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Do Interactions Increase or Reduce the Conductance of Disordered Electrons? It Depends
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We investigate the influence of electron-electron interactions on the conductance of two-dimensional
disordered spinless electrons. We present an efficient numerical method based on diagonalization in
a truncated basis of Hartree-Fock states to determine with high accuracy the low-energy properties in
the entire parameter space. We find that weak interactionsincreasethe dc conductance in the strongly
localized regime while theydecreasethe dc conductance for weak disorder. Strong interactions always
decrease the conductance. We also study the localization of single-particle excitations at the Fermi
energy which turns out to be only weakly influenced by the interactions. [S0031-9007(98)07553-X]

PACS numbers: 72.15.Rn, 71.30.+h, 71.55.Jv
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The influence of electron-electron interactions on t
transport in disordered electronic systems has been inv
tigated intensively within the past two decades [1,2]. R
cently, the problem has reattracted a lot of attention af
experimental [3] and theoretical [4] results challenged e
tablished opinions.

It is well accepted [5] that noninteracting electron
in three dimensions (3D) undergo a localization
delocalization transition at finite disorder. In contrast, a
states are localized in 2D and 1D even for infinitesim
weak disorder [6]. However, today it is believed tha
the metal-insulator transition (MIT) in most experiment
systems cannot be explained based on noninterac
electrons. The metallic phase of disordered interacti
electrons has been studied intensively within the p
turbative renormalization group (RG) [2], leading to
qualitative analysis of the MIT and the identification o
different universality classes. One of the results is th
the lower critical dimension of the MIT isdc

2  2 as it
is for noninteracting electrons. Therefore it came as
surprise when experiments [3] on Si-MOSFETs reveal
indications of a MIT in 2D. Since these experiments a
performed at low electron density where the Coulom
interaction is particularly strong compared to the Ferm
energy, interaction effects are a likely reason for th
MIT. A complete understanding has, however, not y
been obtained. Explanations were suggested based
the perturbative RG [7], nonperturbative effects [8], o
the transition being a superconductor-insulator transiti
rather than a MIT [9].

Theoretically, surprising results have been obtained
just two interacting particles in theinsulating regime
[4]. It was found that two particles can form a pa
whose localization length is much larger than that of
single particle. Later an even larger delocalization w
suggested for clusters of three or more particles [10].
the case of a repulsive electron-electron, these delocali
states have rather high energy; thus their relevance for
low-energy properties of a degenerate system is not cle
It has been argued that the many-particle problem c
212 0031-9007y98y81(19)y4212(4)$15.00
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be reduced to a few interacting quasiparticles above t
Fermi surface [11]. This is, however, only possible if the
interactions do not change the nature of the ground sta
All in all, not even the qualitative influence of interactions
is understood in the insulating regime.

We have numerically studied disordered 2D spinles
electrons. Our calculations are summarized in Fig.
which is the main result of this Letter. It shows that the
influence of repulsive electron-electron interactions on th
dc conductance is opposite for high and low kinetic ene
gies (i.e., weak vs strong disorder). The conductance
strongly localized samples (t  0.01 to 0.03) is consid-
erably enhanced by a weak interaction. With increasin
kinetic energy the relative enhancement decreases as d
the interaction range where the enhancement occurs. T
conductance of samples with the highest kinetic energi
(t  0.3 and 0.5) is reduced even by weak interactions. I
contrast, sufficiently strong interactions always reduce th
conductance. This is not surprising since, for large enoug
interaction strength, the system will form a Wigner glass

These findings shed some light on seemingly contr
dicting numerical results on the transport of disordere
spinless electrons in the literature. Studies [12] of a 2

FIG. 1. dc conductanceGs0d for a system of52 sites as
a function of interaction strengthU for different kinetic
energiest. The disorder is fixed atW  1. The statistical
accuracy is better than the symbol size.
© 1998 The American Physical Society
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model in thediffusiveregime yielded that interactions de
crease the conductance. The same conclusion was dr
from density-matrix RG studies [13] and exact diagona
izations [14] in 1D. In contrast, for 2D models in the
localized regime [15,16], it was found that interaction
lead to a delocalization. Up to now, it has been uncle
whether these inconsistent results are due to being in d
ferent parameter regions (weak vs strong disorder), d
ferent quantities studied (conductance, many-particle le
statistics, or charge stiffness), or long-range vs short-ran
interactions. The results of this Letter suggest that bei
in different parameter regions is the most likely reaso
for the differences between the results cited above.
result similar to ours was obtained recently [17] in
study of the ground state phase sensitivity in 1D. It w
found that, for small disorder, repulsive (nearest-neighbo
interactions reduce the phase sensitivity while, for lar
disorder, the phase sensitivity shows pronounced peak
certain values of the interaction.

