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Plasmons in Coupled Bilayer Structures
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We calculate the collective charge density excitation dispersion and spectral weight in bilayer
semiconductor structuresicluding effects of interlayer tunnelingThe out-of-phase plasmon mode
(the “acoustic” plasmon) develops a long wavelength gap in the presence of tunneling with the gap
being proportional to the square root (linear power) of the tunneling amplitude in the weak (strong)
tunneling limit. The in-phase plasmon mode is qualitatively unaffected by tunneling. The predicted
plasmon gap should be a useful tool for studying many-body effects. [S0031-9007(98)07645-5]

PACS numbers: 73.20.Mf, 71.45.Gm, 73.20.Dx

Collective charge density excitations (or, equivalentlyA ~  or r'/2 depending on whether the interlayer quan-
plasmon modes) in bilayer structures have attracted a greatm tunneling is strong or weak, respectively. We also
deal of theoretical and experimental attention over the ladind that, in contrast to the no-tunneling situation when the
sixteen years ever since the existence ofumdamped w4 in-phase mode exhausts the plasmon spectral weight
acoustic (i.e., with a long wavelength dispersion linear inin the long wavelength limit (and the - acoustic mode
wave vector) plasmon mode was predicted [1] in semicarries significant spectral weight only at finite wave vec-
conductor double quantum well systems. In an uncoupletbrs), the out-of-phase mode_ may carry significant
bilayer system, ignoring aninterlayer Coulomb interac- spectral weight in the presence of tunneling even in the
tion, each layer can support a two dimensional (2D) plasméong wavelength limit and may be easily observable via
mode [2] with a long wavelengthy(— 0) dispersionw ~ inelastic light scattering spectroscopy [3,4] or frequency-
¢'%, whereq = |q|, andq is the 2D wave vector. When domain far infrared (or microwave) spectroscopy [2]. We
the two layers are near each other (separated by a distangete the somewhat nonintuitive result that finite tunnel-
d in the z direction with the 2D layers in thg-y plane), ing in fact converts the out-of-phase “acoustic” plasmon
the 2D plasmons are coupled by the interlayer Coulombmode (in the = 0 situation) to an “optical” plasmon mode
interaction leading to the formation [1] of in-phase and(in thes # 0 situation) by producing a finite plasmon gap
out-of-phase interlayer density fluctuation modes: an  w-(¢ = 0) = A whereas the original optical plasmon (for
out-of-phase acoustic plasmon mode, ~ ¢, where the ¢ = 0) in-phase modev , becomes the acoustic plasmon
densities in the two layers fluctuate out of phase with anode, albeit with a;'/2 long wavelength dispersion, in
linear wave vector dispersion and an in-phase optical plaghe sense thab_ (g = 0) vanishes in the presence of fi-
mon mode,w+ ~ ¢'/2, where the densities in the two nite tunneling. The situation in the presence of tunnel-
layers fluctuate in phase with the usual 2D plasma dising is therefore similar to the familiar phonon terminology
persion. Thesev+ modes have been observed [3,4] in where the optical phonon (which has a finite energy at zero
double layer semiconductor quantum well systems via inwave vector) corresponds to the out of phase intracell ionic
elastic light scattering spectroscopic experiments, and théynamics and the acoustic phonon (with vanishing long
observation of thev— ~ ¢ mode in GaAs-AlGaAs mul- wavelength energy) corresponds to the in-phase intracell
tilayer systems is, in fact, the only unambiguous directonic dynamics.
experimental observation of an acoustic plasmon mode in The collective mode spectrum is given by the zero of
solid state plasmas in spite of the theoretical literature othe dynamical dielectric function of the system, which
the subject going back more than 40 years [5]. for a bilayer system in the presence of a finite interlayer

