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Plasmons in Coupled Bilayer Structures
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We calculate the collective charge density excitation dispersion and spectral weight in bila
semiconductor structuresincluding effects of interlayer tunneling.The out-of-phase plasmon mode
(the “acoustic” plasmon) develops a long wavelength gap in the presence of tunneling with the
being proportional to the square root (linear power) of the tunneling amplitude in the weak (stro
tunneling limit. The in-phase plasmon mode is qualitatively unaffected by tunneling. The predic
plasmon gap should be a useful tool for studying many-body effects. [S0031-9007(98)07645-5]

PACS numbers: 73.20.Mf, 71.45.Gm, 73.20.Dx
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Collective charge density excitations (or, equivalent
plasmon modes) in bilayer structures have attracted a gr
deal of theoretical and experimental attention over the la
sixteen years ever since the existence of anundamped
acoustic (i.e., with a long wavelength dispersion linear
wave vector) plasmon mode was predicted [1] in sem
conductor double quantum well systems. In an uncoup
bilayer system, ignoring anyinterlayer Coulomb interac-
tion, each layer can support a two dimensional (2D) plasm
mode [2] with a long wavelength (q ! 0) dispersionv ,
q1y2, whereq ; jqj, andq is the 2D wave vector. When
the two layers are near each other (separated by a dista
d in the z direction with the 2D layers in thex-y plane),
the 2D plasmons are coupled by the interlayer Coulom
interaction leading to the formation [1] of in-phase an
out-of-phase interlayer density fluctuation modesv6: an
out-of-phase acoustic plasmon mode,v2 , q, where the
densities in the two layers fluctuate out of phase with
linear wave vector dispersion and an in-phase optical pl
mon mode,v1 , q1y2, where the densities in the two
layers fluctuate in phase with the usual 2D plasma d
persion. Thesev6 modes have been observed [3,4] i
double layer semiconductor quantum well systems via
elastic light scattering spectroscopic experiments, and
observation of thev2 , q mode in GaAs-AlGaAs mul-
tilayer systems is, in fact, the only unambiguous dire
experimental observation of an acoustic plasmon mode
solid state plasmas in spite of the theoretical literature
the subject going back more than 40 years [5].

In this Letter we consider the experimentally releva
issue of the collective mode dispersion in bilayer stru
tures in the presence of significant interlayer quantum
tunneling. It is well known that tunneling introduces quali-
tatively new physics [6] by introducing a new energy scal
theinterlayertunneling energy, in addition to the Coulomb
energy and theintralayer kinetic energy. We find that
tunnelingsignificantlyaffects the out-of-phasev2 mode,
qualitatively modifying its long wavelength dispersion t
v2 , sD2 1 C1q 1 C2q2d1y2, whereD defines the plas-
mon gapD ; v2sq ­ 0d which depends nontrivially on
the 2D electron densityn and the interlayer tunneling am-
plitudet. In particular we obtain the interesting result tha
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D , t or t1y2 depending on whether the interlayer qua
tum tunneling is strong or weak, respectively. We al
find that, in contrast to the no-tunneling situation when t
v1 in-phase mode exhausts the plasmon spectral we
in the long wavelength limit (and thev2 acoustic mode
carries significant spectral weight only at finite wave ve
tors), the out-of-phase modev2 may carry significant
spectral weight in the presence of tunneling even in t
long wavelength limit and may be easily observable v
inelastic light scattering spectroscopy [3,4] or frequenc
domain far infrared (or microwave) spectroscopy [2]. W
note the somewhat nonintuitive result that finite tunne
ing in fact converts the out-of-phase “acoustic” plasmo
mode (in thet ­ 0 situation) to an “optical” plasmon mode
(in the t fi 0 situation) by producing a finite plasmon ga
v2sq ­ 0d ­ D whereas the original optical plasmon (fo
t ­ 0) in-phase modev1 becomes the acoustic plasmo
mode, albeit with aq1y2 long wavelength dispersion, in
the sense thatv2sq ­ 0d vanishes in the presence of fi
nite tunneling. The situation in the presence of tunne
ing is therefore similar to the familiar phonon terminolog
where the optical phonon (which has a finite energy at ze
wave vector) corresponds to the out of phase intracell io
dynamics and the acoustic phonon (with vanishing lo
wavelength energy) corresponds to the in-phase intra
ionic dynamics.

