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Evidence for the Droplet Picture of Spin Glasses
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We have studied the Parisi overlap distribution for the three-dimensional Ising spin glass in the
Migdal-Kadanoff approximation. For temperaturesT . 0.7Tc and system sizes up toL ­ 32, we
found aPsqd as expected for full Parisi replica-symmetry breaking, just as was also observed in recent
Monte Carlo simulations on a cubic lattice. However, for lower temperatures our data agree with
predictions from the droplet or scaling picture. The failure to see droplet model behavior in Monte
Carlo simulations is due to the fact that all existing simulations are done at temperatures too close to
the transition temperature so that system sizes larger than the correlation length have not been achieved.
[S0031-9007(98)07523-1]

PACS numbers: 75.10.Nr, 75.50.Lk
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Despite over two decades of work, the nature of th
low-temperature phase of the three-dimensional Edward
Anderson (EA) spin glass remains controversial. Whi
the best available computer simulation results to da
[1–3] have been interpreted as suggesting a mean-fie
like behavior with replica-symmetry breaking (RSB) an
a variety of different pure states [4], analytical argumen
[5] favor a droplet picture [6–8], in which there are only
a single pair of spin-flip related pure states. It is th
purpose of this paper to present evidence that the appa
RSB observed in Monte Carlo simulations is due to th
relatively small system sizes used and the proximity of th
simulational temperature toTc, so that these simulations
merely probe the crossover region between the critic
behavior and the true low-temperature behavior.

The droplet picture differs from mean-field theory mos
dramatically in the overlap distribution function

Psq, Ld ­

"*
d

√
q 2

PN
i­1 xiS

s1d
i S

s2d
iPN

i­1 xi

!+#
. (1)

Here, the superscriptss1d and s2d denote two replicas of
the system,N ­ L3 is the number of spins, andk. . .l and
f. . .g denote the thermodynamic and disorder averag
respectively. The coefficientsxi can be chosen in severa
ways, as discussed below. We usePsq, Ld to denote the
overlap for a finite system of sizeL, reserving the more
standard notationPsqd to refer to the asymptotic form
limL!` Psq, Ld.

In the mean-field RSB picture,Ps0d is finite in the spin-
glass phase, while it is zero in the droplet picture. Th
main support for the mean-field picture comes from th
observation thatPs0, Ld does not decrease with increasin
system size in systems up to sizeN ­ L3 ­ 163 at tem-
peratures as low as0.7Tc. However (and this is the main
motivation for our work), even within the droplet picture
one expects to see a stationaryPs0, Ld for a certain range
of system sizes and temperatures. The reason is that aTc

the overlap distributionPsq, Ld obeys the scaling law

Psq, Ld ­ LbynP̃sqLbynd , (2)
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b being the order parameter critical exponent, andn the
correlation length exponent. Ind ­ 3, byn . 0.3 [3],
implying that the criticalPs0, Ld increases withL. On the
other hand, ind ­ 3, the droplet picture predicts a decay

Ps0, Ld , 1yLu

with an exponentu . 0.17 when L is larger than the
(temperature-dependent) correlation length. Thus,
temperatures not too far belowTc, one can expect an
almost stationaryPs0, Ld for a certain range of system
sizes. Since bothbyn and u are rather small, this ap-
parent stationarity may persist over a considerable ran
of system sizesL. We will argue that this is the correct
interpretation of the simulation data atT . 0.7Tc reported
in [1]. This possibility was discussed in [9] where the au
thors studied the four dimensional EA spin glass by Mon
Carlo simulations. However, they concluded that the
Monte Carlo data could not be interpreted in these term
We will comment on their work at the end of this paper.

In the following, we will study the overlap distribution
for the three-dimensional Edwards-Anderson spin gla
in the Migdal-Kadanoff (MK) approximation. Compared
to Monte Carlo simulations, the MK approximation ha
the advantage that system sizes up toL ­ 32 and
temperatures down to0.2Tc can be investigated with only
a few days’ CPU time. Since the MK approximatio
has proven to give good results for the phase diagra
and the critical exponents of the three-dimensional sp
glass [10], we expect that it will also capture the ma
features of the overlap distribution. Furthermore, it wa
shown analytically in [11] that in infinite dimensions (an
in an expansion away from infinite dimensions) the M
approximation gives

Psqd ­ s1y2d fdsq 1 qEAd 1 dsq 2 qEAdg , (3)

just as is expected in the droplet picture. In the prese
paper we shall investigate the role of finite size effects
the overlap distribution function, i.e.,Psq, Ld for a com-
monly used Ising spin-glass model.
© 1998 The American Physical Society
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The Edwards-Anderson spin glass in the absence of
external magnetic field is defined by the Hamiltonian

H ­ 2
X
ki,jl

JijSiSj ,

where the Ising spins can take the values61, and
the nearest-neighbor couplingsJij are independent from
each other and Gaussian distributed with a standa
deviation J. Evaluating a thermodynamic quantity in
MK approximation in three dimensions is equivalent t
evaluating it on a hierarchical lattice that is constructe
iteratively by replacing each bond by eight bonds, a
indicated in Fig. 1. The total number of bonds afte
I iterations is8I , which is identical to the number of
lattice sites of a three-dimensional lattice of sizeL ­ 2I .
Thermodynamic quantities are then evaluated iterative
by tracing over the spins on the highest level of th
hierarchy, until the lowest level is reached and the trac
over the remaining two spins is calculated [10]. Thi
procedure generates new effective couplings, which ha
to be included in the recursion relations.