In this Letter we consider the experimentally relevanttunneling amplitude becomes a tense;;, of the fourth
issue of the collective mode dispersion in bilayer structank wherei,j,I,m = 1 or 2 is the layer index with
turesin the presence of significant interlayer quantuml,2 denoting the two layers. The dielectric function
tunneling. Itis well known that tunneling introduces quali- €;j;u(q, @) = 8i16jm — Vijim(¢)Ilm(g, w) is obtained
tatively new physics [6] by introducing a new energy scalewithin the mean field random phase approximation
theinterlayertunneling energy, in addition to the Coulomb (RPA) in our theory where the deltas are Kronecker delta
energy and thentralayer kinetic energy. We find that functions andv;j;, is the intralayefinterlayer Coulomb
tunnelingsignificantlyaffects the out-of-phase_- mode, interaction matrix element witiI,, as the irreducible
qualitatively modifying its long wavelength dispersion to noninteracting electron polarizability function. It is
w- ~ (A% + Ciq + C2¢»)"?, whereA defines the plas- convenient to use one electron energy eigensiategve
mon gapA = w-(g = 0) which depends nontrivially on take i = 1 throughout this paper) as the basis set rather
the 2D electron density and the interlayer tunneling am- than the layer index since the lattemista good quantum
plitudet. In particular we obtain the interesting result thatnumber in the presence of tunneling. The energy levels
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E. = e(k) = t, where (k) = k?>/2m is the parabolic whereN = 2n is the total 2D electron density: (being
one electron 2D kinetic energy in each layer and the the electron density per layeJ, > 0, and
tunneling strength, are the usual symmetric and antisym-

metric states in the presence of tunneling with a single A? = Afus + % (n+ — n-)(grrd)Asas
particle symmetric-antisymmetric (SAS) gap given by (6)
Asas = Ey — E_ = 2¢t. In the SAS representation the C, = —(A? — AéAS) i,

collective mode spectra become decoupled by virtue of 2

the symmetric nature of our double quantum well systenhere g = 2me?/x is the 2D Thomas-Fermi wave
(i.e., both layers identical with equal electron density),vector and n~ = n + n. is the electron density in
and the collective density fluctuation spectra are givenhe symmetric/antisymmetric+ level. Here, n, =

by the following two equations for the in-phase and the(;; /27)Agas for n > n. when both symmetric and

out-phase plasmon modes:, respectively: antisymmetric levels are occupied (i.e., the 2D Fermi
e+(g,w) =1—vi(g@)[+4(q, ) + TI__(g, w)] energyEr > Asas), andn, = n for n = n. when only
-0 (1) the symmetric level is occupied (i.é£fr < Agas). Note

that the in-phase mode . is unaffected in the long
and wavelength limit either by finite tunneling or by level
e-(q,0)=1—-v(q9)[l+-(q,0) + [I-1(q,®)] occupancy and depends only on the total 2D electron
-0 ) densityN, following the standard 2D plasmon dispersion.
i . . . The positive coefficientC ,d,Ep, A is not
In Egs. (1) and (2) the Coulomb interaction matrix- showr? for brevity. (g P> Asas)
elements are given by.(q) = vi(q) * va(q). where The most important qualitative feature of the plasmon

EI’Z(I‘]) ar?’ respectively, thel lntralaye\rNand 'ntﬁrlayerdispersion in the presence of interlayer tunneling is that
oulomb interaction matrix elements. ‘We use the siMy, o ¢ ot nhase mode_, which is purely acoustic in the
plest model for the Coulomb interaction (at no loss of

. . ) , X absence of tunnelinga(- ~ ¢ if Agas = 0), develops
generality) assuming the intralayer Coulomb interaction tq, plasmon gap a = 0 in the presence of nonzero

be purely a 2D Coulomb interaction (and thus neglectinqunne”ng_ It is easy to see from Egs. (5) and (6) that

subband effects in each layer, which is entirely justified,,. plasmon gap, w_(g = 0) = A, has the following
in most experimental situations where the intralayer inyopavior: ’ ’

