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Evidence for the Droplet Picture of Spin Glasses

M. A. Moore, Hemant Bokil, and Barbara Drossel

Theory Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
(Received 14 August 1998

We have studied the Parisi overlap distribution for the three-dimensional Ising spin glass in the
Migdal-Kadanoff approximation. For temperaturés= 0.77, and system sizes up tb = 32, we
found aP(g) as expected for full Parisi replica-symmetry breaking, just as was also observed in recent
Monte Carlo simulations on a cubic lattice. However, for lower temperatures our data agree with
predictions from the droplet or scaling picture. The failure to see droplet model behavior in Monte
Carlo simulations is due to the fact that all existing simulations are done at temperatures too close to
the transition temperature so that system sizes larger than the correlation length have not been achieved.
[S0031-9007(98)07523-1]
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Despite over two decades of work, the nature of theB being the order parameter critical exponent, anthe
low-temperature phase of the three-dimensional Edwardsorrelation length exponent. ld = 3, 8/v = 0.3 [3],
Anderson (EA) spin glass remains controversial. Whileimplying that the criticalP(0, L) increases witlL. On the
the best available computer simulation results to datether hand, ini = 3, the droplet picture predicts a decay
[1-3] have been interpreted as suggesting a mean-field- 0
like behavior with replica-symmetry breaking (RSB) and PO,L) ~ 1/L
a variety of different pure states [4], analytical argumentsyjth an exponentd = 0.17 when L is larger than the
[5] favor a droplet picture [6-8], in which there are only (temperature-dependent) correlation length. Thus, for
a single pair of spin-flip related pure states. It is thegemperatures not too far belod,., one can expect an
purpose of this paper to present evidence that the apparefiinost stationaryP(0, L) for a certain range of system
RSB observed in Monte Carlo simulations is due to thesjzes. Since boti8/» and @ are rather small, this ap-
relatively small system sizes used and the proximity of thg,arent stationarity may persist over a considerable range
simulational temperature 6., so that these simulations o system sized..” We will argue that this is the correct

merely probe the crossover region between the criticaherpretation of the simulation data&t= 0.77, reported

behavior and the true low-temperature behavior. in [1]. This possibility was discussed in [9] where the au-
The droplet picture differs from mean-field theory mosthors studied the four dimensional EA spin glass by Monte
dramatically in the overlap distribution function Carlo simulations. However, they concluded that their

A xisfl)sfz) Monte Carlo data could not be interpreted in these terms.
Pg.L) =|(8{q — Iy I VA (1) we will comment on their work at the end of this paper.
. =1 _ In the following, we will study the overlap distribution
Here, the superscriptd) and (2) denote two replicas of for the three-dimensional Edwards-Anderson spin glass
the systemN = L’ is the number of spins, arfd..) and iy the Migdal-Kadanoff (MK) approximation. Compared
[...] denote the thermodynamic and disorder averagesp Monte Carlo simulations, the MK approximation has
respectively. The coefficients can be chosen in several the advantage that system sizes up Io= 32 and
ways, as discussed below. We usgy, L) to denote the  temperatures down @27, can be investigated with only
overlap for a finite system of sizE, reserving the more 5 few days’ CPU time. Since the MK approximation
standard notatiorP(q) to refer to the asymptotic form has proven to give good results for the phase diagram
lim;— P(q,L). and the critical exponents of the three-dimensional spin
In the mean-field RSB picturé’(0) is finite in the spin-  glass [10], we expect that it will also capture the main
glass phase, while it is zero in the droplet picture. The&eatures of the overlap distribution. Furthermore, it was
main support for the mean-field picture comes from theshown analytically in [11] that in infinite dimensions (and
observation thaP(0, L) does not decrease with increasingin an expansion away from infinite dimensions) the MK
system size in systems up to sife= L’ = 16> at tem-  gpproximation gives
peratures as low a@77.. However (and this is the main
motivation for our work), even within the droplet picture P(q) = (1/2)[8(q + gEa) + 8(q — qra)]l,  (3)
one expects to see a stationd0, L) for a certain range
of system sizes and temperatures. The reason is that at
the overlap distributio (g, L) obeys the scaling law

just as is expected in the droplet picture. In the present
paper we shall investigate the role of finite size effects on
the overlap distribution function, i.eR(q, L) for a com-
P(q,L) = LP/"P(qLP/"), (2)  monly used Ising spin-glass model.
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The Edwards-Anderson spin glass in the absence of gorojections of the spins in one replica onto the spins in the
external magnetic field is defined by the Hamiltonian second replica, i.e.,

