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Nonlinear Photonic Crystals
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Nonlinear frequency conversion in 2Dx s2d photonic crystals is theoretically studied. Such a crystal
has a 2D periodic nonlinear susceptibility, and a linear susceptibility which is a function of th
frequency, but constant in space. It is an in-plane generalization of 1D quasi-phase-matching struct
and can be realized in periodic poled lithium niobate or in GaAs. An interesting property of the
structures is that new phase-matching processes appear in the 2D plane as compared to the 1D case
shown that these in-plane phase-matching resonances are given by anonlinear Bragg law,and a related
nonlinear Ewald construction. Applications as multiple-beam second-harmonic generation (SHG), r
cavity SHG, or multiple wavelength frequency conversion are envisaged. [S0031-9007(98)07386-4
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During the last decade, a large effort has bee
devoted to understanding the propagation of electr
magnetic waves in photonic crystals (PC) [1–4]. Thes
materials are artificial structures with a periodic dielectr
function. One intriguing issue of PCs is the possib
existence of photonic band gaps (PBGs), i.e., frequen
ranges where propagation of light is forbidden inside th
structure [5,6]. The Bragg mirror, as a multilayer periodi
stack of two different materials, is the simplest examp
of 1D PC, and PBG materials can be viewed as a gener
ization of Bragg mirrors in several dimensions.

Some work has been devoted to the nonlinear prop
ties of PCs, in particular,x s2d processes [7–9]. All these
studies have dealt with regular PCs, having a period
linear susceptibilityx s1d. In contrast with these previous
studies, this paper will focus on the possibilities offere
by a x s2d photonic crystal. Such a structure presen
a space-independent linear dielectric constant, but h
a periodic second-order nonlinear coefficient. Figure
shows schematically an example of the structure und
study: a 2D triangular lattice of cylinders with nonlinea
susceptibility tensors2x s2dd in a medium of nonlinear
susceptibilityx s2d.

In the same way as the 1D case of ax s1d crystal is
the Bragg mirror, the 1D case of ax s2d crystal is the
well-known quasi-phase-matching (QPM) structure. Th
structure was proposed in a pioneering paper on fr
quency conversion [10], in order to solve the problem o
phase mismatch. In a second-order nonlinear frequen
conversion process, the linear dispersion of the crys
mismatches the phases between the different interact
optical waves. This reduces the useful interaction leng
for frequency conversion to the so-called “coherenc
length,” which is inversely proportional to the dispersio
and equal to Lc ­ l

v
0 y4sn2v 2 nvd for SHG of a

wavelengthl
v
0 in vacuum. QPM consists of reversing

the sign of the nonlinear susceptibility of the materia
every coherence length. The consequence is the cha
of sign of the nonlinear polarization, which exactly com
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pensates for the destructive interference coming from t
dispersive propagation. The constructive buildup
the generated wave occurs then on the entire len
of the QPM structure, increasing the overall energ
conversion [11].

Various demonstrations of QPM have been perform
(for a review, see [11]). For instance, GaAs waveguid
with periodic s100d and s2100d oriented zones were re-
cently demonstrated [12], and periodically poled lithium
niobate (PPLN) [13] or periodic poled KTP [14] have
recently become some of the most attractive nonline
materials for optical parametric oscillators.

The first point addressed in this paper concerns t
possibility of realizing a 2D or 3Dx s2d photonic crystal.
In 1D QPM structures, for GaAs waveguides as fo
PPLN, the 1D periodicity of the nonlinear susceptibilit
is defined by the design of a metallic grating. In th
case of GaAs waveguides, the grating is used as a m
for a reactive ion etching step [12], and in the case
PPLN, the grating is an electrode for ferroelectric doma

FIG. 1. Schematic picture of a 2Dx s2d crystal. The material
presents a translation invariance perpendicular to the figure,
is invariant by translation in a 2D lattice (here a triangula
lattice). The linear susceptibility is constant in the whol
material but the sign of the second-order susceptibilityx s2d

presents a given pattern in the unit cell. Such a material c
be realized in PPLN or in GaAs, by means of state-of-the-a
technology.
© 1998 The American Physical Society
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reversal. Though these techniques are very differe
they both use a metallic grating, defined by electro
beam lithography, which defines the pattern of the QP
structure. Both techniques can be generalized to the
structure presented in Fig. 1. One has only to change
metallic grating into a metallic honeycomb mask durin
the technological process. In the case of PPLN, it
necessary to choose a connected area for the metal (w
area in Fig. 1), in order to apply easily the voltage o
the whole pattern. We conclude that 2Dx s2d photonic
crystals are easy to obtain as a generalization of 1D QP
technology.

Conversely, the fabrication of 3Dx s2d crystals seems to
be very tricky. One may imagine a complicated multiste
technology with bondings, etchings, and regrowth
GaAs, resulting in a 3D stack of domain reversals. Such
process, theoretically possible, is, however, far beyond
state-of-the-art of GaAs technology. For this reason, th
paper will consider mainly 2Dx s2d crystals. However,
it is clear that a hypothetical 3D structure would prese
analogous properties to those described here, and
assumption of a 2D structure in the following is not
loss of generality.

