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Nonlinear Photonic Crystals
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Nonlinear frequency conversion in 2P photonic crystals is theoretically studied. Such a crystal
has a 2D periodic nonlinear susceptibility, and a linear susceptibility which is a function of the
frequency, but constant in space. It is an in-plane generalization of 1D quasi-phase-matching structures
and can be realized in periodic poled lithium niobate or in GaAs. An interesting property of these
structures is that new phase-matching processes appear in the 2D plane as compared to the 1D case. ltis
shown that these in-plane phase-matching resonances are givemobjireear Bragg lawand a related
nonlinear Ewald construction. Applications as multiple-beam second-harmonic generation (SHG), ring
cavity SHG, or multiple wavelength frequency conversion are envisaged. [S0031-9007(98)07386-4]

PACS numbers: 42.70.Qs

During the last decade, a large effort has beerpensates for the destructive interference coming from the
devoted to understanding the propagation of electrodispersive propagation. The constructive buildup of
magnetic waves in photonic crystals (PC) [1-4]. Thesdhe generated wave occurs then on the entire length
materials are artificial structures with a periodic dielectricof the QPM structure, increasing the overall energy
function. One intriguing issue of PCs is the possibleconversion [11].
existence of photonic band gaps (PBGs), i.e., frequency Various demonstrations of QPM have been performed
ranges where propagation of light is forbidden inside thgfor a review, see [11]). For instance, GaAs waveguides
structure [5,6]. The Bragg mirror, as a multilayer periodicwith periodic (100) and (—100) oriented zones were re-
stack of two different materials, is the simplest examplecently demonstrated [12], and periodically poled lithium
of 1D PC, and PBG materials can be viewed as a generahiobate (PPLN) [13] or periodic poled KTP [14] have
ization of Bragg mirrors in several dimensions. recently become some of the most attractive nonlinear

Some work has been devoted to the nonlinear propematerials for optical parametric oscillators.
ties of PCs, in particulary® processes [7—9]. Allthese  The first point addressed in this paper concerns the
studies have dealt with regular PCs, having a periodigossibility of realizing a 2D or 3Dy® photonic crystal.
linear susceptibilityy ). In contrast with these previous In 1D QPM structures, for GaAs waveguides as for
studies, this paper will focus on the possibilities offeredPPLN, the 1D periodicity of the nonlinear susceptibility
by a y® photonic crystal. Such a structure presentss defined by the design of a metallic grating. In the
a space-independent linear dielectric constant, but hasase of GaAs waveguides, the grating is used as a mask
a periodic second-order nonlinear coefficient. Figure Ior a reactive ion etching step [12], and in the case of
shows schematically an example of the structure undePPLN, the grating is an electrode for ferroelectric domain
study: a 2D triangular lattice of cylinders with nonlinear
susceptibility tensor—y®) in a medium of nonlinear

susceptibility y 2. "“0

In the same way as the 1D case ofyd) crystal is

the Bragg mirror, the 1D case of g® crystal is the
well-known quasi-phase-matching (QPM) structure. This ‘“000
structure was proposed in a pioneering paper on fre- SN S0

quency conversion [10], in order to solve the problem of o s . N\ N\ N\

phase mismatch. In a second-order nonlinear frequency ‘ “ “ ‘ ‘

conversion process, the linear dispersion of the crystal ’ o

mismatches the phases between the different interacting —_ v® )

optical waves. This reduces the useful interaction length - X I—_—_—I X

for frequency conversion to the so-called “coherencer|G. 1. Schematic picture of a 2p® crystal. The material
length,” which is inversely proportional to the dispersionpresents a translation invariance perpendicular to the figure, and
and equal toL. = A8'/4(n2w — n?®) for SHG of a is i_nvariant by_translation in_a}_ZD_ lattice (here a triangular
wavelengthA¢ in vacuum. QPM consists of reversing lattice). The linear susceptibility is constant in the whole