The collective mode spectrum is given by the zero
the dynamical dielectric function of the system, whic
for a bilayer system in the presence of a finite interlay
tunneling amplitudet becomes a tensoreijlm of the fourth
rank wherei, j, l, m ­ 1 or 2 is the layer index with
1, 2 denoting the two layers. The dielectric functio
eijlmsq, vd ; dildjm 2 yijlmsqdPlmsq, vd is obtained
within the mean field random phase approximatio
(RPA) in our theory where the deltas are Kronecker de
functions andyijlm is the intralayeryinterlayer Coulomb
interaction matrix element withPlm as the irreducible
noninteracting electron polarizability function. It is
convenient to use one electron energy eigenstatesE6 (we
take h̄ ­ 1 throughout this paper) as the basis set rath
than the layer index since the latter isnot a good quantum
number in the presence of tunneling. The energy lev
© 1998 The American Physical Society
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E6 ­ ´skd 6 t, where ´skd ­ k2y2m is the parabolic
one electron 2D kinetic energy in each layer andt is the
tunneling strength, are the usual symmetric and antisy
metric states in the presence of tunneling with a sing
particle symmetric-antisymmetric (SAS) gap given b
DSAS ­ E1 2 E2 ­ 2t. In the SAS representation the
collective mode spectra become decoupled by virtue
the symmetric nature of our double quantum well syste
(i.e., both layers identical with equal electron density
and the collective density fluctuation spectra are giv
by the following two equations for the in-phase and th
out-phase plasmon modesv6, respectively:

e1sq, vd ­ 1 2 y1sqd fP11sq, vd 1 P22sq, vdg

­ 0 , (1)
and

e2sq, vd ­ 1 2 y2sqd fP12sq, vd 1 P21sq, vdg

­ 0 . (2)
In Eqs. (1) and (2) the Coulomb interaction matrix
elements are given byy6sqd ­ y1sqd 6 y2sqd, where
y1,2sqd are, respectively, the intralayer and interlaye
Coulomb interaction matrix elements. We use the sim
plest model for the Coulomb interaction (at no loss o
generality) assuming the intralayer Coulomb interaction
be purely a 2D Coulomb interaction (and thus neglectin
subband effects in each layer, which is entirely justifie
in most experimental situations where the intralayer i
tersubband energy is much larger thanDSAS)—subband
effects can be trivially incorporated by using the appr
priate subband form factors [7]. For this simple mode
y1sqd ­ 2pe2yskqd; y2sqd ­ y1sqd exps2qdd, with k as
the (high frequency) background lattice dielectric con
stant. Finally,Pabsq, vd in Eqs. (1) and (2), together
with sa, bd ­ s1, 2d, is the noninteracting SAS polariz-
ability functions within our RPA theory:

Pabsq, vd ­ 2
Z d2k

s2pd2

fask 1 qd 2 fbskd
v 1 Eask 1 qd 2 Ebskd

,

(3)
where fa,b are Fermi occupancy factors (we restric
ourselves toT ­ 0 K in this paper), and the factor of 2 in
the front arises from spin.

Solving Eqs. (1)–(3) we obtain the collective densit
fluctuation spectra of the coupled bilayer system. In t
absence of tunneling,t ­ 0, one hasE1 ­ E2 ­ ´skd,
and one then recovers in a straightforward fashion the we
known optical (v1 , q1y2) and acoustic (v2 , q) plas-
mons of a bilayer system without any electron tunneling.
is, in fact, straightforward (but quite tedious) to obtain an
lytically [from Eqs. (1)–(3)] the long wavelength (q ! 0)
plasma modes of the coupled bilayer systemincluding ef-
fects of interlayer tunneling.We obtain in the long wave-
length limit the following results:

v2
1sq ! 0d ­

2pe2N
km

q , (4)

v2
2sq ! 0d ­ D2 1 C1q 1 C2q2, (5)
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whereN ­ 2n is the total 2D electron density (n being
the electron density per layer),C2 . 0, and

D2 ­ D2
SAS 1

p

m
sn1 2 n2d sqTFddDSAS

C1 ­ 2sD2 2 D2
SASd

d
2

,
(6)

where qTF ­ 2me2yk is the 2D Thomas-Fermi wave
vector and n6 ­ n 6 nc is the electron density in
the symmetric/antisymmetric6 level. Here, nc ­
smy2pdDSAS for n . nc when both symmetric and
antisymmetric levels are occupied (i.e., the 2D Fer
energyEF . DSAS), andnc ­ n for n # nc when only
the symmetric level is occupied (i.e.,EF , DSAS). Note
that the in-phase modev1 is unaffected in the long
wavelength limit either by finite tunneling or by leve
occupancy and depends only on the total 2D elect
densityN , following the standard 2D plasmon dispersio
The positive coefficientC2sqTF, d, EF , DSASd is not
shown for brevity.

