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No-Cloning Theorem of Entangled States
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We derive a necessary and sufficient condition for two pure states, each entangled in two remote
systems, to be clonable by the sequential access to the two systems. The result shows to what extent
the correlation to other systems can be read out from a subsystem without altering its marginal density
operators. This extends the standard no-cloning theorem to the case of a subsystem correlated to others.
[S0031-9007(98)07596-6]
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A striking feature of quantum mechanics is that onecomposite systemB is secretly prepared in either of two
cannot freely read out the information of a system withoutpure stated®©) and|® (), andC in a standard quantum
affecting the state of the system. This property is clearlystateE = |u)(u|. We operate a unitary operatiéhonAC
stated in the form of the no-cloning theorem that anand, subsequently, another unitary operatidnon BC.
unknown state cannot be cloned by any physical mean&Ve require that after these operatiodd} is still in the
The pure-state no-cloning theorems state that linearitpure statd® ) initially chosen, and/B’ is also in|®®)).
of quantum mechanics forbids cloning of three arbitraryWe seek a necessary and sufficient conditiofddf’) and
pure states [1,2], and that cloning of two nonorthogonal® (") in order that such unitary operations exist.
pure states violates unitarity [3]. Recently, the no-cloning In order to derive the necessary condition [Eg. (30),
theorem is extended to the case of mixed states, and it wdielow], let us suppose that the cloning operafoh U,}
shown that the broadcasting of two honcommuting mixecexists. SincelU, does not act on the spacg the first
states is impossible [4]. Since a pure state in a Hilbertnitary operation/ should preserve the marginal density
space behaves in general as a mixed state in a subspaceopkrator i4, defined ap®) = Trg(|®®)Y (D). Thisis
the whole space, the above extension can be viewed asmaitten as
step toward the no-cloning theorem of subsystems. The (s ‘ ‘
information contained in a subsystem is not represented Tre(p®) = TrclU(p®™ ® EUT] = p". (1)
entirely by its marginal density operator, but also by the Most of our derivation of the cloning condition is
correlation to the rest of the whole system. The next steglevoted to finding a decomposition of spacimto a direct
will thus be to find out how quantum mechanics poses thgum of subspaceidd;} such thatl affects each subspace

restriction on reading out such information. independently, namely,
The no-cloning theorem also has a direct application to o
secret communication, known as quantum cryptography. (Pi® WU(P; ® E) =0 foranyi #j, (2)

For the simplest protocols using the minimal numberynherep; is the projection operator onid;. Note that (2)
(two) of states, general requirements for security for theg gquivalent to

pure-state [5] and for the mixed-state [6] cases have
already been derived. For the case of two orthogonal [P;®1,UJ1®E)=0 foranyi, 3)
entangled states, only a specific example is proposed [

and a general condition is not known. First, we show that the decompositieh,} = {P©,1 —

In this Letter, we derive the condition for two pure PO} whereP©) is the projection onto the kernel f©
states, each entangled in two subsystems, to be clonabi) o : e 5(0) ;

: : PP ®1) X
by the sequential access to the two subsystems. Thlzs(?(i(}ISers (2). Equation (1) implies that,Ei( )

directly gives the requirement for the two states used i

the protocol of quantum cryptography via split sending

[7,8]. In the access to the first system, one must extract P9 e U1 - PO)Y® E]=0. (4)

the correlation to the second system without altering th

marginal state of the first system. Our proof reveals wha

types of correlation can be extracted, and thus completesr, {[(1 — P*) ® 1JUPVp VPO & E)UT} =

the extension of the no-cloning theorem to the case of a ~ ~

subsystem correlated to others. Tra(P?p M) = Tracl(PQ @ 1)V = 0. (5)
The problem is fOfm?‘"y posed as follows. A quantumgince e can assume that! is invertible in the kernel

system to be cloned is composed of two patsand of p©

B. In addition, we have a working syste, part of ’

which is assigned as target spagésindB’. Initially the [(1-P9)e1lUP? @ E)=0. (6)

u/hich states thal/ andP; “commute” in the relevant case.
)] =0, or equivalently, (P? ® NU(p© ® E) =

. Sincep© is invertible in its support, we have

sing this and Eq. (1), we obtain
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Equation (1) means that the fidelitf(p©, pV) = M such that
Tr(y/p©@1/2 o) p(1/2)) petween the two density op- M= 012y, 10/2)
erators inA is preserved under the operati@gh This P p
implies that the support 0p® can be decomposed to = p(o)(_1/2)\/p(°)(1/2)p(1)p(°)(1/2)p(o)(_‘m. (8)

its subspaces that satisfy (2), as shown in the following) o p e the projection operator onto the eigenspace of
From the operator polar decomposition theorem [9], thergw with eigenvaluew;. Note thatw; = 0 and 3 P; =
exists a unitary operatdf such that 1— PO Then forlutjh.eséP} and\iLJ B !

