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Optical Diffraction-Free Patterns Induced by a Discrete Translational Transport
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We report the formation of spatial structures induced by a spatial offset in a two-dimensional
nonlinear optical interferometer in which diffractive effects are absent. The observed patterns arise
from the destabilization of wide, continuous bands in the Fourier spectrum. The selection of these
bands is shown to be determined by the interplay between the amount of spatial offset and the strength
of the diffusion in the nonlinear optical material. [S0031-9007(98)07536-X]

PACS numbers: 42.65.Sf, 47.54.+r

Dynamical instabilities leading to the formation of In our experiments, a plane light beam from an*Ar
spatial structures in extended systems driven out of thetaser operating at 514 nm impinges on the front of the
modynamical equilibrium [1] have been shown to oc-LCLV linearly polarized at an anglé, with respect tey,.
cur extensively in the realm of nonlinear optics [2—4]. The reflected light is fed back to the rear face of the LCLV
Among the systems in which optical pattern formation hasafter passing through a polarizer with the transmissive
been studied we recall lasers, nonlinear interferometersxis oriented at an anglé, with respect toe;. This
and systems formed by a nonlinear medium with diffrac-produces on the rear side of the LCLV an optical field
tive feedback. In most of these systems the selection ajiven by the superposition of the component polarized
the spatial frequencies that bifurcate, resulting in formaalong ¢, which has acquired the phase retardation
tion of spatial structures, is largely ruled by diffraction. and of the component polarized orthogonallydp A
As a consequence, a field of wavelengthpropagating couple of lenses in the feedback loop provides a one-to-
within a nonlinear optical system, including a free propa-one image of the LCLV front face onto a coherent fiber
gation length/, forms patterns at a “diffractive” spatial bundle that, in turn, relays this image to the back face of
frequencyfy = (Al)~!/2, or at a discrete set of frequen- the LCLV. In this way any effect due to diffractive free
cies simply related tg, [5]. propagation in the system is eliminated.

Pattern formation in the absence of diffraction has Furthermore, we introduce a nonlocal interaction by
been studied in optical systems with a rotation in themeans of a transverse displacement of the optical wave-
feedback loop [6,7]. The suppression of diffractive effectsfront in the feedback loop by an amouix. The
is obtained by adopting an image-forming configurationdisplacement is experimentally achieved by the use of
within a nonlinear interferometer. We stress that, beinga micrometric screw connected to the input end of the
diffraction peculiar to wave fields, its suppression leads tdiber bundle, allowing variations aix with a resolution
a dynamics that loses its specificity of being an “optical’of 5 um. In these conditions, the phase induced by the
one. lts identifying characteristics are spatial extension,

nonlinearity, and nonlocal interactions. L, LCLV
In this Letter, we study the formation of optical R BS m

patterns without diffraction when nonlocal interactions are )

introduced in the system via a spatial offéet. Systems o 7

with continuous transport given, e.g., by a drift velocity, R T f

resulting in the breaking of the translational symmetry and ¢ ;
in the onset of convective and absolute pattern forming
instabilities, have recently been studied in several physical ) ‘\Q
systems [8—10].

The experimental setup consists of a liquid crystal light
valve (LCLV) with optical feedback (Fig. 1). The LCLV MS
operates as a defocusing Kerr medium working in reflec- CCD
tion. The optical beam reflected from the valve’s front
face undergoes a phase retardatioproportional to the FIG. 1. Experimental setup. O: microscope objective;HB:
light intensity fed to the valve’s rear face. Because ofPinholes; BS, BS,: beam splitters; LCLV: liquid crystal light
the anisotropy of the liquid crystal molecules, howeverYaVe; Li, Lo: lenses of focal length/; FB: fiber bundie;

the oh tardati fect v the electric field PO: polarizer; X: direction of feedback displacement; MS:
€ phase retardation aftects only the electriC Tield COMPOzyicrometric screw; CCD: videocamera. Th¢ configuration

nent along the projectios of the liquid crystal director of the feedback loop provides a one-to-one imaging of the
on the LCLV plane. LCLV front plane on theF plane.
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liquid crystals on the light polarized along obeys the intensity 7, = 150 uW/cm? and gradually increasing

equation [11] Ax. No patterns are observed fdrx =< 100 um. For
ou I small values ofAx the structures observed are roll-like,
Tor —u(x,y, 1) + gViux,y,1) with a spatial frequency decreasing for increasihg,

as can be expected from the above discussion. For high

values of Ax a continuous band of wave vectors is ex-

+ uo(Vo, )T}, (1) ::]i;?,f_glejulting in patterns of increasing richness in the
ield.