In the remainder of the Letter we explain the mod
and the calculational method and further discuss the
sults. We consider a 2D quantum Coulomb glass mod
[15,16,18,19]. It is defined on a square lattice wit
M  L2 sites occupied byN  KM spinless electrons
s0 , K , 1d. To ensure charge neutrality each site ca
ries a compensating charge ofKe. The Hamiltonian reads

H  2t
X
kijl

scy
i cj 1 c

y
j cid 1

X
i

wini

1
1
2

X
ifij

sni 2 Kd snj 2 KdUij , (1)

wherec
y
i and ci are the creation and annihilation opera

tors at sitei, ni  c
y
i ci , and kijl denotes all pairs of

nearest neighbors.Uij  e2yrij represents the Coulomb
interaction which is parametrized by its nearest-neighb
valueU andt is the kinetic energy. The random potentia
valueswi are chosen from a box distribution of width2W
and zero mean. (We always setW  1.) Two important
limiting cases of the quantum Coulomb glass are t
Anderson model of localization (forU  0) and the
classical Coulomb glass (fort  0).

The numerical simulation of disordered many-partic
systems is one of the most complicated problems
computational physics. First, the size of the Hilbert spa
grows exponentially with the system size, making exa
diagonalizations of the Hamiltonian impossible alread
for very small systems. Second, the presence of disor
requires the simulation of many different samples
obtain averages or distributions of physical quantitie
For disordered interacting electrons the problem is ma
worse by the long range of the Coulomb interactio
which has to be retained for a correct description of th
insulating phase where screening breaks down.

In this Letter we suggest an efficient numerical metho
to simulate disordered interacting electrons. It is based
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the idea of configuration interaction [20] adapted to dis
ordered lattice models. The method, which we call th
Hartree-Fock-based diagonalization (HFD), consists o
three steps: (i) Solve the Hartree-Fock (HF) approxima
tion of the Hamiltonian as in Ref. [18], (ii) use a Monte
Carlo algorithm to find the low-energy many-particle
HF states (Slater determinants), and (iii) diagonalize th
Hamiltonian in the basis formed by these states [21
The HF basis states are comparatively close in cha
acter to the exact eigenstates in the entire parame
space. Thus it is sufficient to keep only a small frac
tion of the Hilbert space to obtain low-energy quantitie
with an accuracy comparable to that of exact diagonaliz
tion. The HFD method is very flexible, it works well in
any spatial dimension, and is capable of handling long
range and short-range interactions. A detailed descripti
will be given elsewhere. Most of our calculations have
been performed for lattices with52 sites and 12 electrons
keeping 500 basis states. We used periodic bounda
conditions and the minimum image convention. We als
studied42 and62 systems withK  0.25 and 0.5 keeping
up to 2000 out of9 3 109 basis states.

We now turn to the conductance which we comput
from linear response theory. The real (dissipative) part o
the conductance (in units ofe2yh) is given by the Kubo-
Greenwood formula [22],

ReGxxsvd 
2p2

v

X
n

jk0j jxjnlj2dsv 1 E0 2 End ,

(2)

wherev denotes the frequency.jx is thex component of
the current operator andn denotes the eigenstates of the
Hamiltonian. Equation (2) describes an isolated syste
while in a real dc transport experiment the sample
connected to contacts and leads. This results in a fin
lifetime t of the eigenstates leading to an inhomogeneou
broadeningg  t21 of the d functions in (2) [23]. To
suppress the discreteness of the spectrum of a fin
system,g should be at least of the order of the single
particle level spacing. For our systems this requires
comparatively largeg $ 0.05. We tested differentg and
found that the conductancevaluesdepend ong but the
qualitative results do not [24].

In a random system, different samples will have dif
ferent conductance values. Figure 2 shows the probab
ity distribution PhlogfGs0dgj for systems in the localized
regime with and without interactions. Both distributions
show the same qualitative behavior; they are close
normal distributions corresponding to very broad distri
butions of the conductances themselves. The arithme
average of the conductance is therefore not a good me
sure of the typical behavior. We use instead the logarit
mic (i.e., geometrical) averageGtyp  expklogsGdl [25],
usually over 400 disorder configurations.

