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Fractals atT = T, due to Instantonlike Configurations
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We investigate the geometry of the critical fluctuations for a general system undergoing a ther-
mal second order phase transition. Adopting a generalized effective action for the local description
of the fluctuations of the order parameter at the critical polht=(T.) we show that instantonlike
configurations, corresponding to the minima of the effective action functional, build up clusters with
fractal geometry characterizing locally the critical fluctuations. The connection between the corre-
sponding (local) fractal dimension and the critical exponents is derived. Possible extension of the local
geometry of the system to a global picture is also discussed. [S0031-9007(98)07547-4]

PACS numbers: 05.70.Jk, 47.53.+n

In a system undergoing a second order phase transis given in inverse length units). The form (1) for constant
tion, coherent fluctuations at all scales occur at the criticafields leads to the standard equation of stat& at T.:
point. The understanding of the geometry of these fluc-‘fsi ~ ¢? (¢ > 0) and therefore the indeX is identified
tuations is a long-standing problem [1]. The self-similarity with the isothermal critical exponent of the system. For
of the critical fluctuations suggests the formation of clus-g high-temperature phase transition, the coarse graining
ters, with a nonvanishing value of the order parametercutoff A is bounded by the critical temperature itse\f >

which have a fractal structure [2,3]. Simple geometricalr,.) and the dimensionless parametets g, in Eq. (1)
arguments lead to the conclusion that the fractal dimensioryre expressed in terms of the ratio= TA (A>1). In

describing the critical clusters, reflects the scaling propfact, using as a concrete example 9éV) 3D effective
erties of the underlying fluctuations and therefore can beneory, the actionl’.[¢] in the largeN limit and for a

related to the critical exponents characterizing the phasfixed orientation in the internad (V) space, is written as
transition [3]. Rigorous mathematical derivation and afgjiows [5]:

deeper understanding of the origin of such a relation is,

however, missing in the general case. Some important ef- I'.[¢] = A°A 7 ] d’x

forts have been performed concerning the geometry of the 9

critical clusters in the Ising and Potts models [4] where the v [i (Vo) + 2(27TA5) Ag(A_3¢)6:|

order parameter is described through a discrete field vari- 2 :

able. For the more general case of continuous fields there ¢ belongs to the general class (1) with= 3, 8 =

:z,tﬂgwever, to our knowledge, no such _undgrstandlng. I§7 g1 = AS, gy = 2(2777)\5)2 and to the particular sector
purpose of the present paper to illuminate the wayl > 1

the geometry of the critical clusters emerges in the case The scalar fieldg in the following will be no further

a continuous effgctlve f|§ld theory. _For our Cons'derat.'onsspeciﬁed. It can describe magnetization density or particle
we study a self-interacting scalar fieftl at thermal equi-

librium. The effective action of the thermal system, at thedenSIty or the density of any other extensive physical

critical point T = T, of the continuous phase transition quantity characterizing the phase transition. Introducing
c H

i i itied = A~ . % = Ax:
can be specified, in a wide class of critical phenomena, b&he dlme_nS|onIess qgantltlgﬁ A, i = Axi, we
; S ) . an rewrite the effective action (1) as
an effective theory inl dimensions, in terms of a macro-

scopic field¢ (order parameter) as follows: T[] = 81] dd;{l (Vd)? + gzl&l‘”l] )
v 2
I l¢]= glA_d_zf dx In what follows we use, for simplicity, the old notation
| (¢,x;) instead of(¢, %;).
S| = (Vb2 + on AZP2IA 415+ | (1 The statistics of the critical system is resolved if we are
[ 2 Vag) 82 | ¢ @ able to calculate the partition function:
The dimension of the field in (1) has been chose: ~ 7z = | Diple T 3)

