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Ginsparg-Wilson Relation and Ultralocality
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It is shown that it is impossible to construct a free theory of fermions on infinite hypercubic Euclidean
lattice in four dimensions that (a) is ultralocal, (b) respects symmetries of hypercubic lattice, (c) has a
corresponding kernel that satisfiBgys + ysD = DysD (Ginsparg-Wilson relation), and (d) describes
a single species of massless Dirac fermions in the continuum limit. [S0031-9007(98)07564-4]

PACS numbers: 11.15.Ha, 11.30.Rd

The quest for incorporating chiral symmetry in lattice This complicates the perturbation theory with such actions
regularized gauge theory has a long history. Manyconsiderably and, also, one looses the obvious numerical
approaches with various degrees of depth and aesthetidvantages stemming from sparcity of the conventional
appeal have been tried. Even though remarkable progresperators such as the Wilson-Dirac operator. Moreover,
has been achieved during the last few years, it is haravhile locality (exponential decay of interaction at large
to match a striking elegance and clarity of the picturedistances) can be ensured easily for free actions, it is usu-
that emerged during the last few months. So far, thesally not obvious in the presence of the gauge fields if the
developments are mostly relevant for the vectorlike casegction is not ultralocal. Consequently, it would be much
but applications to chiral gauge theories appear to benore preferable to work with ultralocal actions and the
around the corner. question arises whether GWL symmetry and ultralocality

At the heart of the above progress was the realizatioran at least in principle coexist.

[1-3] that there exist potentially viable actions, satisfying In this Letter, it is argued that such hopes may not
the Ginsparg-Wilson (GW) relation [4]. B is a lattice materialize. In particular, we prove that the GW relation
Dirac kernel, then the simplest form of GW relationis (1) cannot be satisfied by a free ultralocal kernel defining
ysD + Dys = DysD. (1)  atheory with appropriate continuum limit, and respecting
Liischer recognized that (1) can be viewed as a symmet he symmetries of the hypercubic lattice. Such_ a theorem
condition [5]. Unlike chiral symmetry, this new symme- ¢an be extended to a more general GW relateb +
try [which we call Ginsparg-Wilson-Liischer (GWL) sym- D¥s = 2D¥sRD, with R being an ultralocal matrix,
metry] involves a transformation that couples variables oﬁ”v'al in spinor space. Also, analogous statements hold

different lattice sites and becomes a standard chiral syn{? WO dimensions. Discussion of these results as well as
metry only in the continuum limit. GWL symmetry has a more detailed account of the proof presented here will

virtually the same consequences for the dynamics of thBe given elsewhere [10].

lattice theory as the chiral symmetry does on the dynam- f%oniderl'a.systemh of '4-corTf1pon.e?t .ferr:lg'nlc dggre?s
ics in continuum. In particular, it guarantees the correc! reeédom living on the sites of an Infinite 4-dimensiona

anomaly structure and the current algebra predictions fofYPereubic Euclidean lattice. Free theory of these fermi-

low energy QCD directly on the lattice [2,4—6]. There is ons1s desqubed by some kerlwhich can be uniquely

no need for tuning to recover aspects of chiral symmetry€xPanded in the form g

there are no complicated renormalizations, and there is D, = ZGa Te )

no mixing between operators in different chiral represen- e e e

tations [2]. Particularly striking are also the completely

new avenues for studying topology on the lattice [1,6,7]In the above equatiom:,n label the space-time lattice

All of this can be discussed in the standard local field thepoints andI'*’s are the elements of the Clifford basis

ory framework as a consequence of GWL symmetry. Inl' = {l, ¥4, ¥5, ¥5Yu> Tpv(u<rv)}. Gamma matrices sat-

view of the Nielsen-Ninomiya theorem [8], it is hard to isfy anticommutation relationy,, y,} = 26,0, and we

imagine having things any better than this with respect talefine ys = y1y2y3¥4, 0w = 5[y, v»]. Because of

chiral issues in lattice QCD. the completeness of Clifford basis on the spacd of 4
While all of this definitely holds a promise of extraor- complex matrices, Eq. (2) describes arbitrary kernel and

dinary progress in the near future, the troubling historythus arbitrary quadratic actiopD .