In Figs. 3 and 4 we present results on the dependen
of the conductance on the interaction for two sets o
4213
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FIG. 2. PhlogfGs0dgj for W  1, t  0.1, and g  0.05.
The histograms represent 2000 samples. The smooth lines
fits to Gaussians. The data forU  1 have been shifted by 0.2.

parameters. In Fig. 3 the kinetic energy is very sma
st  0.03d. Thus the system is in the strongly localize
regime, as we also estimated from the single-particle p
ticipation numberPsp ø 2. Here a weak Coulomb inter-
actionsU  0.5d leads to anincreaseof the conductance
at low frequencies. If the interaction becomes strong
the conductance decreases and finallysU  2d falls be-
low the value of noninteracting electrons. We emphasi
that the increase of the conductance for weak interactio
is a true correlation effect: Within the HF approximatio
[18], interactions always lead to a decrease of the co
ductance. The behavior is qualitatively different at high
kinetic energyst  0.3d as shown in Fig. 4. Here the
system is approaching the diffusive regimesPsp . 10d.
Already, a weak interactionsU  0.5d leads to a reduc-
tion of the low-frequency conductance compared to no
interacting electrons. If the interaction becomes strong
the conductance is decreased further. We have perform
analogous calculations for kinetic energiest  0.01 0.5
and interaction strengthsU  0 2. The resulting dc con-
ductances are those presented in Fig. 1.

We also checked for system size and filling factor d
pendences by simulating systems with42 and 62 sites,
and filling factorK  0.25 in addition to 0.5. We found

FIG. 3. Gsvd for W  1, t  0.03, g  0.05.
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FIG. 4. Same as Fig. 3 but fort  0.3.

the qualitative picture (as presented in Fig. 1) to be t
same in all cases. As an example, Fig. 5 shows the
teraction dependence ofGs0d for t  0.01 for the dif-
ferent systems studied. Clearly, the interaction-induc
enhancement of the conductance exists in all cases. Mo
over, the relative enhancement seems to increase fr
the 42 system to the62 system. (A comparison of even
and odd linear system sizes is problematic since at h
filling a regular array of charges is impossible for od
sizes. Moreover, anyquantitativecomparison of differ-
ent sizes would require a more realistic description of t
broadening.)

In order to find out to what extent the behavior o
the conductance is reflected in single-particle localizati
properties, we also computed the single-particle retu
probability

Rps´d 
1
N

X
j

lim
d!0

d

p
Gjjs´ 1 iddGjjs´ 2 idd . (3)

HereGijs´d is the single-particle Greens function.Rps´d
is the generalization of the inverse participation numb
P21

sp s´d (of a single-electron state) to a many-particl
system. Figure 6 shows a typical result forRps´d. We
performed analogous calculations fort  0.01 0.5 and
U  0 2. For all cases, we obtain the same qualitativ
behavior: Close to the Fermi energy the return probabil

FIG. 5. Comparison ofGs0d for W  1, t  0.01, and
different system sizes and filling factors.
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FIG. 6. Rps´d for W  1, t  0.1. The data are averaged
over 2000 disorder configurations (10 000 for noninteractin
electrons).

is only weakly influenced by the interaction. Directly
at the Fermi energy, which is not accessible in o
simulations because of our still too small system size
there may develop a slight enhancement of the retu
probability as a result of the Coulomb gap in the singl
particle density of states. Such an enhancement
already been observed within the HF approximation [18
Within the results obtained in this Letter, the effect,
any, is weaker than within HF. For energies away fro
the Fermi energy the single-particle excitations in th
interacting system become stronglydelocalized compared
to the noninteracting case. The interaction dependen
of the conductance discussed above is, however,
reflected in the single-particle return probability.

In summary, we have used the Hartree-Fock-based
agonalization method to investigate the transport prop
ties of disordered interacting spinless electrons. We ha
found that a weak Coulomb interaction can enhance t
conductivity of localized samples considerably while it re
duces the conductance in the case of weaker disorder.
the interaction becomes stronger it eventually reduces
conductance also in the localized regime. Let us fina
mention that, although we show that intereactions can e
hance the conductivity in certain parameter regions, th
does not directly provide an explanation for the MIT i
2D [3] since the importance of the spin degrees of fre
dom for this transition is established experimentally [26
We emphasize, however, that our method is very easy
generalize to electrons with spin. Work in this directio
is in progress.

We acknowledge financial support by the Deutsch
Forschungsgemeinschaft.
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