(volume~! and the ultraviolet cutoff\ of the underlying
microscopic theory fixes the coarse graining sd@le=  The nontrivial task is to carry out the path integration in (3).
A~ of the effective system (throughout this Letter we useSince the self-similarity is a subtle symmetry of the sys-
the conventionkp = 1 (Boltzman constant) and the energy tem and it is expected to dominate in the formation of the
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fractal geometry of the clusters (the precise definition ofthe form 2/(5-1)
the cluster will be given later on), the conventional meth- (x) = _c
ods to perform the path integration, which can be found in b lx @)
the literature [6], are not suitable for the problem at hand.
We propose therefore to perform the summation, with an % [ ¢ ¢(0)—(6—1)/2 + x} :
appropriate measure, over a class of saddle-point configu- V28
rations which are expected to dominate the critical fluc- (6 >1) (6)
tuations in Eq. (2) forg; > 1. In order to illustrate our 5 ] . _(6-12
method we will treat, for simplicity, the one-dimensional With ¢ = 5=. Settingx, = +\/ng¢(0) the ¢
case in some detail. Our approach can be, however, efield for E = 0 simplifies to
tended to higher dimensions without _diff_iculties. b(x) = Alx — x| 12/@-1).

Let us now become more quantitative. In the one- o ’
dimensional case the partition function of the critical —[1/(6-1)] (7)

A= [gz (8 1)2}

—[2/(6-1)]

system T = T.) is given as 5
z =/ Dlé] To perform the path integration in (4) we have to sum up
® 2 thecontributions of all instantonlike saddle-point configu-
1(d¢ 5+1 rations of the form (7), i.e., to integrate over the parameter
xexp{—glf d{() + gl }] @) (7), i.e., to integrate € p
0 2\ dx X,. In order to determine the correct integration measure
whereR is the size of the considered system. We assum&® consider the class of s_olutl(zrlls () V\_/m > R_' In
here that our investigations refer to an open subsysterffliS casee(x) = const~ xo " and in a region of
of the entire physical system located in the vicinity of "adiusR aroundx = 0 the path integration becomes an
the pointx = 0. Therefore no restrictions to the values ordinary integral ovex, with measureD ¢ = du(x,) =
) —(8+1)/(3-1) : . .
of the order parameter at the boundaries of the subsystem dx,. To determine the range of integration
are imposed. The geometrical properties of the subsystenverx, we have first to clarify the meaning of a cluster in
R are expressed through the scaling properties of theur picture: Let us assume thitis an extensive variable
extensive quantities characterizing the subsystem witki.e., magnetization) characterizing the field configurations
varying sizeR aroundx = 0. of the critical system and possessing a minimal, in general,
The saddle-point configurations(x) fullfill the Euler-  different from zero, valugx (M = u) related to the mi-
Lagrange equation corresponding to the effective actiogroscopic details of the system. Within the picture of the
I'.[¢] and describe the classical motion in the concavdocal observer positioned at= 0 a cluster of sizeR is
potentialU(¢) ~ —|4|°T!. This equation can be solved the setS of points with a maximum distanck from the
analytically in terms of two parameteksand ¢ (0), where  origin. The most appropriate observable to study the geo-
E is a conserved (during the classical motion) quantitymetric properties of the critical clusters is the thermal aver-
identified with the total energy of the moving particle:  age(M(R)) = <f§ ¢ (x) dx) and in particular its behavior
1 (de 2 as a function oR. The minimum valuew of the magnet-
E = —(—) — g2t (5) izationM introduces a threshold,,;, to the configurations
2\ dx ¢ contributing to this average, leading us to an upper limit
Using Eg. (5) one can show that configurations viite= 0  for the integralx, as a function ofR: x, = (%R)(a“)/z.
contribute to the partition functio@ with a suppresion On the other hand the singularity at= x, must lie out-
factor e “$'RIEl suggesting that the dominant saddle pointsside the region of the considered clust@rr) restricting
contributing to (4) come from those solutions of thethe integration in (4) over configurations with = R. In
equations of motion for whiclt = 0. In fact Eq. (5) can terms of the partition function (4) this average can be de-

be integrated to give, faf = 0, instantonlike solutions of| termined as
R AG-D/(6-3) [ (AR/p)o " st (s s
fo S)dx ) = T,/R g OFVIGD0 DG _ (o pyo-3/6-D]
o —1 —(5+3)/(5-1) —(5+3)/(5-1)
X exp —Gy 53 [(x, — R) — X, ] (8)

with G; = 2g,8,A°"!. One can show analytically that in the largg limit (G, > 1) there are three characteristic
regions determining the behavior of the integral in Eq. (8). Putiag= A~(+1/8 ,0+1/6G1/° andr, = g\>~ 1/
we find that in the central region of scal®s < R < R,: {[s ¢(x)dx) ~ R%/®*1 |eading to a fractal structure of

the cluster around the poirt= 0 with a fractal mass dimension [7§z = 6/(6 + 1). This behavior crosses over for