. L J i)

(H(/2) ,0)(1/2) — (0)(1/2) (1) ,,(0)(1/2)
ve g .\/p pop (") PipP; = PiMpOMP; = uiP;pVP;  (9)
In the support op @, we define a positive Hermite operatcrr and

Z\/Tr(P(l)Pj)\/Tr(p(o)Pj) = u; Tr(p Q12 p; p 00172 — Tr(\/p‘0)“/2)p“)p(0)“/2)) =F(p?,p"), (10)
J J

where we used/P; = u;P;. For the states after the unitary operatiénthe following inequality holds for any sets of
positive operator§P;} on AC such thad ; P; = 1 ® 1, and for any unitary operatdf on AC:

D \/Tr(,;mpj) \/Tr(,;m)iaj) =y \/Tr(f/,;(1)(1/z>pjﬁ<1>(1/2>17+) \/Tr(pm)(l/z)pj,;<o><1/2))
j 7

= S [Tr(7p V2B, 500/2)) = — Tr(V p (D072 500/

J

Z Tr(‘?ﬁ(1)(1/2)13!_[)(0)(1/2))
J

(11)
If we assume that the sé®;} consists ofP; ® 1} andP© ® 1, the left-hand side of the inequality is

S A Tuc(BOPYTrc(pOF) = 3 3Tra(p VP Tra(pOP) = F(p®, o). (12)
J J

For the choice oV = U(V ® 1)U*, the right-hand side]

. o of its own subspaces on whidli affects independently.
of the inequality is also

We assume that repeating such procedures, we arrive
Trac(Vp W1/ 50072y — Ty, (v p 172 5 0)1/2)) at a form of decompositiol}; >/, 1" in which each

= F(p®, p0y. (13) subspace cannot be decomposed further to satisfy (2). We

L (0 ()
This means the equalities in (11) hold for these choicegienote the projection ontd; ~ as p; . We added the

Index [ such that for any pair having the same index

Therefore, H", andH!", th ists at least tor of
N _ . N ., andH; , there exists at least one nonzero operator o
PP, = 3 i 5O =0 (14) D ood ) oD (51D perar

: : _ the form P, p @ P, p©) ... Py’ p" P, and for the pair

From (13) andr” = 0, the common phase factor is found yith different! there are no such operators.

to bee’” = 1. Equation (14) implies that Now let us see how the requirement of preserving

Tra(pVP;) = Trac(pVP)) Pj(»l)p(f)Pfl) poses restriction on the form &f. Suppose

= Trac(VpW/2p, pN1/27t) thatP](l)p(S)Pgl) # 0, and thatP is the projection onto the

= 2 Trac(3OP)) = v2Tra(p©P;). (15)  supportH(C H") of the operatoP!” p® P" . If we write

_— : . D (9 pD g
Substituting (9) givesu; = »;. Thus we can rewrite & polar form ofP; p"*'P;" asVN, the Hermitian operator

(14) as N is positive and invertible i, and the unitary operator
V [different fromV used in Eq. (7)] transforms the bases
(D(1/2) t(p. = 4 .(p01/2)
Ve ® E)UIP;® 1) = pi(p ® E) of H to those oij(»l). Using Eq. (1) and the fact that
x UT(P;®1). (16)

o1/ commutes withp,” andP.E»l) in the relevant space, we have
Multiplying P;p@=1/2) @ 1 from the left gives the rela- - D) pyst pl) = (s)
tion corresponding to (2): TN = Tracl(Pi PV P} @ 15
= TrclUT (VT @ DUV ® 1) (¥ ® E)]. (18)
(P; @ DUP; ® E) =0 whenp; # pj. (A7) ginothe operatap = UT(PV' ® 1)U(V ® 1) appeared
At this point, we have a decomposition of the spaceabove is a product of unitary operators and a projection,