of chiral symmetry on the lattice indicates that it might The requirements of symmetry, ultralocality, and con-

come for a price. Indeed, one drawback of the knowrtinuum limit constitute the set of restrictions on the above

solutions of the GW relation is that they are not ultralo-space of fermionic lattice theories. Before we proceed

cal, i.e., that the interaction between fermionic variables ido implement them, let us note that hypercubic lattice

nonzero for sites arbitrarily far away from each other [9].structure is invariant under translations by arbitrary lattice
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vector and under the subset 6f(4) transformations— Yo if u=p;
hypercubic rotations and reflections. We refer to the for- Xp‘,}yﬂxpg = {y,,, if u=o;
mer astranslation invarianceand to the latter akypercu- Yo otherwise
bic invariance
Translation invariance and ultralocality—Translation ~The elements of the Clifford basis naturally split into
invariance restricts the form of the action substantiallygroups with definite transformation properties and the hy-

since it implies percubic symmetry thus translates into definite algebraic
. . . requirements on function§“(p) some of which we will
Gm,n = GO,n*m = &8n-m a = 1’2’ .5 16. eXpIOit.

Continuum limit—Next, it is required that low energy
hysics happens only fop ~ 0, where it corresponds
0 a single massless relativistic Dirac fermion in the
continuum. This implies the following local properties:

By ultralocality we mean that the fermionic variables
do not interact beyond some finite lattice distance. Le
us denote byCy the set of all lattice sites contained
in the hypercube of sideN, centered atr = 0, i.e.,
Cy ={n:lny,l = N,u = 1,...,4}. One convenient way

of defining ultralocality for translationally invariant actions  G“(p) = {
is to require the existence of a positive integér so

thatgs = 0,V n & Cy, V a. Translation invariance and
ultralocality together imply the existence of the diagonal
Fourier image of the space-time partldf In particular,

ipy + o(p?), if T =vy,; (6)
o(p?), it T # y,.V p.

and the restriction thab(p) has to be invertible away

from the origin of the Brillouin zone (no doublers).

16 We now put forward the following definition.

D(p) = Z G(p)Te, A3) Definition (setU).—Let u € {1,2,3,4}, and leta €
o=l {1,2,...,16}. Let furtherG*(p) be the complex valued

functions of real variabley,, and let D(p) be the

where corresponding matrix function constructed as in Eq. (3).
GY(p) = Z gle?™m. (4) We say that the 16-tupl&G', ..., G'®) belongs to the set
nECy ‘U if and only if the following holds:

(a) 3 Cy such thatG*(p) has the form (4)¥ a.
(B) D(p) satisfies condition (5).
(y) D(p) satisfiesDys + ysD = DysD.
(6) G(p) satisfy (6),V a.
(e) D(p) is invertible unlesgp,, = 0 (mod27), V u.
It should be noted that for every action (kernel) (2)
satisfying our requirements there is a corresponding
element of U and vice versa. If the requirement of
ultralocality is replaced by a weaker condition of locality
(at least exponential decay at large distances), then there
exist free actions satisfying the rest of the conditions.
Oplowever, there do not appear to be examples of ultralocal
actions enjoying the same level of symmetry. In fact, we
now prove the following statement.
Theorem—SetU is empty.
16 6 A Proof: VIVe will procleede(by1 contracljgg:tionl.uAssume ;[]hat
— a a _ a ~17a there is at least one elemdidt’,...,G'°) € U. To suc
Dip) ;G ()T Zl G pHTTH. () an element we can assign a 16-tuple of functionsiogle

: . . variable (G',...,G'®) by restrictingG“(p) to the points

Since any hypercubic transformatigh can be decom- — ( ; ) by 9G“(p) P
X X ) p =(q,9,0,0),i.e.,

posed into products of reflections of single ax& () and B
exchanges of two different axeX({,,), it is sufficient to Ga(p)wﬁ), G(q).
require invariance under these operations. Transforma- ' ' -
tion properties of all the elements of the Clifford basis areVe now |nves_t|g_ate_tahe consequences of conditions
determined by the fact that, transforms ap,, (vector). (a)-(e) on restrictionsG™ ().