4290



VOLUME 81, NUMBER 20 PHYSICAL REVIEW LETTERS 16 MVEMBER 1998

R > R, to a different power Iaw:([(’f ¢ (x)dx) ~ One can now easily generalize the above investigations
R©®=3/(6=1 syggesting the presence of a fractal with massn order to describe systems of higher dimensighs- 1).
dimensiondr = g at large scales. We proceed in a similar way as for the one-dimensional

For R < R, a violation of the scaling symmetry of case_using the saddle point approximation for the partition
the critical cluster is revealed leading to an approximatelyunctionZg:
constant value of the integral (8). The parameker _ y 2 541
defines a minimal scale of the critical system effectively Zy = f Diple * J, 41D at s elo ] 9)
related with the minimal valug. of the order parameter.
In Fig. 1a we show the numerical results for the calculatiorin order to calculate the thermal averad§ ¢ (&) d?x)z,.
of (8) using the valuess; = 5 X 10® and8 = 5. The The summation over the saddle points in Eq. (9) becomes
three different regions and the corresponding crossovedn ordinary integration over the position of the singular-
scales describing the geometry of the critical cluster ardy in the instantonlike solutiong, in ¢ dimensions. In
clearly distinguished. In the same plot we show also thén analogous way as in the 1D case, solving the Euler-
corresponding linear fits to illustrate more transparentiy-a@grange equations for the critical action, we get instan-
the above considerations. The fractality in the centrafonlike solutions for¢,. In the cased =2 a class of
region characterizes the critical system in the sense th&@nalytic solutions possessing a point singularity can be
it corresponds to the scaling behavior in the vicinity ofdetermined:

the local observer whep — 0. This is at best shown in d=2 bo(F) = A7 — ;0|—2/(5—1);
Fig. 1b where we calculated (8) using the same valug,of —1/(6-1)

as in Fig. 1a and let the upper limit in the integration 4 —| 82 6 — 1)

going to infinity. The crossover scake gives presumably 2 ’

a measure of the correlation length of the finite system

T =T algerforming the calculation of the mean value
e

(M(R)) = {[ d*#¢ (7)), characterizing a two-dimensional

critical cluster, in an analogous way as for the 1D case,
we get a similar behavior concerning its fractal geometric
properties. There are characteristic scales in the radial

component R, = A, 7D/ (64125 G1/2% g R, =

- 2
Gé‘s DA with Gy — ng[% + g,A5"!] such that

d=2; (M(R)) ~ R?/(3+1). R; < R <R,,
(M(R)) ~ R2(5—2)/(5—1); R, <R. (11)

A crossover for large is found also in this case. For di-
mensions/ = 3 no analytic solutionto theEuler-Lagrange
equations is available in the general case of a nonvanish-
ing anomalous dimension (6 = 23—12, [8]). However,

R these equations can be integrated numerically leading

again to an instantonlike behavior. In particular, one can

1000? = <M(R)> for G =5"108

1 linear fit with slope s=0.8
1004 - linear fit with slope s=0.5

<M(R)>

10007« <m(R)> for G =5*108 g find exact analytic spherical solutions of this kind for
] linear fit with slope $=0.83 i d = 3 in the special case whep = 0 (5 = 22).
A 100§ e linear fit with slope s=0.5 = . .
T For 0 < » < 1 an approximate solution can be ob-
S 104 tained given as follows:
\
1] d=3;  Galr) = Aglry — P2
d-2)/2 m/a (12)
0.1 4 _((d—z)ro> ((d—2> 7
d — I —— .
0.014 (b) V2g2 \/Zngo

