continuous fields th
is, however, to our knowledge, no such understanding.
is the purpose of the present paper to illuminate the w
the geometry of the critical clusters emerges in the case
a continuous effective field theory. For our consideration
we study a self-interacting scalar fieldf at thermal equi-
librium. The effective action of the thermal system, at th
critical point T ­ Tc of the continuous phase transition
can be specified, in a wide class of critical phenomena,
an effective theory ind dimensions, in terms of a macro-
scopic fieldf (order parameter) as follows:

Gcffg ­ g1L2d22
Z

ddx

3

"
1
2

s=dfd2 1 g2L2d12jL2dfjd11

#
. (1)

The dimension of the fieldf in (1) has been chosen:f ,
svolumed21 and the ultraviolet cutoffL of the underlying
microscopic theory fixes the coarse graining scaleRc ø
L21 of the effective system (throughout this Letter we us
the conventionkB ­ 1 (Boltzman constant) and the energy
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is given in inverse length units). The form (1) for constant
fields leads to the standard equation of state atT ­ Tc:
dGc

df , fd sf . 0d and therefore the indexd is identified
with the isothermal critical exponent of the system. For
a high-temperature phase transition, the coarse grainin
cutoff L is bounded by the critical temperature itselfsL ¿
Tcd and the dimensionless parametersg1, g2 in Eq. (1)
are expressed in terms of the ratiol ­

L

Tc
sl ¿ 1d. In

fact, using as a concrete example theOsNd 3D effective
theory, the actionGcffg in the largeN limit and for a
fixed orientation in the internalOsNd space, is written as
follows [5]:

Gcffg ­ l5L25
Z

d3x

3

"
1
2

s=fd2 1 2

√
2pl5

N

!2

L8sL23fd6

#
.

It belongs to the general class (1) withd ­ 3, d ­
5, g1 ­ l5, g2 ­ 2s 2pl5

N d2 and to the particular sector
g1 ¿ 1.

The scalar fieldf in the following will be no further
specified. It can describe magnetization density or particl
density or the density of any other extensive physica
quantity characterizing the phase transition. Introducing
the dimensionless quantitieŝf ­ L2df, x̂i ­ Lxi, we
can rewrite the effective action (1) as

Gcff̂g ­ g1

Z
V

ddx̂

"
1
2

s=f̂d2 1 g2jf̂jd11

#
. (2)

In what follows we use, for simplicity, the old notation
sf, xid instead ofsf̂, x̂id.

The statistics of the critical system is resolved if we are
able to calculate the partition function:

Z ­
Z

D ffge2Gcffg. (3)

The nontrivial task is to carry out the path integration in (3).
Since the self-similarity is a subtle symmetry of the sys
tem and it is expected to dominate in the formation of the
© 1998 The American Physical Society 4289
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fractal geometry of the clusters (the precise definition
the cluster will be given later on), the conventional met
ods to perform the path integration, which can be found
the literature [6], are not suitable for the problem at han
We propose therefore to perform the summation, with
appropriate measure, over a class of saddle-point confi
rations which are expected to dominate the critical flu
tuations in Eq. (2) forg1 ¿ 1. In order to illustrate our
method we will treat, for simplicity, the one-dimensiona
case in some detail. Our approach can be, however,
tended to higher dimensions without difficulties.

Let us now become more quantitative. In the on
dimensional case the partition function of the critic
system (T ­ Tc) is given as

Z ­
Z

D ffg

3 exp

(
2g1

Z R

0
dx

"
1
2

√
df

dx

!2

1 g2jfjd11

#)
, (4)

whereR is the size of the considered system. We assu
here that our investigations refer to an open subsyst
of the entire physical system located in the vicinity o
the pointx ­ 0. Therefore no restrictions to the value
of the order parameter at the boundaries of the subsys
are imposed. The geometrical properties of the subsys
R are expressed through the scaling properties of
extensive quantities characterizing the subsystem w
varying sizeR aroundx ­ 0.

The saddle-point configurationsfsxd fullfill the Euler-
Lagrange equation corresponding to the effective act
Gcffg and describe the classical motion in the conca
potentialUsfd , 2jfjd11. This equation can be solved
analytically in terms of two parametersE andfs0d, where
E is a conserved (during the classical motion) quant
identified with the total energy of the moving particle:

E ­
1
2

√
df

dx

!2

2 g2jfjd11. (5)

Using Eq. (5) one can show that configurations withE fi 0
contribute to the partition functionZ with a suppresion
factore2g1RjEj suggesting that the dominant saddle poin
contributing to (4) come from those solutions of th
equations of motion for whichE ø 0. In fact Eq. (5) can
be integrated to give, forE ­ 0, instantonlike solutions of
4290
of
h-
in
d.
an
gu-
c-

l
ex-

e-
al

me
em
f
s
tem
tem
the
ith

ion
ve

ity

ts
e

the form

fsxd ­

√
c

p
2g2

!2ysd21d

3

"
c

p
2g2

fs0d2sd21dy2 6 x

#
2f2ysd21dg

;

sd . 1d (6)

with c ­
2

d21 . Settingxo ­ 7
cp
2g2

fs0d2sd21dy2 the f

field for E ­ 0 simplifies to

fsxd ­ Ajx 2 xoj2f2ysd21dg;

