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Do Interactions Increase or Reduce the Conductance of Disordered Electrons? It Depends!
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We investigate the influence of electron-electron interactions on the conductance of two-dimensional
disordered spinless electrons. We present an efficient numerical method based on diagonalization in
a truncated basis of Hartree-Fock states to determine with high accuracy the low-energy properties in
the entire parameter space. We find that weak interactiameasethe dc conductance in the strongly
localized regime while thegecreasehe dc conductance for weak disorder. Strong interactions always
decrease the conductance. We also study the localization of single-particle excitations at the Fermi
energy which turns out to be only weakly influenced by the interactions. [S0031-9007(98)07553-X]

PACS numbers: 72.15.Rn, 71.30.+h, 71.55.Jv

The influence of electron-electron interactions on thebe reduced to a few interacting quasiparticles above the
transport in disordered electronic systems has been inveBermi surface [11]. This is, however, only possible if the
tigated intensively within the past two decades [1,2]. Reinteractions do not change the nature of the ground state.
cently, the problem has reattracted a lot of attention afteAll in all, not even the qualitative influence of interactions
experimental [3] and theoretical [4] results challenged esis understood in the insulating regime.
tablished opinions. We have numerically studied disordered 2D spinless

It is well accepted [5] that noninteracting electronselectrons. Our calculations are summarized in Fig. 1
in three dimensions (3D) undergo a localization-which is the main result of this Letter. It shows that the
delocalization transition at finite disorder. In contrast, allinfluence of repulsive electron-electron interactions on the
states are localized in 2D and 1D even for infinitesimaldc conductance is opposite for high and low kinetic ener-
weak disorder [6]. However, today it is believed thatgies (i.e., weak vs strong disorder). The conductance of
the metal-insulator transition (MIT) in most experimental strongly localized samples & 0.01 to 0.03) is consid-
systems cannot be explained based on noninteractirgrably enhanced by a weak interaction. With increasing
electrons. The metallic phase of disordered interactindinetic energy the relative enhancement decreases as does
electrons has been studied intensively within the perthe interaction range where the enhancement occurs. The
turbative renormalization group (RG) [2], leading to aconductance of samples with the highest kinetic energies
gualitative analysis of the MIT and the identification of (+ = 0.3 and 0.5) is reduced even by weak interactions. In
different universality classes. One of the results is thatontrast, sufficiently strong interactions always reduce the
the lower critical dimension of the MIT ig.” = 2 as it  conductance. Thisis not surprising since, for large enough
is for noninteracting electrons. Therefore it came as anteraction strength, the system will form a Wigner glass.
surprise when experiments [3] on Si-MOSFETSs revealed These findings shed some light on seemingly contra-
indications of a MIT in 2D. Since these experiments aredicting numerical results on the transport of disordered
performed at low electron density where the Coulombspinless electrons in the literature. Studies [12] of a 2D
interaction is particularly strong compared to the Fermi
energy, interaction effects are a likely reason for this
MIT. A complete understanding has, however, not yet
been obtained. Explanations were suggested based on
the perturbative RG [7], nonperturbative effects [8], or
the transition being a superconductor-insulator transition
rather than a MIT [9].

Theoretically, surprising results have been obtained for
just two interacting particles in thénsulating regime
[4]. It was found that two particles can form a pair
whose localization length is much larger than that of a
single particle. Later an even larger delocalization was . . '
suggested for clusters of three or more particles [10]. In 0 0.5 4 1.5 2
the case of a repulsive electror_l-electron_, these delocallzng_ 1. dc conductance(0) for a system of$® sites as
states have rather high energy; thus their relevance for ﬂ? function of interaction strengtiy for different kinetic