Let us assume that a plane wave at the frequen
v propagates in the transverse plane of a 2Dx s2d

crystal that is perpendicular to the translation axis
the cylinders, of arbitrary section. Let us recall tha
nt,
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the linear dielectric constant is constant in the who
structure. This ensures that multiple reflections, leadi
to PBG effects, are not present. In this 2D structur
the problem can be considered as scalar [15], wh
simplifies the notations. For instance, in the case of a
PPLN crystal, fundamental and harmonic waves are T
polarized, i.e., with the electric field in the translation
direction. Although they are constant in space, the line
dielectric constants are assumed to be different atv and
2v, this dispersion being the source of phase mismat
An efficient SHG process in thex s2d crystal is obtained if
a quasi-plane-wave at the harmonic frequency is obser
to increase at a large scale, compared to the cohere
length Lc and to thex s2d period order. By quasi-plane-
wave, it is assumed that if we write the harmonic electr
field as

E 2vsr, td ­
1
2 E2vsrd expfis2vt 2 k2vrdg 1 c.c., (1)

then the classical slow varying envelope approximati
applies:

k2v ? = fE2vsrdg ¿ =2E2vsrd . (2)

In these equations,r ; sx, yd is the 2D spatial coordi-
nate. Under this assumption, the evolution of the SH fie
amplitude can be written as a function of the pump fie
and the second-order coefficientx s2dsrd:
k2v ? = fE2vsrdg ­ 22i
v2

c2 sEvd2x s2dsrd expfisk2v 2 2kvdrg . (3)
e

is
t,

t

This equation is a simple generalization in two dimen
sions of the 1D harmonic field evolution equation [16
where the derivative has been replaced by a gradient a
sEvd2 is assumed to be constant. The nonlinear susce
bility can be written as a Fourier series,

x s2dsrd ­
X

G[RL

kG ? exps2iG ? rd , (4)

where the sum is extended over the whole 2D reciproc
lattice (RL) [17]. Inserting this expression in Eq. (3), th
increase of the SH field appears to be related to a sum
expfisk2v 2 2kv 2 Gdrg. The QPM condition appears
then as the expression of the momentum conservation,

k2v 2 2kv 2 G ­ 0 . (5)

For 1D QPM, the phase mismatch can be compensa
in a structure of periodd if it is equal to a multiple
of the fundamental spatial frequency of the structure2p

d
[11]. In contrast to this, QPM in a 2Dx s2d photonic
crystal involves a momentum taken in at the 2D RL
The possibilities of QPM are not only sixfold degenera
(thanks to the symmetry of the triangular lattice), bu
new QPM orders appear in the 2D crystal which are n
multiples of the fundamental QPM process, opposite to t
1D situation. Two examples of 2D QPM processes a
shown in Fig. 2: the fundamental process, which involv
-
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the shortest possibleG vector, and a 2D QPM process
with a momentum transfer

p
3 times greater, which is

impossible in a 1D structure. The 2D QPM order can b

FIG. 2. Reciprocal lattice of the structure of Fig. 1, with
the 2D QPM processes of orderf1, 0g and f1, 1g shown
schematically. The efficiency of the nonlinear process
proportional to the corresponding 2D Fourier series coefficien
which depends on the unit cell filling factor, and is no
represented here. The first Brillouin zone with the usualG,
M, andK points is represented on the left.
4137
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labeled with two integer coordinates, given in thesG1, G2d
basis of the RL. In Fig. 2, for instance, 2D QPM process
of orders f1, 0g and f1, 1g are represented. In the cas
of a unit cell invariant by the symmetry operations o
the Bravais lattice (as, for instance, a triangular lattice
circular patterns), it is obvious that points in a 30± sector
GM-GK form a complete set of QPM schemes, all othe
points in the RL playing the same role for a reason
symmetry. This means thatfx, yg [ N2 orders withy $ 0
andx 2

p
3 y $ 0 represent all the 2D QPM processes i

these structures. In the case of an asymmetric unit c
(as, for example, the graphitelike structure [19]), the R
and the QPM schemes are the same as above. Howe
the related conversion efficiency depends on the Four
coefficient of Eq. (4), which depends on the shape of t
x s2d pattern at the unit cell level, and is generally not th
same for different vectors of equal modulus in the RL.

A particularly interesting case occurs whenk2v andkv

are collinear, because the interaction length is not limit
by the walk-off between pump and harmonic waves. Su
a process is obtained when the phase mismatch is equa
the modulus of a vector in the RL. For instance, in th
case of a structure with a triangular lattice of periodd,
the phase mismatches that can be compensated are e
to

p
x2 1 y2 1 xy 3

2p

d , fx, yg [ N2. They are then
belonging to the series (1,

p
3, 2,

p
7, 3, 2

p
3, . . .). This

has to be compared to the series (1, 3, 5, 7, . . .) which is
obtained in the usual 1D QPM process.