100 101 102 108 104 105 108 The solution (12) goes to the exact one fpr= 0. Forr
far from the singularity region the approximate form (12)
R coincides practically with the exact (humerically obtained)
FIG. 1. (a) The mean magnetizatigM (R)) as a function solution. This can be at best seen in Fig. 2a where we
of R (in units A™") for the d = 1 case,G; =5 X 10% and  plot together the numerical and the approximate solution

A = 1. The fitted lines indicate the two regions of fractality as _ ; - —
described in the text. A nonvanishing minimum magnetizationto the Euler-Lagrange equations ir= 3 andn = 0.34.

wn takes care for the violation of the scaling in small distancesln fact, in a wide range of universality classes including

R. (b) The mean magnetizatiotM(R)) for d =1, G, = the 0(4) theory in whichn = 0.034 [9], the anomalous
5 % 108, andA = 1 for u — 0. dimension ford = 3 is much smaller [10] and therefore
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numerical solution for n=0.34

,,,,,,,,,,,,, analytic approximation

pg
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r
(b)
107 -E"i‘-
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-------------- linear fit with slope s=2.23
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= 104 o
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100
1 10 100 1000
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FIG. 2. (a) A saddle-point solution to the action (1) tbre= 3

andn = 0.34. The analytical approximation (dashed line) and
the result of the numerical integration (solid line) are displaye

separately. (b) The mean magnetizatidf(R)) for d = 3 and

d

sults in one, two, and three dimensions and taking into ac-
count that our considerations fér= 3 are restricted to the
case when the anomalous dimensipris small (7 < 1)

we can cast our results for the fractal properties of the crit-
ical cluster into universal expressions determiniiagand

dr in terms ofd andé:

dé ~ 2

SR A A
dF—Elpzn(d_2+n)
22 —-m)

The expression forly is in accordance with the results
obtained in [3,4] for the Ising and Potts critical clusters.
Thus we have found that Eqgs. (14) describe the fractal ge-
ometry of the critical clusters in a wide range of scales and
for a general class of effective theories. Considering the
asymptotic region where the size of the cluster reaches the
value of the correlation length of the finite system we find
a crossover to a more dilute phase with a smaller fractal
dimensiondr. Furthermore we have revealed a mecha-
nism responsible for the formation of the geometry of the
critical clusters. Our considerations are restricted to the
point of view of a local description. The generalization of
our approach in order to build up the entire critical system
requires the extension of the formalism to configurations
incorporating many, suitably located, instantonlike struc-
tures (of the size of the correlation length) covering the
whole available space. Such an investigation, however,
goes beyond the scope of the present Letter.
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after reading the paper. This work was supported in
part by contracts with the Hellenic General Secretariat
for Research and TechnologylENEA 1177, 887328-

G; = 102. The fitted line indicates the fractality in the central 8-96) and with the European Community (ERBFM-

region.

BICT961541).

one can safely use the solution (12) for most calculations.

Based on (12) we determine@/(R)) for spherically

symmetric clusters i@ = 3 dimensions and explored the
geometric properties of such a cluster. Once again we gol[z]
the typical central fractality region crossing over to a frac-
tal with a smaller dimension for distances comparable to

the correlation length. It must be noted that o= 3 the
crossover disapears @s— 0. UsingRy; = a~(0+1/dd x
M(BH)/d(S(Gd)l/d& and R, = (Gd)fl/[d+q(6+l)] with

d*2 _ 2 8+1 +d/2
a = (ng)[d 2Hdn/212 G, = T 8182 and g =
2—d—(dn/2) :
—"1= we obtain

(My(R)) ~ RML@=mA2L Ry« R < R,,
(My(R)) ~ RVC-n/A, o« g, (19

The characteristic behavior ¢M(R)) for d = 3 is pre-
sented in Fig. 2b. Here we uséd = 10> andn = 0.34
(as in Fig. 2a). The breaking of the fractality (fBr <

d = 3;

R,) is clearly reproduced while the crossover is suppresse

due to the small value of. The power lawsM,(R)) ~

R4 or ~R% withd = 1,2,.. . determine fractals at differ-
ent scales with dimensios, dr. Putting together our re-
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