A ­

"
g2

2
sd 2 1d2

#2f1ysd21dg

.
(7)

To perform the path integration in (4) we have to sum u
thecontributions of all instantonlike saddle-point configu
rations of the form (7), i.e., to integrate over the parame
xo. In order to determine the correct integration measu
we consider the class of solutions (7) withxo ¿ R. In
this casefsxd ­ const, x

2f2ysd21dg
o and in a region of

radiusR aroundx ­ 0 the path integration becomes a
ordinary integral overxo with measureD f ­ dmsxod ø
x

2sd11dysd21d
o dxo . To determine the range of integration

overxo we have first to clarify the meaning of a cluster i
our picture: Let us assume thatM is an extensive variable
(i.e., magnetization) characterizing the field configuratio
of the critical system and possessing a minimal, in gener
different from zero, valuem (M $ m) related to the mi-
croscopic details of the system. Within the picture of th
local observer positioned atx ­ 0 a cluster of sizeR is
the setS of points with a maximum distanceR from the
origin. The most appropriate observable to study the ge
metric properties of the critical clusters is the thermal ave
agekMsRdl ­ k

RR
0 fsxd dxl and in particular its behavior

as a function ofR. The minimum valuem of the magnet-
izationM introduces a thresholdfmin to the configurations
f contributing to this average, leading us to an upper lim
for the integralxo as a function ofR: xo # s AR

m dsd21dy2.
On the other hand the singularity atx ­ xo must lie out-
side the region of the considered clusters0, Rd restricting
the integration in (4) over configurations withxo $ R. In
terms of the partition function (4) this average can be d
termined as
*Z R

0
fsxd dx

+
­

Asd21dysd23d

Z

Z sARymdsd21dy2

R
dxox2sd11dysd21d

o fxsd23dysd21d
o 2 sxo 2 Rdsd23dysd21dg

3 exp

(
2G1

√
d 2 1
d 1 3

!
fsxo 2 Rd2sd13dysd21d 2 x2sd13dysd21d

o g

)
(8)

with G1 ­ 2g1g2Ad11. One can show analytically that in the largeG1 limit (G1 ¿ 1) there are three characteristic
regions determining the behavior of the integral in Eq. (8). PuttingRd ­ A2sd11dydmsd11dydG

1yd
1 andRu ­ G

sd21dysd13d
1

we find that in the central region of scalesRd ø R ø Ru: k
RR

0 fsxd dxl , Rdysd11d leading to a fractal structure of
the cluster around the pointx ­ 0 with a fractal mass dimension [7]:dF ­ dysd 1 1d. This behavior crosses over for
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R ¿ Ru to a different power law: k
RR

0 fsxd dxl ,
Rsd23dysd21d suggesting the presence of a fractal with ma
dimensiond̃F ­ d23

d21 at large scales.
For R ø Rd a violation of the scaling symmetry of

the critical cluster is revealed leading to an approximate
constant value of the integral (8). The parameterRd

defines a minimal scale of the critical system effective
related with the minimal valuem of the order parameter.
In Fig. 1a we show the numerical results for the calculatio
of (8) using the valuesG1 ­ 5 3 108 and d ­ 5. The
three different regions and the corresponding crosso
scales describing the geometry of the critical cluster a
clearly distinguished. In the same plot we show also t
corresponding linear fits to illustrate more transparen
the above considerations. The fractality in the centr
region characterizes the critical system in the sense t
it corresponds to the scaling behavior in the vicinity o
the local observer whenm ! 0. This is at best shown in
Fig. 1b where we calculated (8) using the same value ofG1
as in Fig. 1a and let the upper limit in thexo integration
going to infinity. The crossover scaleRu gives presumably
a measure of the correlation length of the finite system
T ­ Tc.

FIG. 1. (a) The mean magnetizationkMsRdl as a function
of R (in units L21) for the d ­ 1 case,G1 ­ 5 3 108, and
A ­ 1. The fitted lines indicate the two regions of fractality a
described in the text. A nonvanishing minimum magnetizatio
m takes care for the violation of the scaling in small distanc
R. (b) The mean magnetizationkMsRdl for d ­ 1, G1 ­
5 3 108, andA ­ 1 for m ! 0.
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One can now easily generalize the above investigation
in order to describe systems of higher dimensionssd . 1d.
We proceed in a similar way as for the one-dimensiona
case using the saddle point approximation for the partitio
functionZd :

Zd ­
Z

D ffge2g1

R
V

ddxfs1y2d s=dfd21g2jfjd11g
(9)

in order to calculate the thermal averagek
RR

0 fs$xd ddxlZd .
The summation over the saddle points in Eq. (9) becom
an ordinary integration over the position of the singular
ity in the instantonlike solutionsfd in d dimensions. In
an analogous way as in the 1D case, solving the Eule
Lagrange equations for the critical action, we get instan
tonlike solutions forfd. In the cased ­ 2 a class of
analytic solutions possessing a point singularity can b
determined:

d ­ 2; f2s$rd ­ A2j$r 2 $roj22ysd21d;

