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Analytical Envelope-Function Theory of Interface Band Mixing
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An analytical theory of intervalley mixing at semiconductor heterojunctions is presented. Burt’s
envelope-function representation is used to analyze a pseudopotential Hamiltonian, yielding a simple
d-function mixing betweenG and X electrons and light and heavy holes. This coupling exists even
for media differing only by a constant band offset (i.e., withno difference in Bloch functions).
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It is well known in semiconductor physics that bulk
effective-mass theory [1] is not valid at an abrupt heter
junction, since the rapid change in potential at the inte
face causes a mixing of wave functions in different energ
bands, and the neglect of such mixing is a key approxim
tion in the development of this theory. It is consequent
almost universally believed that a realistic description o
the interface can only be achieved numerically, by pe
forming a microscopic supercell calculation. The purpos
of this paper is to demonstrate that a careful application
modern envelope-function theory yields a fullyanalytical
description of interface band mixing.

The most widely used form of envelope-function the
ory is Bastard’s “envelope-function approximation” (EFA
[2], which openly ignores any interband mixing not foun
in bulk k ? p theory [3]. Less well known is Burt’s the-
ory of the envelope-functionrepresentation[4,5], which is
an exact representation of the Schrödinger equation, fu
capable of describing any effect found in pseudopotent
theory. Thus far, the main applications of this theory hav
been a one-dimensional proof [5] that in long-period su
perlattices, interface-induced mixing is a small perturb
tion on the EFA, and the resolution of an ambiguity in th
EFA ordering of differential operators [6,7].

Unfortunately, the former work [5] is often miscon-
strued as implying that Burt’s theory is no different from
the EFA [8–11]. This interpretation is not warranted, be
cause even small perturbations can have a dramatic imp
when they introduce couplings of a qualitatively differen
nature. In this paper the envelope-function represen
tion is used to analyze an empirical pseudopotential mod
[12] of the GaAsyAlAs (001) heterojunction. The result is
a simple analytical theory of the interface-induced mixin
betweenG andX electrons [13–16] and light and heavy
holes [17–19], in which the coupling takes the form of
finite-width d function whose strength is given directly in
terms of pseudopotential form factors. The most strikin
outcome is that there isno limit in which the EFA is valid
for abrupt heterojunctions, since the coupling exists ev
for identicalBloch functions.

I begin by presenting a paraphrased (nonrigorous) ve
sion of Burt’s theory. Let the microscopic Hamiltonian
be H ­ p2y2m 1 V srd, and choose as basis function
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the complete orthonormal Luttinger-Kohn functions [1
xnsrd ­ Unsrdeik?r , whereUnsrd is a periodic Bloch func-
tion from some bulk reference crystal (e.g., the virtual crys
tal Al0.5Ga0.5As). TheUn need not come fromG, since
Bloch functions fromX andL are periodic if one adopts
a nonprimitive unit cell (e.g., a simple cubic lattice with
an 8-atom basis forX, or an fcc lattice with a 16-atom ba-
sis for bothL andX), which effectively folds these points
ontoG.

To form an envelope-function HamiltonianHnn0srd, the
first step is to sandwichH between two basis states:

xp
nHxn0 ­ Up

n

µ
H 1

h̄
m

k ? p 1
h̄2k2

2m

∂
Un0 , (1)

thus generating the familiark ? p perturbations [3]. The
second step is to send (1) through a low-pass filte
removing all Fourier components outside the Brillouin
zone. This step is an integral part of the change
representation; it doesnot result in loss of information
[4,5]. It is roughly equivalent to averaging (1) over a
unit cell [20], so for simplicity the latter procedure will be
adopted here. This yields

Hnn0srd ­ fUnjHjUn0g 1
h̄
m

k ? pnn0 1
h̄2k2

2m
dnn0 , (2)

where the brackets [ ] denote an average over a unit c
centered onr, andpnn0 ­ fUnjpjUn0 g is independent ofr.
The final step is to letk ­ 2i=, in which case (2) is just
the local version of Burt’s Hamiltonian [4,5].