G?(p) are thus the complex-valued periodic functions of
lattice momentap = (p1,..., p4), whose Fourier series
has &finite number of terms. It should be emphasized that
there is a true mathematical equivalence between the set
of all kernels satisfying translation invariance and ultra-
locality, and the set of kernels defined by Egs. (3) and (4)
Hypercubic symmetry=-We will discuss hypercubic
symmetry directly in the Fourier space which is conve-
nient for our purposes. Lef{ be an element of the
hypercubic group in defining representation afdthe
corresponding element of the representation induced
the hypercubic group by spinorial representatiorO¢4).
We require that the actiofwDy does not change under
¢(p) — Hp(H 'p), #(p) = $(H 'p)H™'. Thisis

equivalent to the requirement

In particular (a) As a consequence of Eq. (4), functio@§(¢) have
_ Fourier series with a finite number of terms, i.e., there
—1 ) T Ve if w=w; exist non-negative integess, L, such that
R, nRV—{M if u* v, _
G'(9)= D gue", Va. (7)
and —L=m=K
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(B) Consider the terms i ( p) of the formiB,(p)y,.  presentin their Fourier expansion, i.e.,

Invariance under reflections implies — o .
P Alg) = a_ge UK + GgeltK,

B.( . ):{—B#(...,p,,,...), w=v;
JTA TR [ZERE +B,¢L(~~',Pm---)’ n + v, E(q) :Z_Kefiq-K +EKeiq.K‘
Applying this to the reflection ops or p,, we have Conditions (10) then dictate uniquely what the coeffi-
Bi(g) = Ba(q,4,0,0) = —Ba(g,4,0,0) = 0, cients in the above equations have to be. In particu-

o _ . lar,a_x = ax = 1/2 andb_g = —bg = i/2K, which
and similarlyB3(¢) = 0. Furthermore, since undeX1>,  corresponds ta(g) = cosKq), B(g) = sin(Kq)/K. For

y1 exchanges withy,, we must have these functions we have
— =7 — — 2 .
Bi(g,4,0,0) = Bx(q,4,0,0) = B(q). A> + 2B° = cod(Kq) + 3 SiP(Kq),
Next, consider the terr@'(p)ys. Sinceys — —vys under o
R, itis required that and consequently, Eq. (9) can be satisfied onfy/iK?> =
1. However, there is no positive integé&r so that this
Cl.o.=pu>-) = =Cl.oopp,.), Vo condition is satisfied. We have therefore arrived at the
Reflecting the component,, for example, this gives contradiction with the existence aG',...,G'%) € U
_ and the proof is thus complete.
Clg) = C(g,4,0,0) = —C(q,4,0,0) = 0. In essence, the above proof relies on two major
reflections demands a single periodic direction in the Brillouin zone and that
the hypercubic symmetry is powerful enough to render
E (...~ ) = {+Eu(- s Pusee i) m=vs the problem tractable. The second ingredient is a perhaps
pleser TPy —Eu(...pus--)s mF v, surprising result that periodic solutions of equations of

r}ype (9) either involve a single Fourier component or
infinitely many of them. This is summarized by the
following lemma, whose complete proof will be given in
the detailed account of this work [10].
Fuo(cooi=pp,...) Lemma—Let K,L be non-negative integers ant a
(=Pl ppr, p=pory; positive real number. Consider the _§l’“ of all pairs
= { +F (P, otherwise of functions[A(q), B(g)] that can be written in the form

and using similar arguments as above, we can infer fro
this that £ ,(¢) = 0, V u. Finally, consider the terms
F,,0.,. Invariance under reflections implies

which in turn ensures tha,,, (¢) = 0, except forF,(g). Alg) = Z ape'™ B(q) = Z bye'™,
However, under the exchang¥,» of p; and p, we —L=n=K ~L=n=K

haveo, — —o,, While F12(g) — Fi2(q), implying that  where ¢ € R,n € Z, and a,,b, € C are such that
even this term has to vanish. Summarizing the relevantg, bx do not vanish simultaneously aad,,b_; do not
implications of hypercubic symmetry, restricti@(q) of  vanish simultaneously. Further, 18" ¢ FXL denote