A specified byP© and P;, satisfying (2). As shown ijts norm satisfied|O|| = 1. If we rewrite N ® E in
below, the requirement of preserving an off-diagonal par{18) asN ® E = >, A;|by)(bi|, where A, > 0 are its
P;p"*)P; reveals that affects the two subspac#s and  eigenvalues antb,) its eigenstates, we have
P; in the same manner [see Eq. (24)]. This implies that Z’\k - Z)\k<bk|0|bk>- (19)
each subspace may be further decomposed as a direct sum ’ 7
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Since ||0]] = 1, we obtain(b;|O|b;) = 1 and apply-
ing |0l = 1 again givesO|b;) = |b;). We thus have
O(P ® E) = P ® E, namely,

Pvte DUV e®1)(P®E)=UP®E). (20
Operating(Pfl) — P) ® 1 from the left gives
[P - P) & 1JUP ® E) = 0. (21)

Since " p©p"

through (6) similarly applies here, and we obtain

P o DU[PP" — P)® E] = 0. (22)

Since we have assumed trﬁf” cannot be decomposed
further,P,@ must be equal t@. Similarly, the image of
PYpep" is H". These mean thae\’p© P! 1" —

H}l) is bijective, and thus alH](-l) with the same index

have the same dimensiaip. Now, operating/ ® 1 from
the left and replacing by Pfl) in (20), we have

0] 0 0]

(P;"®NU(V®1(P, ®E)= (Ve )hUP;, ®E),

(23)
Dyt _ pd) SN () I
where we have usedP; V1 = P;". If we defineQ;; =
) [(J.() . . .
; we obtain a commutation relation

VPl =Pj VP, y
1L, UI1®E)=0, (24)

0]
[Q;i
()

which states thal/ affects the two subspacéél) andH,

in the same manner. If we further define the operatorghe same size.

0 — p and 0" =

Qjj =P; Q;?T, the four operators irHj(l)
of the form Q](-Zp(”Qg;(a,,B = i, j) have the following
property:
(0 ()
TrelU(Qjap" Qp; ® E)UT] = Qjap"Qp; -

since 07 p® 0l = VNV, 0\0p©04) is a positive

self-adjoint operator even whem # 8. Then, the dis-

() () (25)

is nonzero, this operator should be
invertible in H,@ [see (9)]. Then, the discussion from (4)

neously by choosing a bas{h;,i”)}. Then, if we define
nonzero positive parameters
) ()
77]((l) _ S 1p© + pWlay”)
Sia 1p® + pWla)

the matrix elements ofp® in the basis{|/,k,i) =

Qi(i)la,(f)ﬂ can be written as

(26)

(s.0)

0 s . I
Lk, ilpON K jy = 81mdinéi; Y

N > (27)

where fﬁj’” are complex numbers which satisfﬁ”)* =

51(5’1). This relation shows thgi® and p!) are simulta-
neously block diagonalized in this basis, where a subspace
with fixed I andk holds one block. Blocks with thle same
indices! ands are proportional, and the weighig, ' are
common top @ andp™.

The simultaneous block-diagonalized form just derived
is “irreducible,” i.e., each block is never split into smaller
blocks. This is seen from the lfact that each base of a
single block belongs to differef; . If a different choice
of basis gave smaller blocks, the projection measurement
onto the new blocks would not changé&’. This leads to
contradiction since the unitary operator of such interaction

does not commute with some GTEZ). This uniqueness
allows a more convenient way of finding the basis
{l1,k, i)}, i.e., conducting block diagonalization first and
examining the proportionality by comparing blocks with

Now using the operatorﬁfo)}, a necessary and suffi-
cient condition of the cloning is derived as follows. Con-
sider a unitary operatioty’ acting onAC’, whereC' is a
new auxiliary system initially inx). Suppose that/’ has
the following property that does not contradict with the
unitarity of U':

