PHYSICAL REVIEW
LETTERS

VOLUME 81 16 NOVEMBER 1998 NMBER 20

Phase Transition in the Number Partitioning Problem

Stephan Mertens*

Universitat Magdeburg, Institut fur Physik, Universitatsplatz 2, D-39106 Magdeburg, Germany
(Received 6 July 1998

Number partitioning is anNP-complete problem of combinatorial optimization. A statistical
mechanics analysis reveals the existence of a phase transition that separates the easy- from the hard-to-
solve instances and that reflects the pseudopolynomiality of number partitioning. The phase diagram
and the value of the typical ground-state energy are calculated. [S0031-9007(98)07670-4]

PACS numbers: 02.60.Pn, 02.70.Lq, 64.60.Cn, 89.80.+h

Computer science has recently discovered the notioand the minimum partition is equivalent to the ground
of phase transition in random combinatorial problemsstate of the Hamiltonian
and its possible connections with algorithmic complexity. N
In such a context, statistical physics may provide an H = E2 = Z siaa;s; . 3)
interesting perspective for understanding problems in i=1
theoretical computer science. In this Letter we calculate
the statistical mechanics of one of the core problems i his is an infinite range Ising spin glass with Mattis-like,
theoretical computer science. antiferromagnetic couplingg; = —a;a;. The thermody-
The number partitioning problem is an easily formulatednamics of this model has been investigated by Fu [2] and
optimization problem: Given a sel = {a,a,,...,ay} recently be Ferreira and Fontanari [3].

of positive numbers, find a partition, i.e., a subsét C Fu claims that in the random number partitioning prob-
A, such that the residue lem “...no phase transition of any kind is found.” [2]. If
Fu were right, number partitioning would be a notable ex-
E = Z a; — Z a; (1)  ception to the observation that mamP-complete prob-
4, €A 4, EA lems do have a phase transition, parametrized by a control

parameter that separates the easy from the hard-to-solve
instances [4]. For random, integer € {0,1,2,...,A},
Gent and Walsh [5] proposed

is minimized. A partition withE = 0 is called perfect.
The decision variant of the number partitioning problem is
to determine if there is a perfect partition or not.

Number partitioning is of both theoretical and practical _ log, A
importance. It is one of Garey and Johnson’s six basic K=7"N (4)
NP-complete problems that lie at the heart of the theory
of NP completeness [1]. Among the many practicalas a control parameter: They found numerically that
applications one finds multiprocessor scheduling and thene typically haso(2") perfect partitions fork < .,

minimization of VLSI circuit size and delay. whereas foik > «. the number of perfect partitions drops
A partition can be encoded by numbejs= *+1: s; = to zero. The transition gets sharper with increasig

lifa; € A, s; = —1 otherwise. The cost function then Finite-size scaling leads Gent and Walsh«to= 0.96 for

reads N — oo, This result contradicts Fu’'s claim, but as we will

see now, this type of phase transition can indeed be found
i 2) in the statistical mechanics of the number partitioning
problem.

E =

N
> a5
j=1
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The canonical formalism of statistical mechanics re- S‘(Aa> Aa  Aa cothz% -1 (12)

i i iti i = Incoth— + —
quires the calculation of the partition function T T coth %

_ = 1< - S
Z=YetT=% [ dxe 'x'8<x - > ajsj) Note that for finiteAa, § vanishes at zero temperature
{5} {sy77% j=1 and increases monotonically with The entropy can be

“ di a ” .A written as
_ 2N/ co et PN f d —|x|+ikx .
wzwLE TO e S=Nk.—x)In2+3, (13)
/2 d N . with
y a
R Ny =1 - — 2 14
_ _ e(N) N21n2 (14)
whereT is the temperature. We writé as and
/2 3 1
w2 T “T T N2mn2 (15)
with Note thatk = & + O(xy) for the distribution of thez;'s
1 & a; considered by Gent and Walsh.
GO =+ Zl In cog - tan(y) |. (7) For k < k. the entropy is extensive even fér = 0.
=

According to Eqg. (10), the corresponding energy is zero,
At this point we could use the statistical indepen-hence we expect aexponential number of perfect par-
dence of thea; and replace the sum by the average oftitions,in good agreement with the numerical results [3].
In co§ 7 tan(y)] overa. This is usually done in Mattis-  For x > «. the zero temperature entropy seems to
like spin glasses [6], but we will proceed without this become negative. This would be wrong because the
substitution and calculate all thermodynamic quantities agntropy must not be smaller than Infor our discrete

functions of{a;}. system. To see what is going on here, note that «.
For large N the integral in Eq. (6) can be evaluated means
using the saddle-point technique. To find the saddle . 2
points of G(y), we will assume thatz can take on 27 > Aawlﬁ, (16)
J )

only values that are integer multiples of a fixed number

Aa. For integer distribution®la = 1, and for floating- i.e., essentiallyAa = O(27V). In this regime the contri-
point distributionsAa is the smallest number that can butions ofS are O(N) for any finite T,

be represented with the available number of bits. This { Aa T Ad>
assumption leads to an infinite number of saddle points, S(—) = In(A—) + 1+ 0(—2> (17)
missed in [3], T “

aT hence cannot be neglected. Technically we deal with this
Vi = arctar(A— k), k=0,%£1,%2,.... (8) contribution by introducing an effective “zero” tempera-
a ture Ty below which the system cannot be cooledy