tersubband energy is much larger thAgss)—subband

effects can be tr?\XaIIy incorpor?ated by us)ing the appro- A~ Asas Or VAsas, (7)
priate subband form factors [7]. For this simple model,depending on whether the interlayer tunneling is strong
vi(q) = 2me?*/(kq); valq) = vi(q) exp(—qd), with k as  (Asas/Er > grrd) or weak Q@sas/Ep < grrd). It

the (high frequency) background lattice dielectric con-should be emphasized that the strikingly nonintuitive
stant. Finally,IT,s(q, w) in Egs. (1) and (2), together AyZ dependence of the collective mode gap (on the
with (e, ) = (+, —), is the noninteracting SAS polariz- square root of the single particle gap) is purely a Coulomb

ability functions within our RPA theory: interaction effect, which dominates the collective excita-
_ d’k fo(k +q) — fp(k) tion spectra in the weak tunneling situation. Finally, it is

,p(q, ) =2 5 , ) i . ; . .
27)? w + Eqo(k + q) — Eg(k) interesting to note that the first order dispersion correction

(3) to the out-of-phase plasmon gap is negative.

In Figs. 1-3 we present our numerical results for the
collective excitation spectra of the coupled bilayer system
without restricting to the long wavelength limit. In our cal-
culations we have used RPA and also the so-called Hub-

ard approximation (HA) which includes a model static
ocal field correction [8] to the noninteracting RPA irre-
Ic_iucible polarizability [Eq. (3)]. In general, HA should be
: Ry : _ _ a better approximation than RPA at lower electron densi-
known optical - ~ ¢'/2) and acoustics- ~ g) plas IlIies (and higher wave vectors) although, being an uncon-

mons of a bilayer system without any electron tunneling. olled imation. th titative tin HA
is, in fact, straightforward (but quite tedious) to obtain ana- rofied approximation, the quantitative improvement in

; _ . over RPA is unknown. In Figs. 1 and 2 we show our cal-
gﬁg‘;ﬂg E,]rg?es?)?'ﬂgle) céi)p])Iéhdetlﬁgsevyz,\;ilﬁzrgsgi(ng 2]2 culated collective mode dispersions for different electron

fects of interlayer tunnelingWe obtain in the long wave- _densities (with a fixed interlayer separationiof= 200 A)
length limit the following results: in both RPA and HA, and for both zero and nonzero tunnel-

ing (Asas = 0, Asas = 1 meV). The important features

where f, 3 are Fermi occupancy factors (we restrict
ourselves td” = 0 K in this paper), and the factor of 2 in
the front arises from spin.

Solving Egs. (1)-(3) we obtain the collective density
fluctuation spectra of the coupled bilayer system. In th
absence of tunneling,= 0, one hast. = E_ = &(k),
and one then recovers in a straightforward fashion the wel

2
wi(g—0) = 2me’N q, (4) to note in these results are (i) in general both tunneling
and local field correction have little effect on the in-phase
wl(g—0) =A%+ Cig + Cag?, (5) modew+, which even at low densities seems to be well
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0.0 0.1 0.2 0.3 FIG. 2. Local field effects on the plasmon dispersion for
q (][oecm*) densityn = 1.0 X 10° cm™2: (a) in the absence of tunneling

and (b) in the presence of tunnelindsys = 1.0 meV). Inset
FIG. 1. RPA plasmon dispersion for (@)= 10'' cm 2 and  shows the reappearance of the out-of-phase medenear
(b) » = 10'° cm™2. Solid (dashed) lines represent plasmong = 2kg.
dispersion in the absence (presence) of interlayer tunneling.
Inset shows that the finite wave vector minimum of the o ) o
out-of-phase modew_ in the presence of tunneling. We that, within the RPA, this Landau damping induced sup-
use parameters corresponding to GaAs quantum wells:  pression ofw_— mode does not happen, and the mode
g'l??ﬁe’figﬁ r:slo.%h :(;‘g ddr:gi%)%() ﬁ‘]dl éstgi_’ Thé'osmgl\é I:Jc;rrticl exists for small wave vectors at all densities.) (iv) Tun-
excitation (SPE) Landau damping continuum. enelmg opens up a zero frequency plasmon gap !nalhe
mode. In RPA the calculated gdp= w_(¢ = 0) is al-
ways greater thadgsas [EQ. (6)]. In the HA, howeverA

