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We derive a necessary and sufficient condition for two pure states, each entangled in two re
systems, to be clonable by the sequential access to the two systems. The result shows to what
the correlation to other systems can be read out from a subsystem without altering its marginal de
operators. This extends the standard no-cloning theorem to the case of a subsystem correlated to
[S0031-9007(98)07596-6]
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A striking feature of quantum mechanics is that on
cannot freely read out the information of a system witho
affecting the state of the system. This property is clear
stated in the form of the no-cloning theorem that a
unknown state cannot be cloned by any physical mea
The pure-state no-cloning theorems state that linear
of quantum mechanics forbids cloning of three arbitrar
pure states [1,2], and that cloning of two nonorthogon
pure states violates unitarity [3]. Recently, the no-clonin
theorem is extended to the case of mixed states, and it w
shown that the broadcasting of two noncommuting mixe
states is impossible [4]. Since a pure state in a Hilbe
space behaves in general as a mixed state in a subspac
the whole space, the above extension can be viewed a
step toward the no-cloning theorem of subsystems. T
information contained in a subsystem is not represent
entirely by its marginal density operator, but also by th
correlation to the rest of the whole system. The next st
will thus be to find out how quantum mechanics poses t
restriction on reading out such information.

The no-cloning theorem also has a direct application
secret communication, known as quantum cryptograph
For the simplest protocols using the minimal numbe
(two) of states, general requirements for security for th
pure-state [5] and for the mixed-state [6] cases ha
already been derived. For the case of two orthogon
entangled states, only a specific example is proposed
and a general condition is not known.

In this Letter, we derive the condition for two pure
states, each entangled in two subsystems, to be clona
by the sequential access to the two subsystems. T
directly gives the requirement for the two states used
the protocol of quantum cryptography via split sendin
[7,8]. In the access to the first system, one must extra
the correlation to the second system without altering th
marginal state of the first system. Our proof reveals wh
types of correlation can be extracted, and thus comple
the extension of the no-cloning theorem to the case o
subsystem correlated to others.

The problem is formally posed as follows. A quantum
system to be cloned is composed of two parts,A and
B. In addition, we have a working systemC, part of
which is assigned as target spacesA0 andB0. Initially the
0031-9007y98y81(19)y4264(4)$15.00
e
ut
ly
n
ns.
ity
y
al
g
as
d
rt
e of
s a
he
ed
e
ep
he

to
y.
r
e

ve
al
[7]

ble
his
in
g
ct
e

at
tes
f a

composite systemAB is secretly prepared in either of two
pure states,jFs0dl andjFs1dl, andC in a standard quantum
stateE ­ jul kuj. We operate a unitary operationU onAC
and, subsequently, another unitary operationU2 on BC.
We require that after these operations,AB is still in the
pure statejFssdl initially chosen, andA0B0 is also injFssdl.
We seek a necessary and sufficient condition forjFs0dl and
jFs1dl in order that such unitary operations exist.

In order to derive the necessary condition [Eq. (30
below], let us suppose that the cloning operationhU, U2j
exists. SinceU2 does not act on the spaceA, the first
unitary operationU should preserve the marginal density
operator inA, defined asrssd ; TrBsjFssdl kFssdjd. This is
written as

TrCsr̃ssdd ; TrCfUsrssd ≠ EdUyg ­ rssd. (1)

Most of our derivation of the cloning condition is
devoted to finding a decomposition of spaceA into a direct
sum of subspaceshHij such thatU affects each subspace
independently, namely,

sPi ≠ 1dUsPj ≠ Ed ­ 0 for any i fi j , (2)

wherePi is the projection operator ontoHi. Note that (2)
is equivalent to

fPi ≠ 1, Ug s1 ≠ Ed ­ 0 for any i , (3)

which states thatU andPi “commute” in the relevant case.
First, we show that the decompositionhPij ­ hP̄s0d, 1 2

P̄s0dj, whereP̄s0d is the projection onto the kernel ofrs0d,
satisfies (2). Equation (1) implies that TrACfsP̄s0d ≠ 1d 3

r̃s0dg ­ 0, or equivalently, sP̄s0d ≠ 1dUsrs0d ≠ Ed ­
0. Sincers0d is invertible in its support, we have

sP̄s0d ≠ 1dUfs1 2 P̄s0dd ≠ Eg ­ 0 . (4)

