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Number partitioning is anNP-complete problem of combinatorial optimization. A statistical
mechanics analysis reveals the existence of a phase transition that separates the easy- from the h
solve instances and that reflects the pseudopolynomiality of number partitioning. The phase dia
and the value of the typical ground-state energy are calculated. [S0031-9007(98)07670-4]

PACS numbers: 02.60.Pn, 02.70.Lq, 64.60.Cn, 89.80.+h
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Computer science has recently discovered the not
of phase transition in random combinatorial problem
and its possible connections with algorithmic complexit
In such a context, statistical physics may provide a
interesting perspective for understanding problems
theoretical computer science. In this Letter we calcula
the statistical mechanics of one of the core problems
theoretical computer science.

The number partitioning problem is an easily formulate
optimization problem: Given a setA ­ ha1, a2, . . . , aN j
of positive numbers, find a partition, i.e., a subsetA0 ,
A, such that the residue

E ­

É X
aj[A0

aj 2
X

aj”A0

aj

É
(1)

is minimized. A partition withE ­ 0 is calledperfect.
The decision variant of the number partitioning problem
to determine if there is a perfect partition or not.

Number partitioning is of both theoretical and practica
importance. It is one of Garey and Johnson’s six bas
NP-complete problems that lie at the heart of the theo
of NP completeness [1]. Among the many practica
applications one finds multiprocessor scheduling and t
minimization of VLSI circuit size and delay.

A partition can be encoded by numberssj ­ 61: sj ­
1 if aj [ A0, sj ­ 21 otherwise. The cost function then
reads

E ­

É
NX

j­1

ajsj

É
, (2)
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and the minimum partition is equivalent to the groun
state of the Hamiltonian

H ­ E2 ­
NX

i,j­1

siaiajsj . (3)

This is an infinite range Ising spin glass with Mattis-like
antiferromagnetic couplingsJij ­ 2aiaj . The thermody-
namics of this model has been investigated by Fu [2] a
recently be Ferreira and Fontanari [3].

Fu claims that in the random number partitioning pro
lem “. . . no phase transition of any kind is found.” [2]. I
Fu were right, number partitioning would be a notable e
ception to the observation that manyNP-complete prob-
lems do have a phase transition, parametrized by a con
parameter that separates the easy from the hard-to-s
instances [4]. For random, integerai [ h0, 1, 2, . . . , Aj,
Gent and Walsh [5] proposed

k̃ ­
log2 A

N
(4)

as a control parameter: They found numerically th
one typically hasOs2N d perfect partitions fork̃ , kc,
whereas for̃k . kc the number of perfect partitions drop
to zero. The transition gets sharper with increasingN .
Finite-size scaling leads Gent and Walsh tokc ­ 0.96 for
N ! `. This result contradicts Fu’s claim, but as we wi
see now, this type of phase transition can indeed be fou
in the statistical mechanics of the number partitionin
problem.
© 1998 The American Physical Society 4281
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The canonical formalism of statistical mechanics r
quires the calculation of the partition function

Z ­
X
hSi j

e2EyT ­
X
hSij

Z `

2`

dx e2jxjd

√
x 2

1
T

NX
j­1

ajsj

!

­ 2N
Z `

2`

dx̂
2p

NY
j­1
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√
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dx e2jxj1ix̂x

­ 2N
Z py2

2py2
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p

NY
j­1

cos

"
aj

T
tans yd

#
, (5)

whereT is the temperature. We writeZ as

Z ­ 2N
Z py2

2py2

dy
p

eNGs yd, (6)

with

Gs yd ­
1
N

NX
j­1

ln cos

"
aj

T
tans yd

#
. (7)

At this point we could use the statistical indepen
dence of theaj and replace the sum by the average
ln cosf a

T tans ydg over a. This is usually done in Mattis-
like spin glasses [6], but we will proceed without thi
substitution and calculate all thermodynamic quantities
functions ofhajj.