. . o 2 material but the sign of the second-order susceptibijfy’
the sign of the nonlinear susceptibility of the material ) esents a given pattern in the unit cell. Such a material can

every coherence Igngth. Th? consequence is the changg realized in PPLN or in GaAs, by means of state-of-the-art
of sign of the nonlinear polarization, which exactly com- technology.
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reversal. Though these techniques are very differenthe linear dielectric constant is constant in the whole
they both use a metallic grating, defined by electronstructure. This ensures that multiple reflections, leading
beam lithography, which defines the pattern of the QPMo PBG effects, are not present. In this 2D structure,
structure. Both techniques can be generalized to the 2Ehe problem can be considered as scalar [15], which
structure presented in Fig. 1. One has only to change th&mplifies the notations. For instance, in the case of a 2D
metallic grating into a metallic honeycomb mask duringPPLN crystal, fundamental and harmonic waves are TM
the technological process. In the case of PPLN, it igolarized, i.e., with the electric field in the translational
necessary to choose a connected area for the metal (whidérection. Although they are constant in space, the linear
area in Fig. 1), in order to apply easily the voltage ondielectric constants are assumed to be different atnd
the whole pattern. We conclude that 2P photonic 2w, this dispersion being the source of phase mismatch.
crystals are easy to obtain as a generalization of 1D QPMn efficient SHG process in the® crystal is obtained if
technology. a quasi-plane-wave at the harmonic frequency is observed

Conversely, the fabrication of 3p® crystals seems to to increase at a large scale, compared to the coherence
be very tricky. One may imagine a complicated multisteplength L. and to they® period order. By quasi-plane-
technology with bondings, etchings, and regrowth ofwave, it is assumed that if we write the harmonic electric
GaAs, resulting in a 3D stack of domain reversals. Such &eld as
process, theoretically possible, is, however, far beyond the .
state-of-the-art of GaAs technology. For this reason, this £“(r,1) = 5 E**(r) exdiwt — k**r)] + c.c., (1)
paper will consider mainly 2Dy® crystals. However, ) . .
it is clear that a hypothetical 3D structure would preseninen the classical slow varying envelope approximation
analogous properties to those described here, and tfPPlies:
assumption of a 2D structure in the following is not a k2 -V [E2(r)] > V2E®(r). 2)
loss of generality.

Let us assume that a plane wave at the frequency In these equations; = (x,y) is the 2D spatial coordi-
w propagates in the transverse plane of a %  nate. Under this assumption, the evolution of the SH field
crystal that is perpendicular to the translation axis ofamplitude can be written as a function of the pump field
the cylinders, of arbitrary section. Let us recall thrs\tand the second-order coefficiep® (r):

k2® - V[E**(r)] = —2i ‘;’—22 (E) xP(r) exdi(k>* — 2k“)r]. (3)

This equation is a simple generalization in two dimeh-the shortest possibl& vector, and a 2D QPM process
sions of the 1D harmonic field evolution equation [16], with a momentum transfex/3 times greater, which is
where the derivative has been replaced by a gradient arichpossible in a 1D structure. The 2D QPM order can be
(E®)? is assumed to be constant. The nonlinear suscepti-
bility can be written as a Fourier series,

XP) = D Kk exp—iG - 1), (4)
GERL
where the sum is extended over the whole 2D reciprocal
lattice (RL) [17]. Inserting this expression in Eq. (3), the
increase of the SH field appears to be related to a sum of
exdi(k*” — 2k® — G)r]. The QPM condition appears
then as the expression of the momentum conservation,

k> —2k® —G =0. (5)

For 1D QPM, the phase mismatch can be compensated
in a structure of period! if it is equal to a multiple
of the fundamental spatial frequency of the struct%#”e
[11]. In contrast to this, QPM in a 20y® photonic
crystal involves a momentum taken in at the 2D RL.
The possibilities of QPM are not only sixfold degenerateFIG. 2. Reciprocal lattice of the structure of Fig. 1, with
(thanks to the symmetry of the triangular lattice), butthe 2D QPM processes of orddi,0] and [1,1] shown

new QPM orders appear in the 2D crystal which are nofchématically.  The efficiency of the nonlinear process is
ltio] fthe fund tal OPM ite t thglroportlonal to the corresponding 2D Fourier series coefficient,
multiples of the fundamental Q process, opposite to hich depends on the unit cell filling factor, and is not