Using some trigonometry, Fig. 2 leads to

l2v ­
2p

jGj

vuut√
1 2

nv

n2v

!2

1 4
nv

n2v
sin2u , (6)

wherel2v is the SH wavelength inside the material an
2u the walk-off angle betweenk2v and kv [20]. More
generally, this equation gives the direction of cohere
radiation at the wavelengthl2v for a phased array of
nonlinear dipoles having a phase relation fixed by th
propagation of the pump. Equation (6) appears then a
nonlinear Bragg law,and is a generalization for nonlinea
optics of the Bragg law. It gives the direction of resona
scattering at the wavelengthl2v of a plane wave with
vector kv by a set of nonlinear dipoles. If the medium
has no dispersion,nv ­ n2v and Eq. (6) is reduced to
the well known Bragg law, which expresses the resona
scattering direction by a periodic set of scatterers,

l ­
4p

jGj
sinsud ­ 2d sinsud , (7)

whered is the period between two planes of scattere
In the casenv ­ n2v, the nonlinear emission follows the
same behavior as a linear scattering: In both cases
direction of propagation is given by the Huyghens-Fresn
principle, given the phase relation between the scattere

The analogy with x-ray diffraction by crystals is usefu
for understanding the different possibilities offered by 2
QPM. Figure 3 shows a modified Ewald constructio
4138
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corresponding to Eq. (6). This figure follows the same
principle as the usual Ewald construction, except for the
fact that the radius of the Ewald spherejk2vj is greater
than the distance2jkvj between its center and the origin
of the RL. As in the case of x-ray diffraction, for a given
pump wave vectorkv , there is in general no reciprocal
vector jk2vj on the Ewald sphere. This means that the
2D QPM is a resonant process, an “accident,” which ca
be obtained by varying either the angle of propagation o
the pump or the wavelength. It is interesting to note tha
for specific angles and wavelengths several points can b
located simultaneously on the Ewald sphere. In such
case of multiple resonance, SH beams can be generat
simultaneously in different directions in the plane, in
a similar way as the linear diffraction in several order
beams by a diffraction grating. These different beam
will present anticorrelation noise properties which can be
useful in quantum optics experiments.

The new possibilities offered byx s2d photonic crystals
can be classified into two categories: First, for a given
pump frequencyv, a phase-matched direction in the lattice
is required for an efficient SHG. In that case, by changing
the angle of incidence in the structure, the Ewald spher
crosses for some angle a point of the RL. For this direction
phase matching occurs resonantly in a very similar way a
a Bragg resonance in a rotating crystal x-ray diffraction
experiment. The walk-off of the nonlinear interaction
corresponding to this resonance is given by the nonlinea
Bragg law (6). For a unit cell having the same symmetry
as the crystal, as explained before, several directions
propagation are equivalent. This can be used for rin
cavity purposes. At variance with previous ring cavity
nonlinear optics experiments [21], a ring cavity (having
the shape of a hexagon, for instance) can be designed

FIG. 3. Nonlinear Ewald construction: The center of the
Ewald sphere is located2kv away from the origin of the RL
and the radius of the sphere isk2v. The main difference with
the usual Ewald construction is that the Ewald sphere does n
contain the origin of the RL. If a point of the RL is located on
the Ewald sphere, phase matching occurs for the SHG proces
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that the constructive interaction occurs along in the enti
intracavity optical path, increasing the final efficiency
The lower efficiency coming from the structure factor [17
is overcome by the increase of the interaction length on t
entire cavity round trip in the 2D case.

A second application is the search of the phase-match
SHG spectrum, for a given direction of propagation. Th
x-ray analog of this kind of experiment is the broadban
x-ray diffraction analysis used in the Laue method [22
The different QPM resonances are found from the schem
of Fig. 3 by changing the radius of the Ewald spher
It is obvious that several resonances will be found; th
opens the possibility of multiple wavelength generation b
SHG. It is interesting to compare this phenomenon wi
multiple wavelength SHG that has been recently obtain
in a quasiperiodic 1D Fibonacci optical superlattice [23
Multiple resonances were observed in the QPM SH
spectrum arising from the different reciprocal vector
Gm,n of the quasiperiodic optical superlattice. The 2D R
indexing of the quasiperiodic 1D structure is the funda
mental difference from the usual 1D periodic structur
and this difference is the reason for multiwavelengt
frequency conversion. The 2D indexing comes from
the fact that the 1D quasiperiodic lattice is nothing bu
the projection of a 2D periodic crystal on a 1D axis
This follows the well known geometrical construction o
quasicrystalline structures. The experiments of Zhu a
coworkers [23] are thus a projection of a 2Dx s2d PC
experiment on one particular direction of propagatio
1D QPM experiments are also such a projection but t
difference is the following: in the 1D QPM case, the
propagation is on such an axis that thex s2d function
is periodic on this axis, whereas in the quasiperiod
structure the projection is done on an axis with a
irrational slope. All these cases are contained in the 2
x s2d photonic crystal, and can be obtained by changing t
angle of propagation in the 2D plane of the material.

The author is deeply indebted to Giuseppe Leo, Car
Sirtori, and Børge Vinter for a critical reading of the
manuscript.
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