The primary difference between (2) and the EFA
Hamiltonian is that (2) does not exclude the interface r
gion from the averaging process. To apply (2), one nee
explicit basis functionsUn for zinc-blende semiconduc-
tors. In the pseudopotential method [12], one expan
these functions in a small number of plane waves,

Unsrd ­
X
G

UnGeiG?r , (3)

whereG is a reciprocal-lattice vector. In GaAs and AlAs
the statesn of interest have symmetryG1, G15, X1, and
X3 [12]. One can use group-theory projection operato
[21,22] to symmetrize expansion (3) for each of thes
representations in turn. This reduces (3) to the form

Unsrd ­
X

i

Ci
nUi

nsrd , (4)
© 1998 The American Physical Society 425
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where the coefficientsCi
n satisfy

P
i jCi

nj2 ­ 1, and the
functions Ui

nsrd are given in Table I (for states with
kinetic energy up to 2 Ry) and Ref. [23] (up to 5 Ry
The origin of coordinates is fixed at an anion site, wi
a neighboring cation at14 af111g (where a is the cubic
lattice parameter). The indexi refers to the value ofG2 in
units of s2pyad2, with an additional labela or c referring
in a rough sense to whether a state is centered on
anion or cation. For the triply degenerateG15, X1, andX3
representations, only thez state is listed;x and y states
are given by cyclic permutations.

The coefficientsCi
n are found by diagonalizingH in a

bulk crystal, where the pseudopotential takes the form

Vb ­ V S
0 1 4V a

3 U3a
G1

y
p

8

1 4V c
3 U3c

G1
y
p

8 2 2V A
4 U4

G1
y
q

2y3

1 4V S
8 U8

G1
y
q

4y3 1 4V a
11U11a

G1
y
q

8y3

2 4V c
11U11c

G1
y
q

8y3 2 8V A
12U12A

G1
y
p

8 . (5)

Here the expansion coefficients are standard pseudo
tential form factors [12], withV a

3 ­ V S
3 2 V A

3 andV c
3 ­

V S
3 1 V A

3 . The Bloch functions of interest are tabulate
in Ref. [23], using the phase conventionUns0d . 0 for G1
andX1, and≠Uns0dy≠z . 0 for G15z andX3z .

The Bloch functions of GaAs and AlAs are very simila
so their differences can be treated accurately in pertur
tion theory [24]. Since Bloch functions cannot be identic
unless the bulk potentials (5) are identical (to within a co
stant offsetDV S

0 ), the actual perturbation is the differenc
between the heterostructure potentialV srd and the refer-
encesAl 0.5Ga0.5Asd potential. The present work consider
only first-order interface effects—namely, the direct m
trix elements ofV srd within the manifold consisting of the
groundG15 and first excitedG1, X1, andX3 states of the
reference crystal. Second-order effects are also of so
importance, but their analysis will be deferred to a late
more extensive publication.

To illustrate the techniques involved, the couplin
between theG15x and G15y valence bands is calculated
in detail below. The simplest model of a heterojunctio
is an abrupt planar junction, in which each form factor
(5) has a step discontinuity at the interface (namely, t
As planez ­ 0). Consider first theG ­ 0 form factor
V S

0 szd. Averaging over thexy plane, one finds

fUG15x
jV S

0 jUG15y
gxy ­ 2C3a

G15
C3c

G15
V S

0 szd sins4pzyad . (6)
TABLE I. G andX basis functions for a kinetic-energy cutoff of 2 Ry (given in units where2pya ­ 1).

i Ui
Gi

srd Ui
G15z

srd j U
j
X1z

srd U
j
X3z

srd

0 1 · · · 1
p

2 cosz
p

2 sinz
3a

p
8 cosx cosy cosz

p
8 cosx cosy sinz 2 2 cosx cosy 2 sinx siny

3c
p

8 sinx siny sinz
p

8 sinx siny cosz 5
p

2 scos2x 1 cos2yd cosz
p

2 scos2x 1 cos2yd sinz
4

p
2y3 scos2x 1 cos2y 1 cos2zd

p
2 sin2z
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The average of this function betweenz 2
1
4 a and z 1

1
4 a is zero whenjzj .

1
4 a, sinceV S

0 szd is constant apart
from a step ofDV S

0 at z ­ 0. Thus, as expected, there
is no zone-centerG15x-G15y coupling in bulk material.
However, in the interface regionjzj ,

1
4 a, the average

is no longer zero:

fUG15x
jV S

0 jUG15y
g ­

1
p

C3a
G15

C3c
G15

DV S
0 s1 1 cos4pzyad .

(7)

This is a d-like function of width 1
2 a. Since slowly

varying envelope functions are primarily sensitive to th
area under this function, one can replace (7) for mo
purposes by a coupling of the formVnn0 dszd, where

VG15xG15y ­
a

2p
C3a

G15
C3c

G15
DV S

0 . (8)

This seemingly trivial result has important consequence
First, the use ofd-function coupling in phenomenological
theories of intervalley mixing [13,15–19] has been give
a simple and direct justification. Second, this couplin
exists even when the Bloch functions of two media ar
exactly the same (since a constant offsetDV S

0 has no
effect on the Bloch functions). Hence there isno limit
in which the EFA is valid at an abrupt heterojunction.

