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It is shown that it is impossible to construct a free theory of fermions on infinite hypercubic Euclid
lattice in four dimensions that (a) is ultralocal, (b) respects symmetries of hypercubic lattice, (c) h
corresponding kernel that satisfiesDg5 1 g5D ­ Dg5D (Ginsparg-Wilson relation), and (d) describes
a single species of massless Dirac fermions in the continuum limit. [S0031-9007(98)07564-4]
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The quest for incorporating chiral symmetry in lattic
regularized gauge theory has a long history. Man
approaches with various degrees of depth and aesth
appeal have been tried. Even though remarkable progr
has been achieved during the last few years, it is ha
to match a striking elegance and clarity of the pictu
that emerged during the last few months. So far, the
developments are mostly relevant for the vectorlike ca
but applications to chiral gauge theories appear to
around the corner.

At the heart of the above progress was the realizati
[1–3] that there exist potentially viable actions, satisfyin
the Ginsparg-Wilson (GW) relation [4]. IfD is a lattice
Dirac kernel, then the simplest form of GW relation is

g5D 1 Dg5 ­ Dg5D . (1)
Lüscher recognized that (1) can be viewed as a symme
condition [5]. Unlike chiral symmetry, this new symme
try [which we call Ginsparg-Wilson-Lüscher (GWL) sym
metry] involves a transformation that couples variables
different lattice sites and becomes a standard chiral sy
metry only in the continuum limit. GWL symmetry has
virtually the same consequences for the dynamics of t
lattice theory as the chiral symmetry does on the dyna
ics in continuum. In particular, it guarantees the corre
anomaly structure and the current algebra predictions
low energy QCD directly on the lattice [2,4–6]. There i
no need for tuning to recover aspects of chiral symmet
there are no complicated renormalizations, and there
no mixing between operators in different chiral represe
tations [2]. Particularly striking are also the complete
new avenues for studying topology on the lattice [1,6,7
All of this can be discussed in the standard local field th
ory framework as a consequence of GWL symmetry.
view of the Nielsen-Ninomiya theorem [8], it is hard to
imagine having things any better than this with respect
chiral issues in lattice QCD.

While all of this definitely holds a promise of extraor
dinary progress in the near future, the troubling histo
of chiral symmetry on the lattice indicates that it migh
come for a price. Indeed, one drawback of the know
solutions of the GW relation is that they are not ultralo
cal, i.e., that the interaction between fermionic variables
nonzero for sites arbitrarily far away from each other [9
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This complicates the perturbation theory with such action
considerably and, also, one looses the obvious numeri
advantages stemming from sparcity of the convention
operators such as the Wilson-Dirac operator. Moreove
while locality (exponential decay of interaction at large
distances) can be ensured easily for free actions, it is us
ally not obvious in the presence of the gauge fields if th
action is not ultralocal. Consequently, it would be muc
more preferable to work with ultralocal actions and th
question arises whether GWL symmetry and ultralocali
can at least in principle coexist.

In this Letter, it is argued that such hopes may no
materialize. In particular, we prove that the GW relatio
(1) cannot be satisfied by a free ultralocal kernel definin
a theory with appropriate continuum limit, and respectin
the symmetries of the hypercubic lattice. Such a theore
can be extended to a more general GW relationg5D 1

Dg5 ­ 2Dg5RD, with R being an ultralocal matrix,
trivial in spinor space. Also, analogous statements ho
in two dimensions. Discussion of these results as well
a more detailed account of the proof presented here w
be given elsewhere [10].

Consider a system of 4-component fermionic degre
of freedom living on the sites of an infinite 4-dimensiona
hypercubic Euclidean lattice. Free theory of these ferm
ons is described by some kernelD which can be uniquely
expanded in the form

Dm,n ­
16X

a­1

Ga
m,nGa. (2)

In the above equationm, n label the space-time lattice
points andGa ’s are the elements of the Clifford basis
G ; hI, gm, g5, g5gm, smn,sm,ndj. Gamma matrices sat-
isfy anticommutation relationshgm, gnj ­ 2dm,nI, and we
define g5 ­ g1g2g3g4, smn ; i

2 fgm, gng. Because of
the completeness of Clifford basis on the space of4 3 4
complex matrices, Eq. (2) describes arbitrary kernel an
thus arbitrary quadratic action̄cDc.

