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Optical Diffraction-Free Patterns Induced by a Discrete Translational Transport
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We report the formation of spatial structures induced by a spatial offset in a two-dimensiona
nonlinear optical interferometer in which diffractive effects are absent. The observed patterns aris
from the destabilization of wide, continuous bands in the Fourier spectrum. The selection of thes
bands is shown to be determined by the interplay between the amount of spatial offset and the streng
of the diffusion in the nonlinear optical material. [S0031-9007(98)07536-X]

PACS numbers: 42.65.Sf, 47.54.+r
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Dynamical instabilities leading to the formation o
spatial structures in extended systems driven out of th
modynamical equilibrium [1] have been shown to oc
cur extensively in the realm of nonlinear optics [2–4
Among the systems in which optical pattern formation h
been studied we recall lasers, nonlinear interferomete
and systems formed by a nonlinear medium with diffra
tive feedback. In most of these systems the selection
the spatial frequencies that bifurcate, resulting in form
tion of spatial structures, is largely ruled by diffraction
As a consequence, a field of wavelengthl propagating
within a nonlinear optical system, including a free prop
gation lengthl, forms patterns at a “diffractive” spatial
frequencyf0 . slld21y2, or at a discrete set of frequen
cies simply related tof0 [5].

Pattern formation in the absence of diffraction ha
been studied in optical systems with a rotation in th
feedback loop [6,7]. The suppression of diffractive effec
is obtained by adopting an image-forming configuratio
within a nonlinear interferometer. We stress that, bein
diffraction peculiar to wave fields, its suppression leads
a dynamics that loses its specificity of being an “optica
one. Its identifying characteristics are spatial extensio
nonlinearity, and nonlocal interactions.

In this Letter, we study the formation of optica
patterns without diffraction when nonlocal interactions a
introduced in the system via a spatial offsetDx. Systems
with continuous transport given, e.g., by a drift velocity
resulting in the breaking of the translational symmetry an
in the onset of convective and absolute pattern formi
instabilities, have recently been studied in several physi
systems [8–10].

The experimental setup consists of a liquid crystal lig
valve (LCLV) with optical feedback (Fig. 1). The LCLV
operates as a defocusing Kerr medium working in refle
tion. The optical beam reflected from the valve’s fron
face undergoes a phase retardationu proportional to the
light intensity fed to the valve’s rear face. Because
the anisotropy of the liquid crystal molecules, howeve
the phase retardation affects only the electric field comp
nent along the projectionek of the liquid crystal director
on the LCLV plane.
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In our experiments, a plane light beam from an Ar1

laser operating at 514 nm impinges on the front of t
LCLV linearly polarized at an angleu1 with respect toek.
The reflected light is fed back to the rear face of the LCL
after passing through a polarizer with the transmissi
axis oriented at an angleu2 with respect toek. This
produces on the rear side of the LCLV an optical fie
given by the superposition of the component polariz
along ek, which has acquired the phase retardationu,
and of the component polarized orthogonally toek. A
couple of lenses in the feedback loop provides a one-
one image of the LCLV front face onto a coherent fib
bundle that, in turn, relays this image to the back face
the LCLV. In this way any effect due to diffractive free
propagation in the system is eliminated.

Furthermore, we introduce a nonlocal interaction b
means of a transverse displacement of the optical wa
front in the feedback loop by an amountDx. The
displacement is experimentally achieved by the use
a micrometric screw connected to the input end of t
fiber bundle, allowing variations ofDx with a resolution
of 5 mm. In these conditions, the phase induced by t
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FIG. 1. Experimental setup. O: microscope objective; P1, P2:
pinholes; BS1, BS2: beam splitters; LCLV: liquid crystal light
valve; L1, L2: lenses of focal lengthf; FB: fiber bundle;
PO: polarizer; X: direction of feedback displacement; MS
micrometric screw; CCD: videocamera. The4f configuration
of the feedback loop provides a one-to-one imaging of t
LCLV front plane on theF plane.
© 1998 The American Physical Society
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liquid crystals on the light polarized alongek obeys the
equation [11]

t
≠u
≠t

­ 2usx, y, td 1 l2
d=2

'usx, y, td

2 aI0h1 1 g cosfusx 1 Dx, y, td

1 u0sV0, ndgj , (1)

where I0 is the input intensity,t . 100 ms and ld .
30 mm are, respectively, the response time and t
diffusion length of the LCLV,sx, yd are the coordinates
in the plane transverse to the propagation directionz,
=

2
' is the Laplacian operator in thesx, yd plane, anda

is positive (defocusing medium) and is comprehensi
of both the optical losses of the feedback loop and t
responsivity of the LCLV. The constant phaseu0sV0, nd
sets the working point of the LCLV and is controlled b
means of the ac voltage of frequencyn and amplitudeV0
rms applied to it. Throughout the experiments report
here we kept fixedn ­ 4 KHz, V0 ­ 9 V resulting in
u0 . 4p. The modulation termg ­

cos2su12u2d2cos2su11u2d
cos2su12u2d1cos2su11u2d

[11] has the value of 0.978, having fixedu1 ­ 48± and
u2 ­ 48±.