Some important aspects of these phenomena are already

30 um are, respectively, the response time and th%x ; : e .
T ; plained by a linear stability analysis of Eqg. (1). The
diffusion length of the LCLV,(x,y) are the coordinates o ora) growth rate of the Fourier mode of spatial

in the plane transverse to the propagation direction > : ; A
V3 is the Laplacian operator in the,y) plane, anda gﬁgt’ﬁnggen é;]x,qy) has real and imaginary parts;
is positive (defocusing medium) and is comprehensive v
of both the optical losses of the feedback loop and the A, = —1 — I3(q; + ;) — Blycodg.Ax),  (2)
responsivity of the LCLV. The constant phaggVy, v)

sets the working point of the LCLV and is controlled by

— alp{l + ycogdu(x + Ax,y,1)

where [, is the input intensity,r = 100 ms andl; =

and

means of the ac voltage of frequeneyand amplitudeV Tw, = — Bl Sin(g,Ax), (3)
rms applied to it. Throughout the experiments reported e ~
here we kept fixedv = 4 KHz, Vo = 9 V resulting in ~ With 8 = —aysin(@ + ug). Here& denotes the homo-

— ; __ oS (0:—0)—cos (6, +65) geneous stationary solution of Eq. (1) faxx = 0, the
uo = 4. The modulation tery = CoG =7 ree0 76y & .. SO : .
[11] has the value of 0.978, having f(lxleﬂ'iz= 48° an linear stg_blllty of Whlch is consm_iered. In the experimen-
0, = 48°. tal conditions considered herg, is always positive, thus
ensuring the stability of the homogeneous stationary solu-
ion &z for Ax = 0.

From Eq. (2) A, > 0 requires co&j,Ax) < 0. Fur-

Equation (1) forAx = 0 is known to give rise to opti-
cal multistability among different homogeneous stationar
solutions for sufficiently high values df. In the experi- . i .
ment reported here, we choose low valuegofso that thermore, the modes with maximum growth rate are given
the system always remains in the lowest branch of stabilk—)y
ity for Ax = 0. Even though the homogeneous state is 2125, — BlyAxsin(g,Ax) =0, (4)
stable forAx = 0, a nonlocal interaction due thx # 0
can destabilize this state. Indeed, any spatial perturbation G, =0 (5)
of period2Ax in the direction of the offset will provide a ’ '
negative feedback but applied with a spatial phase shift dEquation (4) hasj, solutions corresponding to the in-
, thus providing a growing deviation from equilibrium. tersections of a straight line of slopd3/AxB1, with
This is the space counterpart of a time lag in a feedbackin(,Ax). For Ax > [, the straight line is very close
amplifier. Preliminary evidence of pattern formation in to the horizontal axis; therefore, the sine function is inter-
these conditions has been presented in [6], though botkected close to its zeros. Expanding arogpdx = n
gualitative and quantitative analyses are lacking. (n odd to comply with the previous condition of negative

This mechanism breaks the stability of the homogecosine) yields the approximate solutigpy = na/Ax.
neous state inducing patterned states in the system. [Fherefore, for largeAx, the most unstable mode is the
Fig. 2 we report the intensity patterns with their corre-one having a spatial frequency equal to the inverse of
sponding far field patterns obtained by holding the inputhe spatial shift, as can be expected from our qualitative

S@, - T vv‘f{i
TR 3 | ;

Ax=130 pm Ax=320pm  Ax=500pm  Ax=660 pm Ax=820 pm Ax=980 pm

FIG. 2. Experimental patterns for fixdg = 150 wW/cn? and increasing\x. Top: near field. Bottom: far field, corresponding
to the Fourier spectrum.
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FIG. 3. Marginal stability curve,8I, vs Ax. Continuous 0 200 400 600 800 1000

line: theory. Dots: experiment. The fit between theory and AX (um)
experiment is obtained fg8 = 0.012 cn?/uW. The different
curves are relative to excited bands of different ordefsee q (mml)
text). y
4

discussion on the instability mechanism. Relevant devia- cecessesssecsesss
tions from this result occur instead faix = ;. 3t P ’ cos®’

The threshold condition for the destabilization of the ) y o .o
uniform steady state is obtained from Eq. (2) and Egs. (4) .® < i
and (5) as ) 20 o .