N./2
H=—J;SS;, P(q) = Z/ and(q — 2n/Nyp). (6)
{@.7) n=—N./2

where the Ising spins can take the valugd, and The coefficients:, can be evaluated fromfi(y, L):

the nearest-neighbor couplings are independent from 7NL/2

each other and Gaussian distributed with a standard a, = (Z/WNL)f F(y,L)co92yn/N;)dy. (7)

deviation J. Evaluating a thermodynamic quantity in 0

MK approximation in three dimensions is equivalent to Our numerical results are illustrated in the next five

evaluating it on a hierarchical lattice that is constructedigures. In all simulations we made sure that the range

iteratively by replacing each bond by eight bonds, agind number of values, as well as the number of samples,

indicated in Fig. 1. The total number of bonds afterwere sufficiently large to give reliable results. Figure 2

I iterations is8/, which is identical to the number of showsP(q,L) for two, three, four, and five iterations,

lattice sites of a three-dimensional lattice of size= 2/.  averaged over up to 10000 realizations of randomness,

Thermodynamic quantities are then evaluated iterativelyand for 7 = 0.77., where 7. ~ 0.88J [10]. We have

by tracing over the spins on the highest level of thedisplayed theP(q, L) as smooth curves, rather than as a

hierarchy, until the lowest level is reached and the tracéarge number of delta function spikes for ease of viewing.

over the remaining two spins is calculated [10]. ThisThese curves correspond to system sizes 4,8, 16, 32.

procedure generates new effective couplings, which hav@inceP(q,L) = P(—gq, L), the curves are shown only for

to be included in the recursion relations. positiveg values. Just as in the Monte Carlo simulations
The coefficientsy; in Eq. (1) are often chosen to be of [1-3], the value ofP(0, L) and the area under the main

equal to 1 for alli. In fact, for a cubic lattice this is the peak hardly change with, a result which is compatible

most natural choice since all the spins then have the sanvéth the RSB picture.

coefficients. However, on a hierarchical lattice where not In contrast to the Monte Carlo simulations, g, L)

all spins are equivalent, the more natural choice is on&as not only two large peaks, but also seven smaller

which ensures that all the bonds occur with the saméquidistant peaks, or bumps. This indicates that certain

coefficient, i.e., overlap values occur more often than their neighboring
N 1) o2 (1) (2 1) (2 values and arise from the hierarchical structure of the

iz %iSi Si Z Si S *+5;S; ’ (4) lattice: the six spins that are traced over last have the

AREY ) 2N highest coordination number, and the eight “bubbles”

s . sitting between those spins are to some degree slaved to
where (ij) is a sum over all bonds [11] anll; is the g giate of these spins. If we assume that each bubble has

number Qf bonds. Our_numerlcal results presented _be_lo‘f‘(/vo flip-related states, we find nine equidistant preferred
are for this second choice, but we have found very S'm'la(/alues for the overlap. For the MK approximation in

resul_ts for th_e first choice of;. . two dimensions, the same argument gives five preferred
It is po;s_ll_:)le to calculateP(q, L) Q|r_ectly from the_ values, and 17 in four dimensions. We have confirmed

abqve definition Eq. (1).' However, it is more expedlent,[hese predictions by calculating(q, L) in four and two

to first calculate the Fourier ransforR(y, L) of P(g, L), dimensions. In two dimensions, we chose a ferromagnet,

which with the choice of Eg. (4) is given by [11] in order to make sure that the bumps are independent of

1) o) (e
< (55?4 sPs!
F(y,L) = |:<eX[<lyZ o, . . (5)
(j)

The recursion relations fdr(y, L) involve two- and four-

spin terms and can easily be evaluated numerically. The
Parisi overlap distribution is a sum of a large number
of delta function terms corresponding to the possible