One can now apply the same averaging process to ea
of the remaining terms in (5). The resulting coefficien
Vnn0 is conveniently expressed in the form

Vnn0 ­
a

4p

X
i,j

Ci
nsPij 1 WijdCj

n0 , (9)

where the matrixPij is given in Table II forG15x-G15y

coupling (see Ref. [23] for other types of coupling), an
Wij is discussed below. Using the 5-Ry Bloch function
of Al 0.5Ga0.5As tabulated in [23], one finds

VG15x G15y ­
a

2p
f0.35DV S

0 1 0.40DV a
3 1 0.41DV c

3

2 0.28DVA
4 2 0.16DV S

8 2 0.42DVa
11

2 1.16DVc
11 1 0.13DVA

12g . (10)

The numerical coefficients in (10) were calculated usin
the pseudopotentials of Ref. [15], but they do not chang
much if other pseudopotentials (e.g., [25,26]) are use
instead. The main variation comes from the explicit form
factor dependence shown in (10).
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TABLE II. Interface coefficientsPij ­ Pji for coupling be-
tweenG15x andG15y at a planar interface.

inj 3a 3c 4

3a 0 DV S
0 2

1
2 DV A

4 2 DV S
8 1

1
2 DV A

12 DV c
3 2

5
2 DV c

11

3c 0 DVa
3 2

3
2 DV a

11

4 0

At this stage, one may wonder how much the resu
(10) depends on the initial assumption of a planar inte
face. This question will be addressed by modifying th
potential to include information about the atomic structu
of the interface [27]. The potential will still be piecewise
periodic, but its value at any given point will now be de
termined by the cation and anion closest to that point.
these are Ga and As, the potential is that of bulk GaAs;
they are Al and As, it is that of bulk AlAs. This is equiva
lent to constructing fcc Wigner-Seitz cells around eac
cation and anion, and defining the potential by the regio
of overlap between cells. Such a model should provi
a reasonable first approximation to the effects of char
transfer at a real heterojunction [27].

Within this model the interface has the “waffle” shap
shown in Fig. 1, in which the influence of atoms near th
interface extends a distance1

4 a beyond the planez ­ 0.
For example, at an AlAsyGaAs (001) junction, the Al atom
at 1

4 af1̄11̄g may lie belowz ­ 0, but it still governs the po-
tential for0 , z ,

1
4 a over a region of square cross sec

tion given bysz 2
1
2 a , x , 2z, z , y , 2z 1

1
2 ad.

Similarly, the Ga atom at14 af111g governs the poten-
tial for 2

1
4 a , z , 0 over the regions2z , x , z 1

1
2 a, 2z , y , z 1

1
2 ad. One can treat this “waffling”

as a perturbation on the planar interface and calculate
contribution toVnn0 just as before; this is the source o
the extra termWij in Eq. (9). The matrixWij is given in
Ref. [23]; its effect is to changeVG15xG15y

from (10) to

VG15xG15y ­
a

2p
f0.69DV S

0 1 0.94DV a
3 1 0.25DV c

3

2 0.76DV A
4 2 0.21DV S

8 2 0.73DV a
11

2 0.64DV c
11 1 0.14DVA

12g . (11)

Obviously the deviations from planarity are not negligible
since many of the coefficients have changed by a factor
2 or more.

A final source of concern is the discontinuous nature
the junction potential; such a potential clearly cannot b
self-consistent. A simple way to compensate for this m
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FIG. 1. Surface separating the two bulk regions of a (0
AlAsyGaAs heterojunction in the waffle interface model.

be obtained by examining the effects of self-consiste
in the screening of an external charge by an electron
An external chargerextsrd placed in an electron gas wi
attract an induced chargerindsrd; in linear-response the
ory, this effect is described in Fourier space by the
electric functionesqd ­ rextsqdyfrextsqd 1 rindsqdg. If
there were no such thing as the uncertainty principle
electron-electron interactions, screening would beperfect:
an external chargerextsrd ­ edsrd would generate a re
sponserindsrd ­ 2edsrd, i.e.,esqd ­ `.