1+ 1332 . . .
Blo-m = Codg.Ax) (6) It .
o

The numerical solution of Egs. (2) and (3) gives the mar- ‘
ginal stability curveBly.,(Ax) and the frequency selec- 0
tion curve ¢,(Ax) which agree well with experimental 0 200 400 600 800 1000
measurements, as shown in Figs. 3 and 4. AX (um)

A nonzero imaginary parb, of the eigenvalue implies . . .
that modeq has a phase velocity, = »,/q. From FIG. 4. Spatial frequency selection curves in the, g,) and

P «(Ax, g,) planes. (a) The theory provides the continous lines
Eq. (3) itis to be expected that the observed pattern drift t thrveshold and the shadowed regions are unstable stripes

at a velocity proportional to S:(qux). This_ term ISVery for e = (1, — Iw)/I = 0.42. Light to dark gray correspond,
close to 0 forAx > [;, and indeed no drift is observed respectively, ton = 1, 3, 5, and 7 in the asymptotic relation

in these conditions. For small values dfx (Ax = q. = nm/Ax. The vertical bars correspond to experimentally
200 wm), the observed intensity pattern actually drifts atexcited wave numbers, foe = 0.42. (b) For eachn value

; and fore = 0.42, the theory provides a whole range of spatial
a velocity of the order ofl00 um/s that decreases for frequencies fromy, = 0 to the maximum corresponding to the

increasing values alx. . _ . boundary of each gray region. The gray code is as in (a).
In order to compare the prediction of the linear stability The bold lineq, = 0 and the points represent, respectively, the
analysis with the experimental observation reported irminimum and maximum values of experimentally excited wave
Fig. 2, we investigate the behavior of the system wherpumbers fore = 0.43.
it is driven slightly above threshold. In this case, a
broadeningA g of the unstable band is to be expected. Injn Figs. 4(a) and 4(b), plus their symmetrical ones having
Fig. 4 we report the unstablg. andg, bands vsAx for  negative signs of, andg, .
= % = 0.42, numerically calculated from Egs. (2) The amount of the band broadening alopg and
and (6), together with their experimental counterpartsq, can be evaluated by expandindq,/y) in a Taylor
Along ¢g., the bands are centered around e-dependent series around the threshold poi@ty, 7o) for eachAx
finite wave number [Fig. 4(a)]. Along,, for eachAx  and then imposing\(q, /) > 0. This condition gives
the band of excited wave numbers ranges from 0 to Agq;| < \/—BAIL)/R;, Wwherei = x,y,Aly = Iy — Ip.q,
finite value [Fig. 4(b)]. For graphic clarity, in Fig. 4(b) and we defined the curvatures of the cun¢g) around its
we plot only the extrema of the experimentally excitedmaximum asr; = %f’iﬂql .- The expression of these
bands, instead of all of the destabilized wave numbers, §§,rvatures reads
we do in Fig. 4(a). Notice that, due to the symmetries
g« — —¢qx, g9y — —q, of Eq. (2), the whole set of 1
unstable wave numbers is given by the ones represented R, =1+ 5 Blyth(Ax)*codg.Ax),  (7)
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The experimentally observed asymmetry of the broad-
ening alongg, andg, is well reproduced by the numer-
ics. The very large value of this asymmetry, due to the
fact that broadening along, is limited only by diffusion,
is in contrast with many other pattern forming instabili-
ties occurring both in optics and in other fields. In order
to elucidate this point, we report in Fig. 5 a comparison
between the marginal stability curves for the system dis-
cussed here and for a pattern forming system consisting
of a defocusing Kerr slice with purely diffractive feed-
back and without spatial shift [5]. In this latter case, the
diffractive scale(A/)!/? determines the width of the ex-
cited bands in any spatial direction. This length is much
larger thanl; in typical operating conditions, where the
narrowness of the diffractive bands is compared to the
diffusion-limited band that is present alogg in the case
presented here.

In conclusion, we have presented evidence of optical
pattern formation due to a spatial shift in the absence of
diffraction. The experimental occurrence of continuous
bands of unstable spatial frequencies with exceptionally
large width, as compared with other pattern forming
systems, has been explained in terms of the different
interplay of nonlocal shift and diffusion in two orthogonal
directions.
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