A2 ­

"
g2

2
sd 2 1d2

#21ysd21d

.
(10)

Performing the calculation of the mean value
kMsRdl ­ k

R
d2 $rfs$rdl, characterizing a two-dimensional

critical cluster, in an analogous way as for the 1D case
we get a similar behavior concerning its fractal geometri
properties. There are characteristic scales in the rad
component Rd ­ A

2sd11dy2d
2 msd11dy2dG

1y2d
2 and Ru ­

G
sd21dy4
2 with G2 ­ pg1f 2A2

2

sd21d2 1 g2Ad11
2 g such that

d ­ 2; kMsRdl , R2dysd11d; Rd ø R ø Ru ,

kMsRdl , R2sd22dysd21d; Ru ø R . (11)

A crossover for largeR is found also in this case. For di-
mensionsd $ 3 no analytic solutionto theEuler-Lagrange
equations is available in the general case of a nonvanis
ing anomalous dimensionh (d ­

d122h

d221h , [8]). However,
these equations can be integrated numerically leadin
again to an instantonlike behavior. In particular, one ca
find exact analytic spherical solutions of this kind for
d $ 3 in the special case whenh ­ 0 sd ­

d12
d22 d.

For 0 , h ø 1 an approximate solution can be ob-
tained given as follows:

d $ 3; fdsrd ­ Adsr2
o 2 r2ds22ddy2;

Ad ­

√
sd 2 2dro

p
2g2

!sd22dy2√
sd 2 2d
p

2g2 ro

!dhy4

.

(12)

The solution (12) goes to the exact one forh ­ 0. For r
far from the singularity region the approximate form (12)
coincides practically with the exact (numerically obtained
solution. This can be at best seen in Fig. 2a where w
plot together the numerical and the approximate solutio
to the Euler-Lagrange equations ford ­ 3 andh ­ 0.34.
In fact, in a wide range of universality classes including
the Os4d theory in whichh ø 0.034 [9], the anomalous
dimension ford ­ 3 is much smaller [10] and therefore
4291
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FIG. 2. (a) A saddle-point solution to the action (1) ford ­ 3
andh ­ 0.34. The analytical approximation (dashed line) an
the result of the numerical integration (solid line) are displaye
separately. (b) The mean magnetizationkMsRdl for d ­ 3 and
G3 ­ 102. The fitted line indicates the fractality in the centra
region.

one can safely use the solution (12) for most calculation
Based on (12) we determinedkMsRdl for spherically
symmetric clusters ind $ 3 dimensions and explored the
geometric properties of such a cluster. Once again we g
the typical central fractality region crossing over to a frac
tal with a smaller dimension for distances comparable
the correlation length. It must be noted that ford $ 3 the
crossover disapears ash ! 0. UsingRd ­ a2sd11dydd 3

msd11dyddsGdd1ydd and Ru ­ sGdd21yfd1qsd11dg with
a ­ s d22p

2g2
dfd221sdhy2dgy2, Gd ­

2ad11pdy2

dGsdy2d g1g2, and q ­
22d2sdhy2d

2 , we obtain

d $ 3; kMdsRdl , R11fsd2hdy2g; Rd ø R ø Ru ,

kMdsRdl , R11fds22hdy4g; Ru ø R . (13)

The characteristic behavior ofkMsRdl for d ­ 3 is pre-
sented in Fig. 2b. Here we usedG3 ­ 102 andh ­ 0.34
(as in Fig. 2a). The breaking of the fractality (forR ø
Rd) is clearly reproduced while the crossover is suppress
due to the small value ofh. The power lawskMdsRdl ,
RdF or ,Rd̃F with d ­ 1, 2, . . . determine fractals at differ-
ent scales with dimensionsdF , d̃F . Putting together our re-
4292
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sults in one, two, and three dimensions and taking into a
count that our considerations ford $ 3 are restricted to the
case when the anomalous dimensionh is small (h ø 1)
we can cast our results for the fractal properties of the cr
ical cluster into universal expressions determiningdF and
d̃F in terms ofd andd:

dF ­
dd

d 1 1
; d̃F ­ d 2

2
d 2 1

;

dF 2 d̃F ­
hsd 2 2 1 hd

2s2 2 hd
.

(14)

The expression fordF is in accordance with the results
obtained in [3,4] for the Ising and Potts critical clusters
Thus we have found that Eqs. (14) describe the fractal g
ometry of the critical clusters in a wide range of scales an
for a general class of effective theories. Considering th
asymptotic region where the size of the cluster reaches
value of the correlation length of the finite system we fin
a crossover to a more dilute phase with a smaller frac
dimensiond̃F . Furthermore we have revealed a mecha
nism responsible for the formation of the geometry of th
critical clusters. Our considerations are restricted to th
point of view of a local description. The generalization o
our approach in order to build up the entire critical syste
requires the extension of the formalism to configuration
incorporating many, suitably located, instantonlike struc
tures (of the size of the correlation length) covering th
whole available space. Such an investigation, howeve
goes beyond the scope of the present Letter.
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