low-energy properties of a degenerate system is not cleagnergies. The disorder is fixed aW = 1. The statistical
It has been argued that the many-particle problem caaccuracy is better than the symbol size.
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model in thediffusiveregime yielded that interactions de- the idea of configuration interaction [20] adapted to dis-
crease the conductance. The same conclusion was drawrdered lattice models. The method, which we call the
from density-matrix RG studies [13] and exact diagonal-Hartree-Fock-based diagonalization (HFD), consists of
izations [14] in 1D. In contrast, for 2D models in the three steps: (i) Solve the Hartree-Fock (HF) approxima-
localized regime [15,16], it was found that interactions tion of the Hamiltonian as in Ref. [18], (ii) use a Monte
lead to a delocalization. Up to now, it has been uncleaCarlo algorithm to find the low-energy many-particle
whether these inconsistent results are due to being in diHF states (Slater determinants), and (iii) diagonalize the
ferent parameter regions (weak vs strong disorder), difHamiltonian in the basis formed by these states [21].
ferent quantities studied (conductance, many-particle levelhe HF basis states are comparatively close in char-
statistics, or charge stiffness), or long-range vs short-rangacter to the exact eigenstates in the entire parameter
interactions. The results of this Letter suggest that beingpace. Thus it is sufficient to keep only a small frac-
in different parameter regions is the most likely reasortion of the Hilbert space to obtain low-energy quantities
for the differences between the results cited above. Awith an accuracy comparable to that of exact diagonaliza-
result similar to ours was obtained recently [17] in ation. The HFD method is very flexible, it works well in
study of the ground state phase sensitivity in 1D. It wasany spatial dimension, and is capable of handling long-
found that, for small disorder, repulsive (nearest-neighborjange and short-range interactions. A detailed description
interactions reduce the phase sensitivity while, for largewill be given elsewhere. Most of our calculations have
disorder, the phase sensitivity shows pronounced peaks been performed for lattices with sites and 12 electrons
certain values of the interaction. keeping 500 basis states. We used periodic boundary
In the remainder of the Letter we explain the modelconditions and the minimum image convention. We also
and the calculational method and further discuss the restudied4? and6? systems withk = 0.25 and 0.5 keeping
sults. We consider a 2D quantum Coulomb glass modalp to 2000 out of X 10° basis states.
[15,16,18,19]. It is defined on a square lattice with We now turn to the conductance which we compute
M = L? sites occupied byVv = KM spinless electrons from linear response theory. The real (dissipative) part of
(0 < K < 1). To ensure charge neutrality each site carthe conductance (in units ef /1) is given by the Kubo-
ries a compensating chargeké. The Hamiltonian reads Greenwood formula [22],

t t 212
H=—t)(cic; +cjc) + D ein; ReG™(w) = = > [0 j*|»)*8(w + Eo — E,),
(ij) i w =
1 (2)
) gj(ni — Ky = KUy, () Wherew denotes the frequency;* is thex component of

+ _ o the current operator and denotes the eigenstates of the
wherec; andc; are the creation and annihilation opera- Hamiltonian. Equation (2) describes an isolated system
tors at sitei, n; = c;rc,-, and (ij) denotes all pairs of while in a real dc transport experiment the sample is
nearest neighborslU;; = e2/r;; represents the Coulomb connected to contacts and leads. This results in a finite
interaction which is parametrized by its nearest-neighbolifetime = of the eigenstates leading to an inhomogeneous
valueU andt is the kinetic energy. The random potential broadeningy = 7! of the § functions in (2) [23]. To
valuesgp; are chosen from a box distribution of widlhV  suppress the discreteness of the spectrum of a finite
and zero mean. (We always $8t= 1.) Two important system,y should be at least of the order of the single-
limiting cases of the quantum Coulomb glass are thearticle level spacing. For our systems this requires a
Anderson model of localization (fot/ = 0) and the comparatively largey = 0.05. We tested differeny and
classical Coulomb glass (for= 0). found that the conductanocesaluesdepend ony but the