Equation (1) forDx ­ 0 is known to give rise to opti-
cal multistability among different homogeneous stationa
solutions for sufficiently high values ofI0. In the experi-
ment reported here, we choose low values ofI0, so that
the system always remains in the lowest branch of stab
ity for Dx ­ 0. Even though the homogeneous state
stable forDx ­ 0, a nonlocal interaction due toDx fi 0
can destabilize this state. Indeed, any spatial perturbat
of period2Dx in the direction of the offset will provide a
negative feedback but applied with a spatial phase shift
p, thus providing a growing deviation from equilibrium
This is the space counterpart of a time lag in a feedba
amplifier. Preliminary evidence of pattern formation i
these conditions has been presented in [6], though b
qualitative and quantitative analyses are lacking.

This mechanism breaks the stability of the homog
neous state inducing patterned states in the system.
Fig. 2 we report the intensity patterns with their corre
sponding far field patterns obtained by holding the inp
FIG. 2. Experimental patterns for fixedI0 ­ 150 mWycm2 and increasingDx. Top: near field. Bottom: far field, corresponding
to the Fourier spectrum.
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intensity I0 ­ 150 mWycm2 and gradually increasing
Dx. No patterns are observed forDx # 100 mm. For
small values ofDx the structures observed are roll-like,
with a spatial frequency decreasing for increasingDx,
as can be expected from the above discussion. For hig
values ofDx a continuous band of wave vectors is ex-
cited, resulting in patterns of increasing richness in the
near field.

Some important aspects of these phenomena are alrea
explained by a linear stability analysis of Eq. (1). The
temporal growth rate of the Fourier mode of spatia
frequency $q ­ sqx , qyd has real and imaginary parts,l $q

andv $q, given by

tlq ­ 21 2 l2
dsq2

x 1 q2
yd 2 bI0 cossqxDxd , (2)

and

tvq ­ 2bI0 sinsqxDxd , (3)

with b ; 2ag sinsũ 1 u0d. Here ũ denotes the homo-
geneous stationary solution of Eq. (1) forDx ­ 0, the
linear stability of which is considered. In the experimen-
tal conditions considered here,b is always positive, thus
ensuring the stability of the homogeneous stationary solu
tion ũ for Dx ­ 0.

From Eq. (2) lq . 0 requires cossq̃xDxd , 0. Fur-
thermore, the modes with maximum growth rate are give
by

2l2
dq̃x 2 bI0Dx sinsq̃xDxd ­ 0 , (4)

q̃y ­ 0 . (5)

Equation (4) hasq̃x solutions corresponding to the in-
tersections of a straight line of slope2l2

dyDxbI0 with
sinsq̃xDxd. For Dx ¿ ld the straight line is very close
to the horizontal axis; therefore, the sine function is inter
sected close to its zeros. Expanding aroundq̃xDx ­ np

(n odd to comply with the previous condition of negative
cosine) yields the approximate solutioñqx . npyDx.
Therefore, for largeDx, the most unstable mode is the
one having a spatial frequency equal to the inverse o
the spatial shift, as can be expected from our qualitativ
4129
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FIG. 3. Marginal stability curve,bI0 vs Dx. Continuous
line: theory. Dots: experiment. The fit between theory an
experiment is obtained forb ­ 0.012 cm2ymW. The different
curves are relative to excited bands of different ordern (see
text).

discussion on the instability mechanism. Relevant dev
tions from this result occur instead forDx # ld.

The threshold condition for the destabilization of th
uniform steady state is obtained from Eq. (2) and Eqs. (
and (5) as

bI0-th ­
1 1 l2

dq̃2
x

cossq̃xDxd
. (6)

The numerical solution of Eqs. (2) and (3) gives the ma
ginal stability curvebI0-thsDxd and the frequency selec-
tion curve qxsDxd which agree well with experimental
measurements, as shown in Figs. 3 and 4.

A nonzero imaginary partvq of the eigenvalue implies
that modeq has a phase velocityyq ­ vqyq. From
Eq. (3) it is to be expected that the observed pattern dr
at a velocity proportional to sinsqxDxd. This term is very
close to 0 forDx ¿ ld, and indeed no drift is observed
in these conditions. For small values ofDx sDx #

200 mmd, the observed intensity pattern actually drifts a
a velocity of the order of100 mmys that decreases for
increasing values ofDx.