Ude ) =0 e k), (28
1,i

cussion from (7) through (17) can be applied to any two

(1) 0 ; P . o
of Qjap(S)Qﬁj-tha_t_'sa to any two combinations 0k, ),  where |x;;) are orthogonal states i6’. The condition
and re\l/eals conditions like (17). Under t?e assumptiorf24) implies that the order of applyiny and U’ makes
that H](») cannot be decomposed furtheﬁi,](-) must be no difference, namely, if the cloning operation exists,
an eigenspace aff with p© and p) replaced by any the same operation still works even ' is applied
two of Q,(-Qp(”Qg;. This implies that the four operators beforehand.  Therefore, a ne(%)essary cg?dltlon of the

O (5D I tional 9 cloning is that the two stategbV) and |®W) are still
Qjap Qﬁd) are a(l)propor ional [see (9)]. o orthogonal inAB even after the operation &f’, i.e.,

WhenP;’ p©)P;” = 0, we can also defing;; that con-
verts the bases d¥; to those ofH; and satisfies (24), by
making a product of othe@}f,)-/. This definition onj(-f») is
unique except for an overall phase. The reason is that if
two such operatoer(f) andQ](-f»)' exist,Qj(f” Q](-f»)' isunitary  This is equivalent to

in H}l) and commutes witl/ in the relevant case, so that

TrAB[ [ Trelv'(@9) @] @ |x><xl>U’*]} =0.
5s=0,1 (29)

(30)

it must be written a$i¢P§l), otherwiserl) would be de-
composed further. Thus, for a particular choicqu(ﬁ),
all 2n7 operators ina\"” of the form Q%?p(s)Q;ll) with a

<<I>(°)|ij[~)|d>(”> =0 foranyl,i,j.

In order to show that this is also a sufficient condition,
we directly introduce a particular form d@f that enables

fixed [/ are proportional and can be diagonalized simulta<cloning:
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vt eE)= Y o ofla Y a 10 @ )l Trge[p@pld] = (Z 771(5)2>Z (@O, k. i)
likk! k' ii'l |k
(31) 2
where |u;) are orthogonal states i@ and the unitarity X Lk, i'|®Dy |, (34)
is not broken since 17,({[) = 1. lItis easy to verify that

). and to compare it with the orthogonality of the original
Tre[U(p® ® E)YUT] = p®). The stataogé in BC after P 9 y 9

the interaction is states in,
pie = Tra[U(99)(@Y] ® E)Ut] TrB[ l_ollTrA<|<1>“>><<1><~‘>|)} =”,§_‘/l<¢<‘” | 1,k i)
= S el 10010 @010 1al) | X (UKL SO,
likk'k"
® luger) Cuprar| - (32) (35)

. and with that inAB,
Then, under the condition (30),

0 )2 ! (s) () | = (0) :
Traclpsepse]l = Y i K@ Ol |0 )P = 0. TfAB[ 1;[1|¢ A q g@ | Lk, i)
lijk s=4, !

(33) 2
This means that the original state can be distinguished X (ki | ®Dy| . (36)

by projection measurement BIC, after system is sent

away. The rest of task is to reproduce the original statd/V€ notice that the summation anin (34) is identical to
in AB, only by manipulating system&8C. Since the that in the case (36) where systetnis fully available,

marginal density operator ifi is unchanged, there exists a @"d the summations oii’ in (34) are identical to those
unitary operatiorU, in BC that converts the whole system

in (35) where systemt is not accessible at all. These
ABC 10 |®®)|u,) [10]. Therefore, (30) is a necessary show the following: (i) We can extract some correlation

and sufficient condition so that two pure entangled state§0Ncerming the indice¢ and , but not oni. (i) The
|d©) and|d V) be cloned by the sequential access to thdull quantum correlation can be extracted for the index
two systemsd andB. For the index, the phase information is not available and

The argument above tells us what types of informatiorPNly the classical correlation can be extracted.

on the correlation with the subsystencan be extracted ~ Although the marginal density operators i are
from the subsystem without altering its marginal state. Preserved by the operatiot, the correlations between

For this purpose, it will help to rewrite (33) as A andB are not necessarily preserved By This is seen
| by calculating the following quantity:

()2
- ( nk” > Z
k" lkk’

This implies that the original correlation fdr and the | onAC after the operations df and U,. In this caselV

phase information of the correlation férare broken by is allowed to transfer the contents afinto C because it

the operatiorl. is possible to return them # by U;. The argument thus
To summarize, under the restriction that the two mar+educes to the pure-state case, with the cloning condition

ginal density operators i be preserved, we can copy (®© | @) =0, 1.
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