q
FIG. 2. P(q,L) at T = 0.7T,, averaged over 5000-10000
FIG. 1. Construction of a hierarchical lattice. bond realizations of the randomness.
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the spin-glass properties. As will be seen from our low-range ofL values, one does not see the crossover expected
temperature data, only the peak @ta survives in the atlarger system sizes to a line with the slopé. But one
thermodynamic limit. sees an effective exponent in the range before this asymp-
We now discuss the remaining part of our results. Intotic behavior sets in. Because the behavior is so well
Fig. 7 of [1] the authors plotted the overlap distribution described by an effective exponent, it is not possible to
for a single sample of a cubic Ising spin glass, i.e.,obtain a reliable estimate of the correlation length. The
without averaging over the disorder. These distributionsnly statement one can make is that for temperatures
have in general several peaks and look very differenabove 0.38T. the correlation length would seem to be
for different samples, just as they would in the presenc€much) greater than 32 lattice spacings. This seems to
of RSB. Figure 3 shows our equivalent result for fourrule out any possibility of achieving a satisfactory simula-
randomly chosen samples®&t= 0.77. andL = 32. The tion of the three-dimensional spin-glass phase with current
good agreement with the Monte Carlo data shows againomputers and algorithms. (Simulations at low tempera-
that the MK approximation reproduces one of the mainture, where the correlation length is certainly small, are
features of the three-dimensional spin-glass simulationstery hard as the spins are almost totally frozen up on
Incidentally, it is this large sample to sample variationtypical simulational time scales.)
which requires one to average over a very large number The simulational data [1,2] is also purported to provide
of bond realizations of the randomness to get smootlevidence for a nontrivial ultrametric topology among the
averaged expressions fBfg, L). alleged multiplicity of pure states. However, it has been
While numerical data at temperatures aroufidc=  known for many years that such behavior can again be an
0.7T. are compatible with RSB, data for lower tempera-artifact of finite size effects when the correlation length
tures are in favor of the simpler droplet picture. Hor= becomes comparable with the linear dimension of the
0.387,, e.g.,P(g, L) decreases with increasing system sizesystem [13].
for small values of;, the area under the subsidiary bumps Finally we comment on results in four dimensions.
decreases, and the area under the main peak increases\ésile it is suggested in [5] that the mean-field RSB
shown in Fig. 4. picture cannot hold in any finite dimension, Monte Carlo
In order to make these qualitative statements morelata for temperature® = 0.677. show a saturation of
quantitative, we have evaluateg®l0, L) for a variety of P(0,L) for system sizes up td. = 6, after an initial
temperatures and system sizes, each point again beimigcline for sized. = 2 and 3 [9]. It is quite possible that
averaged over 5000—25000 samples (Fig. 5). One catthe Monte Carlo data fak = 2,3 cannot really be trusted
clearly see that for lower temperaturB¢0, L) decreases and the decrease seen by these authors is attributable
with increasing system size, without any indication of ato some finite size effects. In fact, it has been noted
saturation at a nonzero value. For the lowest simulateth other studies thatP(g,L = 2) does not scale well
temperature, the decrease is characterized by the expdose to criticality [14]. We studied the four-dimensional
nent, as predicted by the droplet picture. (In [10,12], problem briefly within the MK scheme. Our data also
6 = 0.26 is found in MK approximation.) On the other show a stationary(0, L) atT = 0.67T, for two and three
hand, the data af,. are compatible with the exponent iterations, i.e., forlL. = 4 andL = 8. However, atT =
B/v = 0.26 obtained earlier [10]. The fulP(g) curves 0.33T,., we see a clear decline (0, L) when going from
for T = T, are shown in Fig. 6. The data sets for inter-L = 4 to L = 8. This indicates that af = 0.67T, the
mediate temperatures each cover a small window of lessystem is not yet in the asymptotic regime for system sizes
than one decade in the system sizén the crossover re- L = 8. However, since the exponengs/v and 6 are
gion between the two limiting regimes. With this small much larger in four dimensions than in three dimensions,
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FIG. 3. The overlap distribution for four different bond FIG. 4. P(q,L) at T = 0.38T,, averaged over 5000—10000
realizations, af" = 0.77,. andL = 32. bond realizations.
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10° . . . In summary, the MK approximation gives clear evidence
[ that the apparent RSB behavior of the three-dimensional

/ Edwards-Anderson spin glass reported in [1-3] is due

to finite size effects arising from the closeness of the

temperatures studied to the critical temperaflireso that

the correlation length is larger than the linear dimension

P(O,L)

\ of the systems studied. Our conclusions are based on the
assumption that the Monte Carlo estimates for the overlap
0 L 1\\ | function for the cubic lattice will still be similar to the
L . s . overlap function of the hierarchical lattice when they are
o 10 20 extended to larger system sizes and lower temperatures.
L We thank Alan Bray and A.P. Young for useful

FIG. 5. The value ofP(0,L), and its standard error, as discussions. This work was supported by EPSRC Grants
function of the system size, faf /T, = 1, 0.7, 0.54, 0.38, 0.2 No. GR/K79307 and No. GR/L38578.

(from top to bottom). The straight lines are power-law fits with
the exponents 0.24, 0.053;0.084, —0.13, —0.24 (from high

to low temperatures).
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