The requirements of symmetry, ultralocality, and con
tinuum limit constitute the set of restrictions on the abov
space of fermionic lattice theories. Before we procee
to implement them, let us note that hypercubic lattic
structure is invariant under translations by arbitrary lattic
© 1998 The American Physical Society 4063



VOLUME 81, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 9 NOVEMBER 1998

y-
ic

e

).

)
g

ere
s.
al
e

t

ns

e

vector and under the subset ofOs4d transformations—
hypercubic rotations and reflections. We refer to the fo
mer astranslation invarianceand to the latter ashypercu-
bic invariance.

Translation invariance and ultralocality.—Translation
invariance restricts the form of the action substantial
since it implies

Ga
m,n ­ Ga

0,n2m ; ga
n2m a ­ 1, 2, . . . , 16 .

By ultralocality we mean that the fermionic variable
do not interact beyond some finite lattice distance. L
us denote byCN the set of all lattice sites contained
in the hypercube of side2N , centered atn ­ 0, i.e.,
CN ; hn:jnmj # N , m ­ 1, . . . , 4j. One convenient way
of defining ultralocality for translationally invariant actions
is to require the existence of a positive integerN , so
thatga

n ­ 0, ; n ” CN , ; a. Translation invariance and
ultralocality together imply the existence of the diagona
Fourier image of the space-time part ofD. In particular,

Dspd ­
16X

a­1

GaspdGa, (3)

where

Gaspd ;
X

n[CN

ga
neip?n. (4)

Gaspd are thus the complex-valued periodic functions o
lattice momentap ; sp1, . . . , p4d, whose Fourier series
has afinitenumber of terms. It should be emphasized th
there is a true mathematical equivalence between the
of all kernels satisfying translation invariance and ultra
locality, and the set of kernels defined by Eqs. (3) and (4

Hypercubic symmetry.—We will discuss hypercubic
symmetry directly in the Fourier space which is conve
nient for our purposes. LetH be an element of the
hypercubic group in defining representation andH the
corresponding element of the representation induced
the hypercubic group by spinorial representation ofOs4d.
We require that the action̄cDc does not change under
cspd ! HcsH 21pd, c̄spd ! c̄sH 21pdH21. This is
equivalent to the requirement

Dspd ­
16X

a­1

GaspdGa ­
16X

a­1

GasH pdH21GaH . (5)

Since any hypercubic transformationH can be decom-
posed into products of reflections of single axis (Rm) and
exchanges of two different axes (Xmn), it is sufficient to
require invariance under these operations. Transform
tion properties of all the elements of the Clifford basis ar
determined by the fact thatgm transforms aspm (vector).
In particular

R21
n gmRn ­

Ω
2gm, if m ­ n ;
gm, if m fi n ,

and
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X21
rsgmXrs ­

8<: gs , if m ­ r ;
gr , if m ­ s ;
gm, otherwise.

The elements of the Clifford basis naturally split into
groups with definite transformation properties and the h
percubic symmetry thus translates into definite algebra
requirements on functionsGaspd some of which we will
exploit.

Continuum limit.—Next, it is required that low energy
physics happens only forp , 0, where it corresponds
to a single massless relativistic Dirac fermion in th
continuum. This implies the following local properties:

Gaspd ­

(
ipm 1 Osp2d, if Ga ­ gm ;
Osp2d, if Ga fi gm, ; m ,

(6)

and the restriction thatDspd has to be invertible away
from the origin of the Brillouin zone (no doublers).

We now put forward the following definition.
Definition (setU).—Let m [ h1, 2, 3, 4j, and leta [

h1, 2, . . . , 16j. Let furtherGaspd be the complex valued
functions of real variablespm, and let Dspd be the
corresponding matrix function constructed as in Eq. (3
We say that the 16-tuplesG1, . . . , G16d belongs to the set
U if and only if the following holds:

sad ' CN such thatGaspd has the form (4),; a.
sbd Dspd satisfies condition (5).
sgd Dspd satisfiesDg5 1 g5D ­ Dg5D.
sdd Gaspd satisfy (6),; a.
sed Dspd is invertible unlesspm ­ 0 (mod 2p), ; m.

It should be noted that for every action (kernel) (2
satisfying our requirements there is a correspondin
element of U and vice versa. If the requirement of
ultralocality is replaced by a weaker condition of locality
(at least exponential decay at large distances), then th
exist free actions satisfying the rest of the condition
However, there do not appear to be examples of ultraloc
actions enjoying the same level of symmetry. In fact, w
now prove the following statement.