The resulting series of Gaussian integrals can be eval@uarantees that the contribution §fremainsO(N). Its
ated as value can be calculated from the lower boundsof

® . [ Aa
7 — N kiozl f_w dy e N/2G"(wy N2 =N(k, — k) In2 + S(T_())

2 . Ty
= N m—acoth&. (9) =~ N(k, — k) In2 +In E .
2

From that we get
From that we get the average energy

- N(k—r.) — 20N
E _ Aacotf 3 —1 (10 To = 2402 NN

T T Aa
coth 7 For k > k. the ground-state enerdy, reads

and the entropy 5
— — § —-N
S=Nln2—5ln + Sl —= /. (11) \ J

2Aa? 2T . . - . :
“ This equation specifies the rigorous result that the median
where the thermal contribution reads value of Ey is O(+/N 27V) [7].
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To check Eq. (19) we consider the continuous varianwalues ofN, we are in the “hard” phase: No perfect par-
of number partitioning, where the; are real numbers, tition exists, and a search algorithm has to explore large
uniformly distributed in the intervdl0, 1). In our formal-  parts of the configuration space. If one increaSgshe
ism this meand\a — 0 andzj ajz- = N/3. We are inthe search space grows exponentially, and so does the running
k > k. regime and Eq. (19) becomes time. On the other hand, increasing gets us closer to

the phase boundary. Beyond this threshold, the number
_ |2 -N _ -N of perfect partitions increases exponentially with A
Ep == 7N2™V = 147N 27V, (20) p P _ _ p y
3 smart algorithm will try to find a perfect partition as early
In Fig. 1, Eq. (20) is compared to numerical data. The®S possible. As can be seen from numerical experiments
) o i [5,8,9], this may even lead to the effect that the running
agreement is convincing. The prefac §7T fits much  {ime nowdecreasesith increasingV. As a function of
better than the prefactgf¢> = 0.2662, reported in [3]. N the running time has a sharp maximum at the phase

To check whethek(N) is a control parameter with a Poundary: The hardest problems are those close to the
phase transition ak.(N), we did numerical simulations. threshold. A similar behavior has been found in other
For fixed N and x we calculated the fraction of instances VP-complete problems like, for example, the satisfiability
that have at least one perfect partition. In accordance witRroblem [10-12].

Gent and Walsh [5] we find that this fraction is 1 for small For bounded, integer valués= a; < A even theworst

« and O for largetk. The transition from 1 to 0 is sharp. casecomplexity of number partitioning is polynomial in
Figure 2 shows the numerically found transition points forA and N [1]. This is no contradiction to th&/? com-

10 = N = 28 compared tac.(N) from Eq. (14). Again pleteness since a concise encoding of an instance requires
the agreement is convincing. Note thatfN — «) = 1. N 10g, A bits, andA is not bounded by a polynomial
The asymptotic estimate 0.96 given by Gent and Walsh ifunction of log A. Because of this property the number
probably due to the rather small valuds= 30 used in Partitioning problem is callegseudopolynomigll]. The

their simulations. exponential complexity of number partitioning relies on

The two phases are very different with respect to théhe fact that extremely large (or precise) input numbers
computational complexity of the corresponding instances2re allowed. This distinguishes nur_nber partitioning from
Fork < k., a search algorithm is likely to find one of the many othetNP-complete problems like, for example, the
numerous perfect partitions in short time, while the uniqueraveling salesman problem, which remaig hard even
minimum partition fork > «. requires exponential time if the distances are .re_strlcted. to 'gake on the values_ 1 and
to be found. This behavior can indeed be seen in numerg- Pseudopolynomiality applies if the number of bits to
cal experiments [5,8,9]. Referring to the solvability of the
typical instance we call the two phases “easy” and “hard.” | ,
In a numerical investigation, the precision of the numbers
a; is fixed andN is varied. For high precision and small

no perfect partition, E~2 N(k=k.)
9 -
095 | hard i
u
K
8 [
0.90 .
n
N(k,- [ ]
2%, 7L PN perfect partitions
"easy"
085 Il Il Il Il
6 0.00 0.02 0.04 0.06 0.08 0.10
1N
FIG. 2. Phase diagram of the random number partitioning
problem. N« is essentially the number of bits to encode the

input numbers; see Eqg. (15). The squares denote the phase
boundary found numerically. The solid line is given Iy

from Eq. (14). Fork < k., the zero temperature entropy is
FIG. 1. Average minimum residue of the number partitioningextensive and a search algorithm typically finds quickly one of
problem with real numberd) = a; <1 compared to the the O(2") perfect partitions. Fok > «., no perfect partitions
analytical result Eq. (20) (straight line). Each data point is theexist and the optimization problem has a hard-to-find, unique
average ovei(0* random samples. solution.
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