The most important qualitative feature of the plasm
dispersion in the presence of interlayer tunneling is t
the out-of-phase modev2, which is purely acoustic in the
absence of tunneling (v2 , q if DSAS ­ 0), develops
a plasmon gap atq ­ 0 in the presence of nonzer
tunneling. It is easy to see from Eqs. (5) and (6) th
this plasmon gapD, v2sq ­ 0d ­ D, has the following
behavior:

D , DSAS or
p

DSAS , (7)

depending on whether the interlayer tunneling is stro
(DSASyEF ¿ qTFd) or weak (DSASyEF ø qTFd). It
should be emphasized that the strikingly nonintuiti
D

1y2
SAS dependence of the collective mode gap (on t

square root of the single particle gap) is purely a Coulo
interaction effect, which dominates the collective exci
tion spectra in the weak tunneling situation. Finally, it
interesting to note that the first order dispersion correct
to the out-of-phase plasmon gap is negative.

In Figs. 1–3 we present our numerical results for t
collective excitation spectra of the coupled bilayer syst
without restricting to the long wavelength limit. In our ca
culations we have used RPA and also the so-called H
bard approximation (HA) which includes a model sta
local field correction [8] to the noninteracting RPA irre
ducible polarizability [Eq. (3)]. In general, HA should b
a better approximation than RPA at lower electron den
ties (and higher wave vectors) although, being an unc
trolled approximation, the quantitative improvement in H
over RPA is unknown. In Figs. 1 and 2 we show our c
culated collective mode dispersions for different electr
densities (with a fixed interlayer separation ofd ­ 200 Å)
in both RPA and HA, and for both zero and nonzero tunn
ing (DSAS ­ 0, DSAS ­ 1 meV). The important features
to note in these results are (i) in general both tunnel
and local field correction have little effect on the in-pha
modev1, which even at low densities seems to be w
4217
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FIG. 1. RPA plasmon dispersion for (a)n ­ 1011 cm22 and
(b) n ­ 1010 cm22. Solid (dashed) lines represent plasmo
dispersion in the absence (presence) of interlayer tunnelin
Inset shows that the finite wave vector minimum of th
out-of-phase modev2 in the presence of tunneling. We
use parameters corresponding to GaAs quantum wells:m ­
0.067me, k ­ 10.9, and d ­ 200 Å; DSAS ­ 1.0 meV for
all our figures. Shaded region indicates the single partic
excitation (SPE) Landau damping continuum.

described by the long wavelength RPA formula [Eq. (4)
This is a direct consequence of thef-sum rule—thev1

mode being the effective 2D plasma mode of the syste
is robust and insensitive to many-body and/or tunnelin
effects. This somewhat disappointing result is howev
important because it states emphatically that all efforts
study many-body effects by studying the usual in-phase 2
plasma dispersion are doomed to failure, a fact already e
pirically known to experimentalists. (ii) The out-of-phas
v2 mode is strongly influenced by tunneling and loca
field effects and could in principle be a sensitive exper
mental tool in studying many-body effects [9]. (iii) Loca
field effects in general reduce thev2 frequency, and at low
densities this could even lead to a complete suppression
the v2 mode. In the absence of tunneling this comple
suppression of thev2 mode occurs below the critical den-
sity nc ­ q2

TFyf8ps1 1 qTFdd2g in the HA. Tunneling,
however, has the dramatic effect of making the suppress
v2 mode reappear when the layer separationd increases
abovedc ­ 1y2mDSAS 2 1yqTF even if n , nc. (Note
4218
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FIG. 2. Local field effects on the plasmon dispersion fo
density n ­ 1.0 3 109 cm22: (a) in the absence of tunneling
and (b) in the presence of tunneling (DSAS ­ 1.0 meV). Inset
shows the reappearance of the out-of-phase modev2 near
q ­ 2kF .