For large N the integral in Eq. (6) can be evaluate
using the saddle-point technique. To find the sadd
points of Gs yd, we will assume thata can take on
only values that are integer multiples of a fixed numb
Da. For integer distributionsDa ­ 1, and for floating-
point distributionsDa is the smallest number that ca
be represented with the available number of bits. Th
assumption leads to an infinite number of saddle poin
missed in [3],

yk ­ arctan

√
pT
Da

k

!
, k ­ 0, 61, 62, . . . . (8)

The resulting series of Gaussian integrals can be eva
ated as

Z ­ 2N
X

k­0,61,...

Z `

2`

dy e2Ny2G00s ykdy2

­ 2N

vuut 2Da2

p
P

j a2
j

coth
Da
T

. (9)

From that we get the average energy

E
T

­
Da
T

coth2 Da
T 2 1

coth Da
T

(10)

and the entropy

S ­ N ln 2 2
1
2

ln

√
p

P
j a2

j

2Da2

!
1 S̃

√
Da
2T

!
, (11)

where the thermal contribution reads
4282
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S̃

√
Da
T

!
­ ln coth

Da
T

1
Da
T

coth2 Da
T 2 1

coth Da
T

. (12)

Note that for finiteDa, S̃ vanishes at zero temperatur
and increases monotonically withT . The entropy can be
written as

S ­ Nskc 2 kd ln 2 1 S̃ , (13)

with

kcsNd ­ 1 2
lns p

6 Nd
N2 ln 2

(14)

and

k ­
ln 3

Da2
1
N

P
j a2

j

N2 ln 2
. (15)

Note thatk ­ k̃ 1 Os 1
NA d for the distribution of theai ’s

considered by Gent and Walsh.
For k , kc the entropy is extensive even forT ­ 0.

According to Eq. (10), the corresponding energy is ze
hence we expect anexponential number of perfect par
titions, in good agreement with the numerical results [5]

For k . kc the zero temperature entropy seems
become negative. This would be wrong because
entropy must not be smaller than ln2 for our discrete
system. To see what is going on here, note thatk . kc

means

22N . Da

s
2

p
P

j a2
j

, (16)

i.e., essentiallyDa ­ Os22N d. In this regime the contri-
butions ofS̃ areOsNd for any finiteT ,

S̃

√
Da
T

!
­ ln

√
T

Da

!
1 1 1 O

√
Da2

T2

!
, (17)

hence cannot be neglected. Technically we deal with t
contribution by introducing an effective “zero” tempera
ture T0 below which the system cannot be cooled.T0
guarantees that the contribution ofS̃ remainsOsNd. Its
value can be calculated from the lower bound ofS:

ln 2 ­ Nskc 2 kd ln 2 1 S̃

√
Da
T0

!

ø Nskc 2 kd ln 2 1 ln

√
T0

Da

!
.

From that we get

T0 ­ 2Da2Nsk2kcd ­
s

2p
X

j

a2
j 22N . (18)

For k . kc the ground-state energyE0 reads

E0 ­ T0 ­
s

2p
X

j

a2
j 22N . (19)

This equation specifies the rigorous result that the med
value ofE0 is Os

p
N 22N d [7].
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To check Eq. (19) we consider the continuous varia
of number partitioning, where theai are real numbers,
uniformly distributed in the intervalf0, 1d. In our formal-
ism this meansDa ! 0 and

P
j a2

j ­ Ny3. We are in the
k . kc regime and Eq. (19) becomes

E0 ­

s
2
3

pN 22N ­ 1.447
p

N 22N . (20)

In Fig. 1, Eq. (20) is compared to numerical data. Th

agreement is convincing. The prefactor
q

2
3 p fits much

better than the prefactor
q

p

6e2 ­ 0.2662, reported in [3].
To check whetherksNd is a control parameter with a

phase transition atkcsNd, we did numerical simulations.
For fixedN andk we calculated the fraction of instance
that have at least one perfect partition. In accordance w
Gent and Walsh [5] we find that this fraction is 1 for sma
k and 0 for largerk. The transition from 1 to 0 is sharp.
Figure 2 shows the numerically found transition points fo
10 # N # 28 compared tokcsNd from Eq. (14). Again
the agreement is convincing. Note thatkcsN ! `d ­ 1.
The asymptotic estimate 0.96 given by Gent and Walsh
probably due to the rather small valuesN # 30 used in
their simulations.