The coefficientsxi in Eq. (1) are often chosen to be
equal to 1 for alli. In fact, for a cubic lattice this is the
most natural choice since all the spins then have the sa
coefficients. However, on a hierarchical lattice where n
all spins are equivalent, the more natural choice is on
which ensures that all the bonds occur with the sam
coefficient, i.e.,PN

i­1 xiS
s1d
i S

s2d
iPN

i­1 xi
­

X
kijl

S
s1d
i S

s2d
i 1 S

s1d
j S

s2d
j

2NL
, (4)

where kijl is a sum over all bonds [11] andNL is the
number of bonds. Our numerical results presented belo
are for this second choice, but we have found very simil
results for the first choice ofxi .

It is possible to calculatePsq, Ld directly from the
above definition Eq. (1). However, it is more expedien
to first calculate the Fourier transformFsy, Ld of Psq, Ld,
which with the choice of Eq. (4) is given by [11]

Fsy, Ld ­

"*
exp

√
iy

X
kijl

sSs1d
i S

s2d
i 1 S

s1d
j S

s2d
j d

2NL

!+#
. (5)

The recursion relations forFsy, Ld involve two- and four-
spin terms and can easily be evaluated numerically. T
Parisi overlap distribution is a sum of a large numbe
of delta function terms corresponding to the possib

FIG. 1. Construction of a hierarchical lattice.
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projections of the spins in one replica onto the spins in th
second replica, i.e.,

Psqd ­
NLy2X

n­2NLy2

andsq 2 2nyNLd . (6)

The coefficientsan can be evaluated fromFsy, Ld:

an ­ s2ypNLd
Z pNLy2

0
Fsy, Ld coss2ynyNLd dy . (7)

Our numerical results are illustrated in the next five
figures. In all simulations we made sure that the rang
and number ofy values, as well as the number of samples
were sufficiently large to give reliable results. Figure 2
shows Psq, Ld for two, three, four, and five iterations,
averaged over up to 10 000 realizations of randomnes
and for T ­ 0.7Tc, where Tc ø 0.88J [10]. We have
displayed thePsq, Ld as smooth curves, rather than as a
large number of delta function spikes for ease of viewing
These curves correspond to system sizesL ­ 4, 8, 16, 32.
SincePsq, Ld ­ Ps2q, Ld, the curves are shown only for
positiveq values. Just as in the Monte Carlo simulation
of [1–3], the value ofPs0, Ld and the area under the main
peak hardly change withL, a result which is compatible
with the RSB picture.

In contrast to the Monte Carlo simulations, ourPsq, Ld
has not only two large peaks, but also seven small
equidistant peaks, or bumps. This indicates that certa
overlap values occur more often than their neighborin
values and arise from the hierarchical structure of th
lattice: the six spins that are traced over last have th
highest coordination number, and the eight “bubbles
sitting between those spins are to some degree slaved
the state of these spins. If we assume that each bubble h
two flip-related states, we find nine equidistant preferre
values for the overlap. For the MK approximation in
two dimensions, the same argument gives five preferre
values, and 17 in four dimensions. We have confirme
these predictions by calculatingPsq, Ld in four and two
dimensions. In two dimensions, we chose a ferromagne
in order to make sure that the bumps are independent

FIG. 2. Psq, Ld at T . 0.7Tc, averaged over 5000–10 000
bond realizations of the randomness.
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the spin-glass properties. As will be seen from our low
temperature data, only the peak atqEA survives in the
thermodynamic limit.

We now discuss the remaining part of our results.
Fig. 7 of [1] the authors plotted the overlap distributio
for a single sample of a cubic Ising spin glass, i.e
without averaging over the disorder. These distributio
have in general several peaks and look very differe
for different samples, just as they would in the presen
of RSB. Figure 3 shows our equivalent result for fou
randomly chosen samples atT ­ 0.7Tc andL ­ 32. The
good agreement with the Monte Carlo data shows ag
that the MK approximation reproduces one of the ma
features of the three-dimensional spin-glass simulatio
Incidentally, it is this large sample to sample variatio
which requires one to average over a very large num
of bond realizations of the randomness to get smoo
averaged expressions forPsq, Ld.