D(p) must have the form the set of all solutions off X of the equation
D(q) = (1 — A(@)l + iB(g) (y1 + 2). (8) A(g)?* + dB(g)* = 1. (11)
_(y) GW relation for D(¢) given in Eq. (8) takes @  Then the following holds:
simple form (a)If K = L = 0, then
-2 =2
AT 2B =1 ®) Fi = Alao.bolaj + dbg = 1}.

(6) The local properties (6) imply
Alg) =1+ 0(¢") Blg=q+ 0. (10)

To proceed, we will rely on the lemma stated below
this proof. According to the lemma, the solutions of
Eq. (9) that have the form (7) (with some minim&l L)
existonly if K =L. If K =L = 0 (case of constant and
functions), then condition (10) cannot be satisfied and to c 1
avoid contradiction, we have to assume thkiat= L > 0. 9k — civd bk a-g = 4ivJd bx b-x = ddbe’
If that is the case, then the lemma states that the necessary K K
(but not sufficient) condition fofA, B) to be the solution wherebgx # 0,+/d > 0, andc = =1.
of Eq. (9) is that only the highest frequency modes are (c) If K # L, thenj-’dK’L = .

() If K = L > 0, thenF* = {[A(q), B(¢q)]}, with

Alg) = a_ge K + qpeltK,

B(g) = b_ge 19K 4 pretK
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Outline of the proof.—Using the completeness andthe asymmetry between positive and negative frequencies,
othogonality of the Fourier basis, Eq. (11) is equivalentthe equation fok = 0 can never be satisfied.

to the following set of conditions on Fourier coefficients:
Z apdg—n + d Z bnbk*n = 6k,0’

—L=n=K —L=n=K
—L=k—n=K —L=k—n=K

where—2L = k = 2K.

Let us close by noting that in the proof of the Theorem,
condition(e) was not used at all. In other words, there are
no acceptable ultralocal solutions of (1) with or without
doublers. This is not true if the requirement of hypercubic
symmetry is relaxed. In that case, there exist ultralocal

Case (a) is obvious and we start with case (b): The idegg|ytions with doublers and it is still an open question

is to explicitly solve the above equations by analyzinghether doubler-free solutions do exist. Since breaking
them in the appropriate sequence. We start with the grougye pypercubic symmetry carries with itself the necessity

K = k = 2K, which involves only coefficients of non-
negative frequencies. By induction, starting frém= 2K

of tuning to recover rotation invariance in the continuum
limit, it is not obvious whether such a possibility would

and continuing down, it is possible to show that this grouphe practically viable. On the other hand, theoretically it

of conditions is equivalent to
an = ciNdb,  d>0,c=*1, (12)

wheren = 0,1,...,K. Similarly, analyzing the group
involving only coefficients of nonpositive frequencies,
i.e., —2K = k = —K, we arrive at

a,=7civdb_, Nd>0¢c==*1, (13)

for n =0,1,...,K. Inserting results (12) and (13) in
condition fork = 0, impliesc = —¢, and consequently,

ag = by = 0.

Using these results, we can start inductiotat K — 1
to show that conditions for = k = K — 1 lead to

b_,=0=a_, n=12....K—1,
and, analogously, forK + 1 = k = —1 we arrive at
b, =0=a, n=12,....K — 1.

Finally, the last condition that was not fully exploited is
the one fork = 0, which now simplifies to

1

@ .
The above steps establish the result (b).
Case (cy—Technically, this is arrived at in a com-

be—K =

would be quite interesting to know whether hypercubic
symmetry can be traded for GWL symmetry.
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