Using this and Eq. (1), we obtain

TrAChfs1 2 P̄s0dd ≠ 1gUsP̄s0drs1dP̄s0d ≠ EdUyj ­

TrAsP̄s0drs1dd 2 TrACfsP̄s0d ≠ 1dr̃s1dg ­ 0 . (5)

Since we can assume thatrs1d is invertible in the kernel
of rs0d,

fs1 2 P̄s0dd ≠ 1gUsP̄s0d ≠ Ed ­ 0 . (6)
© 1998 The American Physical Society



VOLUME 81, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 9 NOVEMBER 1998

of
Equation (1) means that the fidelityFsrs0d, rs1dd ;
Trs

p
rs0ds1y2drs1drs0ds1y2d d between the two density op-

erators inA is preserved under the operationU. This
implies that the support ofrs0d can be decomposed to
its subspaces that satisfy (2), as shown in the followin
From the operator polar decomposition theorem [9], the
exists a unitary operatorV such that

Vrs1ds1y2drs0ds1y2d ­
q

rs0ds1y2drs1drs0ds1y2d . (7)

In the support ofrs0d, we define a positive Hermite operato
g.
re

r

M such that

M ­ rs0ds21y2dVrs1ds1y2d

­ rs0ds21y2d
q

rs0ds1y2drs1drs0ds1y2d rs0ds21y2d. (8)

Let Pj be the projection operator onto the eigenspace
M with eigenvaluemj. Note thatmj $ 0 and

P
Pj ­

1 2 P̄s0d. Then, for thesehPjj andV ,

Pjrs1dPj ­ PjMrs0dMPj ­ m2
j Pjrs0dPj (9)

and
f

X
j

q
Trsrs1dPjd

q
Trsrs0dPjd ­

X
j

mj Trsrs0ds1y2dPjrs0ds1y2dd ­ Trs
q

rs0ds1y2drs1drs0ds1y2d d ­ Fsrs0d, rs1dd , (10)

where we usedMPj ­ mjPj . For the states after the unitary operationU, the following inequality holds for any sets o
positive operatorshP̃jj on AC such that

P
j P̃j ­ 1 ≠ 1, and for any unitary operator̃V on AC:X

j

q
Trs r̃s1dP̃jd

q
Trs r̃s0dP̃jd ­

X
j

q
TrsṼ r̃s1ds1y2dP̃jr̃s1ds1y2dṼyd

q
Trs r̃s0ds1y2dP̃jr̃s0ds1y2dd

$
X

j

jTrsṼ r̃s1ds1y2dP̃jr̃s0ds1y2ddj $

É X
j

TrsṼ r̃s1ds1y2dP̃jr̃s0ds1y2dd

É
­ jTrsṼ r̃s1ds1y2dr̃s0ds1y2ddj .

(11)
If we assume that the sethP̃jj consists ofhPj ≠ 1j andP̄s0d ≠ 1, the left-hand side of the inequality isX

j

q
TrACs r̃s1dP̃jd

q
TrACsr̃s0dP̃jd ­

X
j

q
TrAsrs1dPjd

q
TrAsrs0dPjd ­ Fsrs0d, rs1dd . (12)
rive
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For the choice ofṼ ­ UsV ≠ 1dUy, the right-hand side
of the inequality is also

TrACsṼ r̃s1ds1y2dr̃s0ds1y2dd ­ TrAsVrs1ds1y2drs0ds1y2dd
­ Fsrs0d, rs1dd . (13)

This means the equalities in (11) hold for these choice
Therefore,

Ṽ r̃s1ds1y2dP̃j ­ njeifr̃s0ds1y2dP̃j , nj $ 0 . (14)

From (13) andF $ 0, the common phase factor is found
to beeif ­ 1. Equation (14) implies that

TrAsrs1dPjd ­ TrACsr̃s1dP̃jd
­ TrACsṼ r̃s1ds1y2dP̃jr̃s1ds1y2dṼyd
­ n2

j TrACsr̃s0dP̃jd ­ n2
j TrAsrs0dPjd . (15)

Substituting (9) givesmj ­ nj. Thus we can rewrite
(14) as

sVrs1ds1y2d ≠ EdUysPj ≠ 1d ­ mjsrs0ds1y2d ≠ Ed
3 UysPj ≠ 1d . (16)