The numerical simulation of disordered many-particlequalitative results do not [24].
systems is one of the most complicated problems in In a random system, different samples will have dif-
computational physics. First, the size of the Hilbert spacderent conductance values. Figure 2 shows the probabil-
grows exponentially with the system size, making exactty distribution P{log[G(0)]} for systems in the localized
diagonalizations of the Hamiltonian impossible alreadyregime with and without interactions. Both distributions
for very small systems. Second, the presence of disordeshow the same qualitative behavior; they are close to
requires the simulation of many different samples tonormal distributions corresponding to very broad distri-
obtain averages or distributions of physical quantitiesbutions of the conductances themselves. The arithmetic
For disordered interacting electrons the problem is madaverage of the conductance is therefore not a good mea-
worse by the long range of the Coulomb interactionsure of the typical behavior. We use instead the logarith-
which has to be retained for a correct description of themic (i.e., geometrical) averagg,, = explog(G)) [25],
insulating phase where screening breaks down. usually over 400 disorder configurations.

In this Letter we suggest an efficient numerical method In Figs. 3 and 4 we present results on the dependence
to simulate disordered interacting electrons. Itis based onf the conductance on the interaction for two sets of
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FIG. 2. P{loglG(O)]} for W =1, t = 0.1, and y = 0.05, FIG. 4. Same as Fig. 3 but for= 0.3.

The histograms represent 2000 samples. The smooth lines are
fits to Gaussians. The data for = 1 have been shifted by 0.2. 4 qualitative picture (as presented in Fig. 1) to be the
same in all cases. As an example, Fig. 5 shows the in-
Itera(:tion dependence a@¥(0) for + = 0.01 for the dif-
ferent systems studied. Clearly, the interaction-induced
r@nhancement of the conductance exists in all cases. More-
over, the relative enhancement seems to increase from
the 4° system to thes”> system. (A comparison of even
nd odd linear system sizes is problematic since at half
illing a regular array of charges is impossible for odd
éizes. Moreover, anguantitativecomparison of differ-
nt sizes would require a more realistic description of the

parameters. In Fig. 3 the kinetic energy is very smal
(r = 0.03). Thus the system is in the strongly localized
regime, as we also estimated from the single-particle pa
ticipation numberP,, =~ 2. Here a weak Coulomb inter-
action(U = 0.5) leads to arincreaseof the conductance
at low frequencies. If the interaction becomes stronge
the conductance decreases and fingally= 2) falls be-
low the value of noninteracting electrons. We emphasiz
that the increase of the conductance for weak interaction% deni
is a true correlation effect: Within the HF approximation roadening.) . .
[18], interactions always lead to a decrease of the con- In order to f'm.j out to what extent th? behaw'or .Of
ductance. The behavior is qualitatively different at higherthe con'ductance is reflected in smgle-_pamcle Ic_)cal|zat|on
kinetic energy(s = 0.3) as shown in Fig. 4. Here the properties, we also computed the single-particle return
system is approaching the diffusive regirt®,, > 10). probability
Already, a weak interactiof = 0.5) leads to a reduc-
tion of the low-frequency conductance compared to non-
interacting electrons. If the interaction becomes stronger
the conductance is decreased further. We have performddereG;;(e) is the single-particle Greens functiorR ), (e)
analogous calculations for kinetic energies: 0.01-0.5 is the generalization of the inverse participation number
and interaction strengthi = 0-2. The resulting dc con- Ps,'(¢) (of a single-electron state) to a many-particle
ductances are those presented in Fig. 1. system. Figure 6 shows a typical result ®5(e). We
We also checked for system size and filling factor deperformed analogous calculations for= 0.01-0.5 and
pendences by simulating systems with and 62 sites, U = 0-2. For all cases, we obtain the same qualitative
and filling factork = 0.25 in addition to 0.5. We found behavior: Close to the Fermi energy the return probability
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FIG. 3. G(w)for W =1, t = 0.03, y = 0.05.

FIG. 5. Comparison ofG(0) for W =1, = 0.01, and
different system sizes and filling factors.
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