described by the long wavelength RPA formula [Eq. (4)].could be above or belowsas and is given by
This is a direct consequence of tjiesum rule—thew

mode being the effective 2D plasma mode of the system A? = AL o+ 1 (ny — n-)(grrd)
is robust and insensitive to many-body and/or tunneling m

effects. This somewhat disappointing result is however

important because it states emphatically that all efforts to X\ 1= 2krd Asas- (8)
study many-body effects by studying the usual in-phase 2D

plasma dispersion are doomed to failure, a fact already enif the total densityV < N. = 1/(87d?), the plasmon gap
pirically known to experimentalists. (ii) The out-of-phase A is less than the single particle gagas, and we have
w—- mode is strongly influenced by tunneling and localthe interesting situation of a collective plasmon mode be-
field effects and could in principle be a sensitive experi-ing lower in energy than the corresponding single particle
mental tool in studying many-body effects [9]. (iii) Local energy. (v) Tunneling leads to a weak negative disper-
field effects in general reduce the- frequency, and atlow sion of thew_- mode at long wavelengths (i.eC; < 0).
densities this could even lead to a complete suppression @¥i) Finally, a very interesting finding (Fig. 2) is that at
the w—- mode. In the absence of tunneling this completdow densities thav_ mode is, in fact, more stable in the
suppression of the_ mode occurs below the critical den- HA (than in RPA) because it lies below the single particle
sity n. = g4¢/[87(1 + grrd)?] in the HA. Tunneling, continuum in the presence of tunneling. In the absence
however, has the dramatic effect of making the suppresseaf tunneling thew - mode may reappear drge wave

w - mode reappear when the layer separationcreases vectorsbeyond the single particle continuum although it
aboved, = 1/2mAsas — 1/gtr evenifn < n.. (Note is completely suppressed (by Landau damping) at long
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theoretically predicted [11] interlayer-spontaneous-phase-
coherent quantum state in low density bilayer structures.
It is interesting in this context to point out that it has been
claimed [12] that the local field correction by itself within
the so-called quasilocalized charge approximation [12],
even in the absence of any interlayer tunnelicgyld lead

to the opening of a long wavelength gap in the out-of-phase
mode in bilayer systems.

The main approximations of our theory, namely, treating
the tunneling amplitudeas a phenomenological parameter
and using the Hubbard approximation for the local field
correction, should not affect our qualitative conclusions.
In particular,t decreases with increasing layer separation
d in a calculable way, and therefore for larg®ne always
recovers the no-tunneling limit of a vanishing plasma gap.
While there is no general consensus on the best possible
local field corrections in electron liquids, it is well known
] [8] that the Hubbard approximation gives quantitatively
I ] similar results to more sophisticated local field corrections
involving self-consistent approximations [8].

] In conclusion, we establish in this paper that bilayer
] . (J ] semiconductor double quantum well structures should be
ol JL q=0.50 Ky ] a useful tool for studying the interplay between tunneling
- ‘ and many-body effects on collective mode dispersion—

0.0 0.5 1.0 1.5 in particular, the dispersion of the out-of-phase collective
o (meV) mode in the presence of tunneling should show interesting

observable many-body effects.
FIG. 3. The dynamical structure factor for (@)= 10'© cm2 This work is supported by the U.S.-ARO and the U.S.-

and (b)n = 10” cm™2 in the RPA (solid lines) and HA (dashed oNR. One of us (S. D. S.) thanks J. Eisenstein for asking
lines) for finite tunneling 4sas = 1.0 meV). Here, thin (thick) an important question

lines correspond tq.d = 0.0 (gq.d = w/4).
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wavelengths. This reappearance of the mode at large

wave vectors (fodgas = 0) is purely a local field effect
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