Such a sharply peaked response is, of course, ph
cally inadmissible; uncertainty and electron-electron
teractions tend to smooth the response, with the re
that screening is never absolute. This smoothing effec
characterized by the functionSsqd ­ 2rindsqdyrextsqd ­
1 2 e21sqd. For perfect screening, one hasSsqd ­ 1,
but for Thomas-Fermi screening, the large-q components
are filtered out:Ssqd ­ s1 1 q2yk2

s d21, wherek21
s is the

screening length (which is about1
5 of the nearest-neighbo

spacing in GaAs). The functionSsqd will be used here to
smooth the transition between bulk potentials. For s
plicity, esqd is taken to be the Lindhard dielectric functio
of a free-electron gas with a density of eight valence el
trons per primitive unit cell.

Smoothing is easier to apply in the plane-wave ba
(3) than in the symmetrized basis (4). Indeed, in a pla
wave basis, one can use the same expression for all t
of interband mixing:

Vnn0 ­
X

G,G0,G00

Up
nGUn0G0DVG00IsG 2 G0 2 G00d . (12)

Here IsGd is just the Fourier transform of the interfac
function; e.g., for a smoothed planar interface, it is t
transform of a unit step function multiplied bySsGd:

IsGd ­ dGx ,0 dGy ,0s1 2 dGz ,0d
1

iGz
SsGd . (13)

This was used in [4,5] (withS ­ 1) to studyG electron-
hole mixing in one dimension. For the waffle interface
IsGd ­ s1 2 dG,0d

(
s1 2 dGy ,0d

i
4Gy

feiGxay4 sincsG ? t0d sincsG ? t1d 2 e2iGxay4 sincsG ? t2d sincsG ? t3dg

1 dGy ,0
Gz

isGx 7 Gzd2 sinc2fsGx 6 Gzday8g

)
SsGd , (14)
427
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TABLE III. Coupling coefficients Vmn0 (eV Å) at an
AlAsyGaAs (001) “smooth waffle” interface [Eq. (14)], with a
kinetic-energy cutoff of 5 Ry.

Source of psuedopotential
n-n0 Ref. [15] Ref. [25] Ref. [26] Ref. [28]

G15x-G15y 0.19 0.11 0.14 0.31
G1-G15z 20.01 20.08 20.19 0.02
G1-X3z 20.21 20.29 20.07 20.67
X1z-X3z 0.11 0.01 0.21 0.25
X3x-X3y 20.34 20.30 0.05 20.54

where sincsxd ­ sinsxdyx, t0 ­ 1
8 af111g, t1 ­

1
8 af11̄1̄g, t2 ­ 1

8 af1̄11̄g, and t3 ­ 1
8 af1̄1̄1g. The

6 signs in (14) are used to avoid a possible divergence
Gx ­ 6Gz .

Smoothing tends to reduce the magnitude ofVnn0 . For
example, for the pseudopotentials of Ref. [15],VG15xG15y

is
0.082 eV Å for an abrupt planar interface, 0.056 eV Å fo
a smooth planar interface, 0.30 eV Å for an abrupt waffl
interface, and 0.19 eV Å for a smooth waffle interfac
Hence the choice of model has a significant impact on t
strength (and sign) of the interface coupling.

The choice of pseudopotential is also significan
Table III compares various empirical pseudopotentia
for different types of coupling betweenG and X states.
No critical evaluation of these potentials is attempte
here (see [28]); the purpose of this table is merely
emphasize that the envelope-function representat
permits one to ascertain in detail how a given choice
pseudopotential influences the intervalley coupling.

The coupling coefficients derived here provide a d
rect link between microscopic theory and recent ph
nomenological models of valence-band [17–19] andG-X
[13,15,16] mixing. Such models have proven capable
reproducing experimentally measured mixing effects in a
but the shortest-period superlattices. The values in Ta
III are similar to the estimates used in these papers; ho
ever, in contrast with Ref. [16], the present work give
VX1xX1y

­ 0 [29] andVX1zX3z
fi 0.

Spin-orbit coupling was omitted here because it
generated almost entirely in the atomic cores [3], with th
outer electrons contributing very little, even at an abru
junction. Therefore, it need not be introduced untilafter
the interface coupling has been calculated. In a sp
dependent theory,G15x-G15y mixing leads to a mixing
betweenG8 light and heavy holes [17–19].

Several other methods have been proposed for inc
porating interface mixing intok ? p theory [14,24,30–
32]. Like the present work, they sharply reduce th
computational cost of realistic band-structure calculation
However, these models are all essentially numerical
character; none of them provides the simple, direct pictu
of the interface physics that is offered by the envelop
function representation.
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