1D situation. Two examples of 2D QPM processes ar@epresented here. The first Brillouin zone with the uslial
shown in Fig. 2: the fundamental process, which involvesy, andK points is represented on the left.
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labeled with two integer coordinates, given in g, G,)  corresponding to Eq. (6). This figure follows the same
basis of the RL. In Fig. 2, for instance, 2D QPM processegrinciple as the usual Ewald construction, except for the
of orders[1,0] and[1,1] are represented. In the case fact that the radius of the Ewald sphdie?®| is greater
of a unit cell invariant by the symmetry operations of than the distancé|k®| between its center and the origin
the Bravais lattice (as, for instance, a triangular lattice obf the RL. As in the case of x-ray diffraction, for a given
circular patterns), it is obvious that points in a°3&ctor pump wave vectok®, there is in general no reciprocal
I'M-T'K form a complete set of QPM schemes, all othervector [k>®| on the Ewald sphere. This means that the
points in the RL playing the same role for a reason of2D QPM is a resonant process, an “accident,” which can
symmetry. This meansthat,y] € N2 orderswithy = 0 be obtained by varying either the angle of propagation of
andx — +/3y = 0 represent all the 2D QPM processes inthe pump or the wavelength. It is interesting to note that
these structures. In the case of an asymmetric unit cefbr specific angles and wavelengths several points can be
(as, for example, the graphitelike structure [19]), the RLlocated simultaneously on the Ewald sphere. In such a
and the QPM schemes are the same as above. Howevegse of multiple resonance, SH beams can be generated
the related conversion efficiency depends on the Fouriesimultaneously in different directions in the plane, in
coefficient of Eq. (4), which depends on the shape of the similar way as the linear diffraction in several order
x@ pattern at the unit cell level, and is generally not thebeams by a diffraction grating. These different beams
same for different vectors of equal modulus in the RL.  will present anticorrelation noise properties which can be
A particularly interesting case occurs whietf” andk useful in quantum optics experiments.
are collinear, because the interaction length is not limited The new possibilities offered by® photonic crystals
by the walk-off between pump and harmonic waves. Sucltan be classified into two categories: First, for a given
a process is obtained when the phase mismatch is equal pomp frequency, a phase-matched direction in the lattice
the modulus of a vector in the RL. For instance, in theis required for an efficient SHG. In that case, by changing
case of a structure with a triangular lattice of periégd the angle of incidence in the structure, the Ewald sphere
the phase mismatches that can be compensated are eqoaisses for some angle a point of the RL. For this direction,
to /x2 + y2 + xy X 27”, [x,y] € N2. They are then phase matching occurs resonantly in a very similar way as
belonging to the series1(~/3,2,/7,3,2+/3,...). This @ Bragg resonance in a rotating crystal x-ray diffraction
has to be compared to the serids3(5,7,...) which is  experiment. The walk-off of the nonlinear interaction
obtained in the usual 1D QPM process. corresponding to this resonance is given by the nonlinear
Using some trigonometry, Fig. 2 leads to Bragg law (6). For a unit cell having the same symmetry
as the crystal, as explained before, several directions of

- 1o \2 o propagation are equivalent. This can be used for ring
= ( ) + 4 —w Sinte R (6)
n

A0 = == cavity purposes. At variance with previous ring cavity
Gl nonlinear optics experiments [21], a ring cavity (having

where A2 is the SH wavelength inside the material andthe shape of a hexagon, for instance) can be designed so

26 the walk-off angle betweek?” andk® [20]. More
generally, this equation gives the direction of coherent
radiation at the wavelength?® for a phased array of
nonlinear dipoles having a phase relation fixed by the = { |
propagation of the pump. Equation (6) appears then as a “‘;&;"'
nonlinear Bragg lawand is a generalization for nonlinear N
optics of the Bragg law. It gives the direction of resonant
scattering at the wavelength*® of a plane wave with
vectork® by a set of nonlinear dipoles. If the medium
has no dispersiony® = n*>® and Eq. (6) is reduced to
the well known Bragg law, which expresses the resonant ~.. |
scattering direction by a periodic set of scatterers, ’,:Ifﬂi\

n2m

A= |4G_77| sin(8) = 2d sin(9), (7
whered is the period between two planes of scatterers. -4
In the caser” = n’®, the nonlinear emission follows the ;
same behavior as a linear scattering: In both cases the
direction of propagation is given by the Huyghens-FresneFIG. 3. Nonlinear Ewald construction: The center of the
principle, given the phase relation between the scatterer£Wald sphere is locatetk® away from the origin of the RL
The analogy with x-ray diffraction by crystals is useful and the radius of the sphe_rek_%“’. The main difference with
. ) A the usual Ewald construction is that the Ewald sphere does not
for understanding the different possibilities offered by 2Dcontain the origin of the RL. If a point of the RL is located on
QPM. Figure 3 shows a modified Ewald constructionthe Ewald sphere, phase matching occurs for the SHG process.
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However, this expression has another interest: it leads to

the relation betweenp, A%¢, andd for 1D QPM, away
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