The two phases are very different with respect to th
computational complexity of the corresponding instance
For k , kc, a search algorithm is likely to find one of the
numerous perfect partitions in short time, while the uniqu
minimum partition fork . kc requires exponential time
to be found. This behavior can indeed be seen in nume
cal experiments [5,8,9]. Referring to the solvability of th
typical instance we call the two phases “easy” and “hard
In a numerical investigation, the precision of the numbe
ai is fixed andN is varied. For high precision and smal
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FIG. 1. Average minimum residue of the number partitionin
problem with real numbers0 # ai , 1 compared to the
analytical result Eq. (20) (straight line). Each data point is th
average over104 random samples.
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values ofN , we are in the “hard” phase: No perfect par
tition exists, and a search algorithm has to explore larg
parts of the configuration space. If one increasesN , the
search space grows exponentially, and so does the runn
time. On the other hand, increasingN gets us closer to
the phase boundary. Beyond this threshold, the numb
of perfect partitions increases exponentially withN . A
smart algorithm will try to find a perfect partition as early
as possible. As can be seen from numerical experimen
[5,8,9], this may even lead to the effect that the runnin
time nowdecreaseswith increasingN . As a function of
N the running time has a sharp maximum at the pha
boundary: The hardest problems are those close to t
threshold. A similar behavior has been found in othe
NP-complete problems like, for example, the satisfiability
problem [10–12].

For bounded, integer values0 # ai , A even theworst
casecomplexity of number partitioning is polynomial in
A and N [1]. This is no contradiction to theNP com-
pleteness since a concise encoding of an instance requ
N log2 A bits, and A is not bounded by a polynomial
function of log2 A. Because of this property the number
partitioning problem is calledpseudopolynomial[1]. The
exponential complexity of number partitioning relies on
the fact that extremely large (or precise) input numbersai

are allowed. This distinguishes number partitioning from
many otherNP-complete problems like, for example, the
traveling salesman problem, which remainsNP hard even
if the distances are restricted to take on the values 1 a
2. Pseudopolynomiality applies if the number of bits to
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N(κc-κ)
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FIG. 2. Phase diagram of the random number partitionin
problem. Nk is essentially the number of bits to encode the
input numbers; see Eq. (15). The squares denote the ph
boundary found numerically. The solid line is given bykc
from Eq. (14). Fork , kc, the zero temperature entropy is
extensive and a search algorithm typically finds quickly one o
the Os2N d perfect partitions. Fork . kc, no perfect partitions
exist and the optimization problem has a hard-to-find, uniqu
solution.
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representai is fixed whileN increases. This means thatk

decreases, i.e., we get into the easy phase for large eno
N . Hence the notion easy not only refers to thetypical (as
shown here) but also to theworst casecomplexity. This
is a notable feature of the number partitioning problem
The statistical mechanics results hold beyond the typic
case for which they are derived.

Looking at Eqs. (13) and (19) an interpretation of the
parameterkc suggests itself. Let theN numbersai each
be represented byNk bits. Now consider the residueE
bitwise: About half of all partitions will set the most
significant bit ofE to zero. Among those partitions, about
one-half will set the second most significant bit to zero
too. Repeating this procedure we can set at mostNkcsNd
bits to zero until running out of available partitions.
If k , kc, we get a perfect partition before reaching
this point. The remaining set of available partitions ha
2Nskc2kd elements. This explains the zero temperatur
entropy, Eq. (13). Fork . kc, the Nsk . kcd least
significant bits in E cannot be fixed by the optimum
partition, leading to Eq. (19) for the residue.
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