Theorem.—SetU is empty.
Proof: We will proceed by contradiction. Assume tha

there is at least one elementsG1, . . . , G16d [ U . To such
an element we can assign a 16-tuple of functions ofsingle
variable sG1, . . . , G16d by restrictingGaspd to the points
p ; sq, q, 0, 0d, i.e.,

Gaspd
p­sq,q,0,0d

! Gasqd .

We now investigate the consequences of conditio
sad sed on restrictionsGasqd.

sad As a consequence of Eq. (4), functionsGasqd have
Fourier series with a finite number of terms, i.e., ther
exist non-negative integersK , L, such that

G
asqd ­

X
2L#m#K

ga
meiq?m, ; a . (7)
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sbd Consider the terms inDspd of the formiBmspdgm.
Invariance under reflections implies

Bms. . . , 2pn , . . .d ­

Ω
2Bms. . . , pn , . . .d, m ­ n ;
1Bms. . . , pn , . . .d, m fi n .

Applying this to the reflection ofp3 or p4, we have

B4sqd ­ B4sq, q, 0, 0d ­ 2B4sq, q, 0, 0d ­ 0 ,

and similarlyB3sqd ­ 0. Furthermore, since underX12,
g1 exchanges withg2, we must have

B1sq, q, 0, 0d ­ B2sq, q, 0, 0d ; Bsqd .

Next, consider the termCspdg5. Sinceg5 ! 2g5 under
Rm, it is required that

Cs. . . , 2pm, . . .d ­ 2Cs. . . , pm, . . .d, ; m .

Reflecting the componentp4, for example, this gives

Csqd ­ Csq, q, 0, 0d ­ 2Csq, q, 0, 0d ­ 0 .

For the terms of the formiEmspdg5gm invariance under
reflections demands

Ems. . . , 2pn , . . .d ­

Ω
1Ems. . . , pn , . . .d, m ­ n ;
2Ems. . . , pn , . . .d, m fi n ,

and using similar arguments as above, we can infer fro
this that Emsqd ­ 0, ; m. Finally, consider the terms
Fmnsmn. Invariance under reflections implies

Fmns. . . , 2pr , . . .d

­

Ω
2Fmns. . . , pr , . . .d, r ­ m or n ;
1Fmns. . . , pr , . . .d, otherwise,

which in turn ensures thatFmnsqd ­ 0, except forF12sqd.
However, under the exchangeX12 of p1 and p2 we
haves12 ! 2s12, while F12sqd ! F12sqd, implying that
even this term has to vanish. Summarizing the releva
implications of hypercubic symmetry, restrictionDsqd of
Dspd must have the form

Dsqd ­ s1 2 AsqddI 1 iBsqd sg1 1 g2d . (8)

sgd GW relation for Dsqd given in Eq. (8) takes a
simple form

A2
1 2B2 ­ 1 . (9)

sdd The local properties (6) imply

Asqd ­ 1 1 Osq2d Bsqd ­ q 1 Osq2d . (10)

To proceed, we will rely on the lemma stated belo
this proof. According to the lemma, the solutions o
Eq. (9) that have the form (7) (with some minimalK , L)
exist only if K ­ L. If K ­ L ­ 0 (case of constant
functions), then condition (10) cannot be satisfied and
avoid contradiction, we have to assume thatK ­ L . 0.
If that is the case, then the lemma states that the neces
(but not sufficient) condition forsA, Bd to be the solution
of Eq. (9) is that only the highest frequency modes a
m

nt

w
f

to
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present in their Fourier expansion, i.e.,

Asqd ­ a2Ke2iq?K 1 aKeiq?K ,

Bsqd ­ b2Ke2iq?K 1 bK eiq?K .

Conditions (10) then dictate uniquely what the coeffi
cients in the above equations have to be. In particu
lar, a2K ­ aK ­ 1y2 and b2K ­ 2bK ­ iy2K, which
corresponds toAsqd ­ cossKqd, Bsqd ­ sinsKqdyK. For
these functions we have

A
2

1 2B
2

­ cos2sKqd 1
2

K2 sin2sKqd ,

and consequently, Eq. (9) can be satisfied only if2yK2 ­
1. However, there is no positive integerK so that this
condition is satisfied. We have therefore arrived at th
contradiction with the existence ofsG1, . . . , G16d [ U
and the proof is thus complete.