While numerical data at temperatures aroundT ­
0.7Tc are compatible with RSB, data for lower tempera
tures are in favor of the simpler droplet picture. ForT ­
0.38Tc, e.g.,Psq, Ld decreases with increasing system si
for small values ofq, the area under the subsidiary bump
decreases, and the area under the main peak increase
shown in Fig. 4.

In order to make these qualitative statements mo
quantitative, we have evaluatedPs0, Ld for a variety of
temperatures and system sizes, each point again be
averaged over 5000–25 000 samples (Fig. 5). One
clearly see that for lower temperaturesPs0, Ld decreases
with increasing system size, without any indication of
saturation at a nonzero value. For the lowest simula
temperature, the decrease is characterized by the ex
nent u, as predicted by the droplet picture. (In [10,12
u . 0.26 is found in MK approximation.) On the other
hand, the data atTc are compatible with the exponen
byn . 0.26 obtained earlier [10]. The fullPsqd curves
for T ­ Tc are shown in Fig. 6. The data sets for inte
mediate temperatures each cover a small window of l
than one decade in the system sizeL in the crossover re-
gion between the two limiting regimes. With this sma

FIG. 3. The overlap distribution for four different bond
realizations, atT ­ 0.7Tc andL ­ 32.
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range ofL values, one does not see the crossover expect
at larger system sizes to a line with the slope2u. But one
sees an effective exponent in the range before this asym
totic behavior sets in. Because the behavior is so we
described by an effective exponent, it is not possible t
obtain a reliable estimate of the correlation length. Th
only statement one can make is that for temperature
above 0.38Tc the correlation length would seem to be
(much) greater than 32 lattice spacings. This seems
rule out any possibility of achieving a satisfactory simula
tion of the three-dimensional spin-glass phase with curren
computers and algorithms. (Simulations at low tempera
ture, where the correlation length is certainly small, ar
very hard as the spins are almost totally frozen up o
typical simulational time scales.)

The simulational data [1,2] is also purported to provide
evidence for a nontrivial ultrametric topology among the
alleged multiplicity of pure states. However, it has been
known for many years that such behavior can again be a
artifact of finite size effects when the correlation length
becomes comparable with the linear dimension of th
system [13].

Finally we comment on results in four dimensions.
While it is suggested in [5] that the mean-field RSB
picture cannot hold in any finite dimension, Monte Carlo
data for temperaturesT . 0.67Tc show a saturation of
Ps0, Ld for system sizes up toL ­ 6, after an initial
decline for sizesL ­ 2 and 3 [9]. It is quite possible that
the Monte Carlo data forL ­ 2, 3 cannot really be trusted
and the decrease seen by these authors is attributa
to some finite size effects. In fact, it has been note
in other studies thatPsq, L ­ 2d does not scale well
close to criticality [14]. We studied the four-dimensional
problem briefly within the MK scheme. Our data also
show a stationaryPs0, Ld at T . 0.67Tc for two and three
iterations, i.e., forL ­ 4 and L ­ 8. However, atT .
0.33Tc, we see a clear decline inPs0, Ld when going from
L ­ 4 to L ­ 8. This indicates that atT . 0.67Tc, the
system is not yet in the asymptotic regime for system size
L # 8. However, since the exponentsbyn and u are
much larger in four dimensions than in three dimensions

FIG. 4. Psq, Ld at T . 0.38Tc, averaged over 5000–10 000
bond realizations.
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FIG. 5. The value ofPs0, Ld, and its standard error, as
function of the system size, forTyTc ­ 1, 0.7, 0.54, 0.38, 0.2
(from top to bottom). The straight lines are power-law fits with
the exponents 0.24, 0.053,20.084, 20.13, 20.24 (from high
to low temperatures).

the change in the slope of lnPs0, Ld vs lnL must be faster
in four dimensions than in three dimensions. Therefore
if one goes to somewhat larger system sizes than in [9],
might actually be possible to escape the effects of critica
fluctuations and see features characteristic of the low
temperature phase proper, in contrast to the situation
three dimensions, where escape from critical fluctuatio
effects seems impossible.

FIG. 6. The overlap distribution atT ­ Tc, for L ­ 4 (solid),
8 (dotted), 16 (dashed). The inset shows a scaling collaps
Psq, LdyL0.24 vs qL0.24.
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In summary, the MK approximation gives clear evidence
that the apparent RSB behavior of the three-dimension
Edwards-Anderson spin glass reported in [1–3] is du
to finite size effects arising from the closeness of th
temperatures studied to the critical temperatureTc so that
the correlation length is larger than the linear dimensio
of the systems studied. Our conclusions are based on t
assumption that the Monte Carlo estimates for the overla
function for the cubic lattice will still be similar to the
overlap function of the hierarchical lattice when they are
extended to larger system sizes and lower temperatures
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