Multiplying Pir
s0ds21y2d ≠ 1 from the left gives the rela-

tion corresponding to (2):

sPj ≠ 1dUsPi ≠ Ed ­ 0 whenmi fi mj . (17)

At this point, we have a decomposition of the spac
A specified byP̄s0d and Pj , satisfying (2). As shown
below, the requirement of preserving an off-diagonal pa
PjrssdPi reveals thatU affects the two subspacesPj and
Pi in the same manner [see Eq. (24)]. This implies th
each subspace may be further decomposed as a direct
s.

e

rt

at
sum

of its own subspaces on whichU affects independently.
We assume that repeating such procedures, we ar
at a form of decomposition

P
l

Pnl
i­1 H

sld
i in which each

subspace cannot be decomposed further to satisfy (2).
denote the projection ontoH

sld
i as P

sld
i . We added the

index l such that for any pair having the same indexl,
H

sld
i , andH

sld
j , there exists at least one nonzero operator

the formP
sld
i rssdP

sld
i0 rss0d · · · P

sld
i00 rss00dP

sld
j , and for the pair

with different l there are no such operators.
Now let us see how the requirement of preservin

P
sld
j rssdP

sld
i poses restriction on the form ofU. Suppose

thatP
sld
j rssdP

sld
i fi 0, and thatP is the projection onto the

supportHs# H
sld
i d of the operatorP

sld
j rssdP

sld
i . If we write

a polar form ofP
sld
j rssdP

sld
i asVN, the Hermitian operator

N is positive and invertible inH, and the unitary operator
V [different fromV used in Eq. (7)] transforms the base
of H to those ofH

sld
j . Using Eq. (1) and the fact thatU

commutes withP
sld
i andP

sld
j in the relevant space, we have

TrAN ­ TrACfsPsld
i PVyP

sld
j ≠ 1dr̃ssdg

­ TrACfUysPV y ≠ 1dUsV ≠ 1d sN ≠ Edg . (18)

Since the operatorO ; UysPVy ≠ 1dUsV ≠ 1d appeared
above is a product of unitary operators and a projectio
its norm satisfiesjjOjj # 1. If we rewrite N ≠ E in
(18) asN ≠ E ­

P
k lkjbkl kbkj, where lk . 0 are its

eigenvalues andjbkl its eigenstates, we haveX
k

lk ­
X

k

lkkbkjOjbkl . (19)
4265
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Since jjOjj # 1, we obtain kbkjOjbkl ­ 1 and apply-
ing jjOjj # 1 again givesOjbkl ­ jbkl. We thus have
OsP ≠ Ed ­ P ≠ E, namely,

sPVy ≠ 1dUsV ≠ 1d sP ≠ Ed ­ UsP ≠ Ed . (20)

OperatingsPsld
i 2 Pd ≠ 1 from the left gives

fsPsld
i 2 Pd ≠ 1gUsP ≠ Ed ­ 0 . (21)

Since P
sld
i rssdP

sld
i is nonzero, this operator should b

invertible inH
sld
i [see (9)]. Then, the discussion from (4

through (6) similarly applies here, and we obtain

sP ≠ 1dUfsPsld
i 2 Pd ≠ Eg ­ 0 . (22)

Since we have assumed thatH
sld
i cannot be decomposed

further, P
sld
i must be equal toP. Similarly, the image of

P
sld
j rssdP

sld
i is H

sld
j . These mean thatP

sld
j rssdP

sld
i :H

sld
i !

H
sld
j is bijective, and thus allH

sld
j with the same indexl

have the same dimensiondl. Now, operatingV ≠ 1 from
the left and replacingP by P

sld
i in (20), we have

sPsld
j ≠ 1dUsV ≠ 1d sPsld

i ≠ Ed ­ sV ≠ 1dUsPsld
i ≠ Ed ,

(23)

where we have usedVP
sld
i Vy ­ P

sld
j . If we defineQ

sld
ji ;

VP
sld
i ­ P

sld
j VP

sld
i , we obtain a commutation relation

fQsld
ji ≠ 1, Ug s1 ≠ Ed ­ 0 , (24)

which states thatU affects the two subspacesH
sld
j andH

sld
i

in the same manner. If we further define the operato
Q

sld
jj ; P

sld
j and Q

sld
ij ; Q

sldy
ji , the four operators inH

sld
j

of the form Q
sld
jarssdQ

sld
bjsa, b ­ i, jd have the following

property:

TrCfUsQsld
jarssdQ

sld
bj ≠ EdUyg ­ Q

sld
jarssdQ

sld
bj . (25)

Since Q
sld
jj rssdQ

sld
ij ­ VNVy, Q

sld
jarssdQ

sld
bj is a positive

self-adjoint operator even whena fi b. Then, the dis-
cussion from (7) through (17) can be applied to any tw
of Q

sld
jarssdQ

sld
bj, that is, to any two combinations ofsa, bd,

and reveals conditions like (17). Under the assumpti
that H

sld
j cannot be decomposed further,H

sld
j must be

an eigenspace ofM with rs0d and rs1d replaced by any
two of Q

sld
jarssdQ

sld
bj. This implies that the four operators

Q
sld
jarssdQ

sld
bj are all proportional [see (9)].

WhenP
sld
j rssdP

sld
i ­ 0, we can also defineQ

sld
ji that con-

verts the bases ofHi to those ofHj and satisfies (24), by

making a product of otherQ
sld
j0i0 . This definition ofQ

sld
ji is

unique except for an overall phase. The reason is tha
two such operatorsQ

sld
ji andQ

sld0
ji exist,Q

sldy
ji Q

sld0
ji is unitary

in H
sld
i and commutes withU in the relevant case, so tha

it must be written aseifP
sld
i , otherwiseH

sld
i would be de-

composed further. Thus, for a particular choice ofQ
sld
1i ,

all 2n2
l operators inH

sld
1 of the form Q

sld
1i rssdQ

sld
j1 with a

fixed l are proportional and can be diagonalized simult
4266
e
)

rs

o

on

t if

t

a-

neously by choosing a basishjasld
k lj. Then, if we define

nonzero positive parameters

h
sld
k ;

kasld
k jrs0d 1 rs1dja

sld
k lP

kkasld
k jrs0d 1 rs1dja

sld
k l

, (26)

the matrix elements ofrssd in the basis hjl, k, il ;
Q

sld
i1 ja

sld
k lj can be written as

kl, k, ijrssdjl0, k0, jl ­ dl0ldk0kj
ss,ld
ij h

sld
k , (27)

wherej
ss,ld
ij are complex numbers which satisfyj

ss,ldp
ij ­

j
ss,ld
ji . This relation shows thatrs0d andrs1d are simulta-

neously block diagonalized in this basis, where a subsp
with fixed l andk holds one block. Blocks with the sam
indicesl ands are proportional, and the weightsh

sld
k are

common tors0d andrs1d.
The simultaneous block-diagonalized form just deriv

is “irreducible,” i.e., each block is never split into smalle
blocks. This is seen from the fact that each base o
single block belongs to differentH

sld
i . If a different choice

of basis gave smaller blocks, the projection measurem
onto the new blocks would not changerssd. This leads to
contradiction since the unitary operator of such interact
does not commute with some ofP

sld
i . This uniqueness

allows a more convenient way of finding the bas
hjl, k, ilj, i.e., conducting block diagonalization first an
examining the proportionality by comparing blocks wit
the same size.

Now using the operatorshQsld
ij j, a necessary and suffi

cient condition of the cloning is derived as follows. Con
sider a unitary operationU 0 acting onAC0, whereC0 is a
new auxiliary system initially injxl. Suppose thatU 0 has
the following property that does not contradict with th
unitarity of U 0:

U 0s1 ≠ jxl kxjd ­
X
l,i

Q
sld
1i ≠ jxlil kxj , (28)

where jxlil are orthogonal states inC0. The condition
(24) implies that the order of applyingU and U 0 makes
no difference, namely, if the cloning operation exist
the same operation still works even ifU 0 is applied
beforehand. Therefore, a necessary condition of
cloning is that the two statesjFs0dl and jFs1dl are still
orthogonal inAB even after the operation ofU 0, i.e.,

TrAB

" Y
s­0,1

TrC0fU 0sjFssdl kFssdj ≠ jxl kxjdU 0yg

#
­ 0 .

(29)

This is equivalent to

kFs0djQ
sld
ij jFs1dl ­ 0 for any l, i, j . (30)

In order to show that this is also a sufficient conditio
we directly introduce a particular form ofU that enables
cloning:



VOLUME 81, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 9 NOVEMBER 1998

l

n

d

Us1 ≠ Ed ­
X
likk0

q
h

sld
k Q

sld
i1 ja

sld
k l kasld

k0 jQ
sld
1i ≠ julkk0l kuj ,

(31)

wherejulkk0l are orthogonal states inC and the unitarity
is not broken since

P
k h

sld
k ­ 1. It is easy to verify that

TrCfUsrssd ≠ EdUyg ­ rssd. The stater
ssd
BC in BC after

the interaction is

r
ssd
BC ; TrAfUsjFssdl kFssdj ≠ EdUyg

­
X

likk0k00

hkkasld
k0 jQ

sld
1i jFssdl kFssdjQ

sld
i1 ja

sld
k00 l

≠ julkk0l kulkk00 j . (32)

Then, under the condition (30),

TrBCfr
s0d
BCr

s1d
BCg ­

X
lijk

h
sld2
k jkFs0djQ

sld
ij jFs1dlj2 ­ 0 .

(33)
This means that the original state can be distinguish
by projection measurement inBC, after systemA is sent
away. The rest of task is to reproduce the original sta
in AB, only by manipulating systemsBC. Since the
marginal density operator inA is unchanged, there exists
unitary operationU2 in BC that converts the whole system
ABC to jFssdl jusl [10]. Therefore, (30) is a necessar
and sufficient condition so that two pure entangled sta
jFs0dl andjFs1dl be cloned by the sequential access to t
two systems,A andB.

The argument above tells us what types of informati
on the correlation with the subsystemB can be extracted
from the subsystemA without altering its marginal state.
For this purpose, it will help to rewrite (33) as
ed

te

a

y
tes
he

on

TrBCfr
s0d
BCr

s1d
BCg ­

√X
k0

h
sld2
k0

! X
ii0l

É X
k

kFs0djl, k, il

3 kl, k, i0jFs1dl

É2
, (34)

and to compare it with the orthogonality of the origina
states inB,

TrB

" Y
s­0,1

TrAsjFssdl kFssdjd

#
­

X
ll0kk0ii0

jkFs0d j l, k, il

3 kl0, k0, i0 j Fs1dlj2,

(35)
and with that inAB,

TrAB

" Y
s­0,1

jFssdl kFssdj

#
­

É X
lki

kFs0d j l, k, il

3 kl, k, i j Fs1dl

É2
. (36)

We notice that the summation onk in (34) is identical to
that in the case (36) where systemA is fully available,
and the summations onii0 in (34) are identical to those
in (35) where systemA is not accessible at all. These
show the following: (i) We can extract some correlatio
concerning the indicesl and k, but not oni. (ii) The
full quantum correlation can be extracted for the indexk.
For the indexl, the phase information is not available an
only the classical correlation can be extracted.

Although the marginal density operators inA are
preserved by the operationU, the correlations between
A andB are not necessarily preserved byU. This is seen
by calculating the following quantity:
TrAB

( Y
s­0,1

TrCfUsjFssdl kFssdj ≠ EdUyg

)
­

√X
k00

h
sld2
k00

! X
lkk0

É X
i

kFs0djlkilklk0ijFs1dl

É2
. (37)
n

.

This implies that the original correlation fork and the
phase information of the correlation forl are broken by
the operationU.

To summarize, under the restriction that the two ma
ginal density operators inA be preserved, we can copy
the classical correlations with respect to the subspaces
which the two density operators are simultaneously bloc
diagonalized. The copying classical correlations resu
in destroying the phase information for that correlation
If some of the blocks are identical except for factors com
mon to the two states, we can transfer (thus destroy t
original) the full quantum correlation for those blocks.

Finally, we consider slightly different problems. One
is with a stronger requirement so thatA0 is not included
in C. Here U acts onAA0C first, andU2 acts onBC
after systemsA andA0 are sent away. In this case (in situ
cloning), whatU does is to clone (not to broadcast) the
marginal density operatorrssd of A into A0. A necessary
and sufficient condition for thein situ cloning is thus
Fsrs0d, rs1dd ­ 0, 1 [4]. Another problem is with a weaker
requirement so that another operationU3 is allowed to act
r-

for
k

lts
.
-

he

on AC after the operations ofU andU2. In this case,U
is allowed to transfer the contents ofA into C because it
is possible to return them toA by U3. The argument thus
reduces to the pure-state case, with the cloning conditio
kFs0d j Fs1dl ­ 0, 1.
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