In essence, the above proof relies on two majo
ingredients: First is the fact that it is sufficient to conside
a single periodic direction in the Brillouin zone and tha
the hypercubic symmetry is powerful enough to rende
the problem tractable. The second ingredient is a perha
surprising result that periodic solutions of equations o
type (9) either involve a single Fourier component o
infinitely many of them. This is summarized by the
following lemma, whose complete proof will be given in
the detailed account of this work [10].

Lemma.—Let K,L be non-negative integers andd a
positive real number. Consider the setF K ,L of all pairs
of functionsfAsqd, Bsqdg that can be written in the form

Asqd ­
X

2L#n#K

aneiq?n Bsqd ­
X

2L#n#K

bneiq?n,

where q [ R, n [ Z, and an, bn [ C are such that
aK , bK do not vanish simultaneously anda2L, b2L do not
vanish simultaneously. Further, letF

K ,L
d , F K ,L denote

the set of all solutions onF K ,L of the equation

Asqd2 1 dBsqd2 ­ 1 . (11)

Then the following holds:
(a) If K ­ L ­ 0, then

F
0,0

d ­ hfa0, b0g:a2
0 1 db2

0 ­ 1j .

(b) If K ­ L . 0, thenF
K ,K

d ­ hfAsqd, Bsqdgj, with

Asqd ­ a2Ke2iq?K 1 aK eiq?K ,

Bsqd ­ b2Ke2iq?K 1 bKeiq?K ,

and

aK ­ ci
p

d bK a2K ­
c

4i
p

d bK
b2K ­

1
4dbK

,

wherebK fi 0,
p

d . 0, andc ­ 61.
(c) If K fi L, thenF

K ,L
d ­ [.
4065
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Outline of the proof.—Using the completeness an
othogonality of the Fourier basis, Eq. (11) is equivale
to the following set of conditions on Fourier coefficientsX

2L#n#K

2L#k2n#K

anak2n 1 d
X

2L#n#K

2L#k2n#K

bnbk2n ­ dk,0 ,

where22L # k # 2K .
Case (a) is obvious and we start with case (b): The id

is to explicitly solve the above equations by analyzin
them in the appropriate sequence. We start with the gro
K # k # 2K , which involves only coefficients of non-
negative frequencies. By induction, starting fromk ­ 2K
and continuing down, it is possible to show that this grou
of conditions is equivalent to

an ­ ci
p

d bn

p
d . 0, c ­ 61 , (12)

where n ­ 0, 1, . . . , K. Similarly, analyzing the group
involving only coefficients of nonpositive frequencies
i.e., 22K # k # 2K, we arrive at

a2n ­ ci
p

d b2n

p
d . 0, c ­ 61 , (13)

for n ­ 0, 1, . . . , K. Inserting results (12) and (13) in
condition fork ­ 0, impliesc ­ 2c, and consequently,

a0 ­ b0 ­ 0 .

Using these results, we can start induction atk ­ K 2 1
to show that conditions for1 # k # K 2 1 lead to

b2n ­ 0 ­ a2n n ­ 1, 2, . . . , K 2 1 ,

and, analogously, for2K 1 1 # k # 21 we arrive at

bn ­ 0 ­ an n ­ 1, 2, . . . , K 2 1 .

Finally, the last condition that was not fully exploited is
the one fork ­ 0, which now simplifies to

bKb2K ­
1

4d
.

The above steps establish the result (b).
Case (c).—Technically, this is arrived at in a com-

pletely analogous manner to case (b). However, due
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the asymmetry between positive and negative frequenc
the equation fork ­ 0 can never be satisfied.

Let us close by noting that in the proof of the Theorem
conditionsed was not used at all. In other words, there a
no acceptable ultralocal solutions of (1) with or withou
doublers. This is not true if the requirement of hypercub
symmetry is relaxed. In that case, there exist ultraloc
solutions with doublers and it is still an open questio
whether doubler-free solutions do exist. Since breaki
the hypercubic symmetry carries with itself the necess
of tuning to recover rotation invariance in the continuu
limit, it is not obvious whether such a possibility would
be practically viable. On the other hand, theoretically
would be quite interesting to know whether hypercub
symmetry can be traded for GWL symmetry.
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