that, within the RPA, this Landau damping induced sup
pression ofv2 mode does not happen, and thev2 mode
exists for small wave vectors at all densities.) (iv) Tun
neling opens up a zero frequency plasmon gap in thev2

mode. In RPA the calculated gapD ; v2sq ­ 0d is al-
ways greater thanDSAS [Eq. (6)]. In the HA, however,D
could be above or belowDSAS and is given by

D2 ­ D2
SAS 1

p

m
sn1 2 n2d sqTFdd

3

√
1 2

1
2kFd

!
DSAS . (8)

If the total densityN , Nc ­ 1ys8pd2d, the plasmon gap
D is less than the single particle gapDSAS, and we have
the interesting situation of a collective plasmon mode be
ing lower in energy than the corresponding single particl
energy. (v) Tunneling leads to a weak negative dispe
sion of thev2 mode at long wavelengths (i.e.,C1 , 0).
(vi) Finally, a very interesting finding (Fig. 2) is that at
low densities thev2 mode is, in fact, more stable in the
HA (than in RPA) because it lies below the single particle
continuum in the presence of tunneling. In the absenc
of tunneling thev2 mode may reappear atlarge wave
vectorsbeyond the single particle continuum although i
is completely suppressed (by Landau damping) at lon
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FIG. 3. The dynamical structure factor for (a)n ­ 1010 cm22

and (b)n ­ 109 cm22 in the RPA (solid lines) and HA (dashe
lines) for finite tunneling (DSAS ­ 1.0 meV). Here, thin (thick)
lines correspond toqzd ­ 0.0 (qzd ­ py4).

wavelengths. This reappearance of thev2 mode at large
wave vectors (forDSAS ­ 0) is purely a local field effect
and has earlier been attributed [10] to a charge den
wave instability in bilayer structures. Tunneling, accor
ing to our theory, stabilizes the long wavelengthv2 mode
which now lies between the two (symmetric and antisy
metric) single particle continua, and is in fact more sta
in HA than in RPA. Tunneling, therefore, opposes t
presumptive charge density wave instability [10].

In Fig. 3 we show our calculated spectral weight or t
dynamical structure factorSsq, qz , vd, which is given [7]
by the imaginary part of the density-density correlati
function whereqz is the probe wave vector normal to th
layers [3,4,7], for the collective modes in coupled bilay
systems both in RPA and HA for finite tunneling. F
qzd ­ 0.0 only the in-phase modev1 carries any weight,
but for finiteqzd the out-of-phase mode carries substan
spectral weight even at long wavelengths (q ! 0). The
most important message here is that bothv6 modes
in general carry finite spectral weights and should
observable in resonant inelastic light scattering [3,4] a
far infrared optical [2] spectroscopies.

We point out that thev2 mode, which presumably be
comes the Goldstone mode in the symmetry-broken ph
could be used as an experimental probe to search for
d
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theoretically predicted [11] interlayer-spontaneous-phas
coherent quantum state in low density bilayer structure
It is interesting in this context to point out that it has been
claimed [12] that the local field correction by itself within
the so-called quasilocalized charge approximation [12
even in the absence of any interlayer tunneling,could lead
to the opening of a long wavelength gap in the out-of-phas
mode in bilayer systems.

The main approximations of our theory, namely, treating
the tunneling amplitudet as a phenomenological parameter
and using the Hubbard approximation for the local field
correction, should not affect our qualitative conclusions
In particular,t decreases with increasing layer separatio
d in a calculable way, and therefore for larged one always
recovers the no-tunneling limit of a vanishing plasma gap
While there is no general consensus on the best possib
local field corrections in electron liquids, it is well known
[8] that the Hubbard approximation gives quantitatively
similar results to more sophisticated local field correction
involving self-consistent approximations [8].

In conclusion, we establish in this paper that bilaye
semiconductor double quantum well structures should b
a useful tool for studying the interplay between tunneling
and many-body effects on collective mode dispersion—
in particular, the dispersion of the out-of-phase collective
mode in the presence of tunneling should show interestin
observable many-body effects.

This work is supported by the U.S.-ARO and the U.S.
ONR. One of us (S. D. S.) thanks J. Eisenstein for askin
an important question.
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