In order to compare the prediction of the linear stabilit
analysis with the experimental observation reported
Fig. 2, we investigate the behavior of the system wh
it is driven slightly above threshold. In this case,
broadeningD $q of the unstable band is to be expected.
Fig. 4 we report the unstableqx andqy bands vsDx for
e ­

I02Ith

Ith
­ 0.42, numerically calculated from Eqs. (2)

and (6), together with their experimental counterpar
Along qx , the bands are centered around aDx-dependent
finite wave number [Fig. 4(a)]. Alongqy , for eachDx
the band of excited wave numbers ranges from 0 to
finite value [Fig. 4(b)]. For graphic clarity, in Fig. 4(b)
we plot only the extrema of the experimentally excite
bands, instead of all of the destabilized wave numbers,
we do in Fig. 4(a). Notice that, due to the symmetrie
qx ! 2qx , qy ! 2qy of Eq. (2), the whole set of
unstable wave numbers is given by the ones represen
4130
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FIG. 4. Spatial frequency selection curves in thesDx, qxd and
sDx, qyd planes. (a) The theory provides the continous lin
at threshold and the shadowed regions are unstable str
for e ; sI0 2 IthdyIth ­ 0.42. Light to dark gray correspond,
respectively, ton ­ 1, 3, 5, and 7 in the asymptotic relation
qx . npyDx. The vertical bars correspond to experimenta
excited wave numbers, fore ­ 0.42. (b) For eachn value
and fore ­ 0.42, the theory provides a whole range of spati
frequencies fromqy ­ 0 to the maximum corresponding to th
boundary of each gray region. The gray code is as in (
The bold lineqy ­ 0 and the points represent, respectively, th
minimum and maximum values of experimentally excited wa
numbers fore ­ 0.48.

in Figs. 4(a) and 4(b), plus their symmetrical ones havi
negative signs ofqx andqy.

The amount of the band broadening alongqx and
qy can be evaluated by expandinglsq, I0d in a Taylor
series around the threshold pointsqth, I0-thd for eachDx
and then imposinglsq, I0d . 0. This condition gives
jDqij ,

p
2bDI0yRi , wherei ­ x, y, DI0 ; I0 2 I0-th,

and we defined the curvatures of the curvels $qd around its
maximum asRi ; 1

2
≠2l

≠q2
i
jqth,I0-th . The expression of these

curvatures reads

Rx ­ 2l2
d 1

1
2

bI0-thsDxd2 cossq̃xDxd , (7)
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FIG. 5. Marginal stability curves for the problem here con
sidered withDx ­ 500 mm (a) and for a Kerr medium with
optical feedback (b). The diffusion length isld ­ 30 mm in
both cases. The diffractive lengthslld1y2 for the Kerr medium
with feedback is450 mm. In thesqx , qyd plane it is represented
as a projection of the marginal stability curves, with the sam
gray scale used for the three-dimensional structure.

Ry ­ 2l2
d . (8)

For fixed pump intensityI0, it can be seen that the cur
vature alongqx is determined both by a diffusion term and
by a term that specifically takes into account the nonl
cal interaction. Since cossq̃xDxd , 0, this term always
tends to increase the absolute value ofRx , resulting in a
Dx-dependent limitation to the broadening alongqx as
experimentally observed. Alongqy, however, the only
limiting factor to the bandwidth broadening is diffusion
For large values ofDx, whereI0-th is nearly constant, the
broadening of the bands follows the dependence ofRx and
Ry on Dx. For small values ofDx, correction to this be-
havior due to the dependence ofI0-th on Dx (Fig. 3) is
observed.
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The experimentally observed asymmetry of the broa
ening alongqx and qy is well reproduced by the numer
ics. The very large value of this asymmetry, due to t
fact that broadening alongqy is limited only by diffusion,
is in contrast with many other pattern forming instabil
ties occurring both in optics and in other fields. In ord
to elucidate this point, we report in Fig. 5 a compariso
between the marginal stability curves for the system d
cussed here and for a pattern forming system consist
of a defocusing Kerr slice with purely diffractive feed
back and without spatial shift [5]. In this latter case, th
diffractive scaleslld1y2 determines the width of the ex-
cited bands in any spatial direction. This length is mu
larger thanld in typical operating conditions, where the
narrowness of the diffractive bands is compared to t
diffusion-limited band that is present alongqy in the case
presented here.

In conclusion, we have presented evidence of optic
pattern formation due to a spatial shift in the absence
diffraction. The experimental occurrence of continuou
bands of unstable spatial frequencies with exceptiona
large width, as compared with other pattern formin
systems, has been explained in terms of the differe
interplay of nonlocal shift and diffusion in two orthogona
directions.
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