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A Practical Implementation of the Overlap Dirac Operator
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A practical implementation of the overlap Dirac operatorf1 1 g5esHdgy2 is presented. The
implementation exploits the sparseness ofH and does not require full storage. A simple application to
parity invariant three dimensional SU(2) gauge theory is carried out to establish that zero modes re
to topology are exactly reproduced on the lattice. [S0031-9007(98)07537-1]

PACS numbers: 11.15.Ha, 11.30.Rd
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The known elementary particles and their interaction
are described by a chiral gauge theory. This theo
has a large ultraviolet cutoff of unknown nature. It i
nevertheless useful because predictions based on Feyn
diagrams are independent of this cutoff—the theory
renormalizable. In general, if a renormalizable fiel
theory is not asymptotically free, all its quantitative
predictions have a built-in inaccuracy that is negligible fo
weak couplings but becomes large at high energies wh
the couplings are strong. On the other hand, an asym
totically free theory like QCD makes infinitely accurate
quantitative predictions at all energies. The couplin
now becomes strong at low energies, and there Feynm
diagrams are useless: One needs nonperturbative w
to calculate. Asymptotically free chiral gauge theorie
are special in that their Feynman diagrams make use
predictions at high energies only if delicate anoma
cancellations occur. The anomaly cancellation in gau
theories of QCD type is less delicate, and nonperturbati
methods exist for low energy calculations—the Euclidea
lattice provides a generic nonperturbative tool. But,
is still controversial whether it is at all possible to do
meaningful calculations in an asymptotically free chira
gauge theory at low energies. There are no-go theore
on the lattice indicating that chiral gauge theories a
fundamentally different from vectorlike gauge theorie
in this respect. Nevertheless, steady progress has b
made during the last five years. Now, after all, it appea
that asymptotically free chiral gauge theories do hav
the same predictive power as their vectorlike relative
This is relevant even for chiral theories containing som
interactions that are not asymptotically free, as long as t
related couplings are small enough.

A simpler related long-standing problem has been th
preservation of global chiral symmetries on the lattic
for vectorlike gauge theories, like QCD. A solution
(the overlap) has been found but in the initial stages
the finding practical applicability seemed limited to two
dimensions (2D). The overlap was developed startin
from [1], which in turn was motivated by [2] and [3]. The
formulation of vectorlike theories, which is the main focu
of this Letter, can be found in Sec. 9 of Ref. [4]. Work
on 2D examples was successful [5] and added confiden
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in the basic idea. This induced a subsequent search
simplifications. One year ago a new, equivalent but mo
compact, formulation of exactly massless fermions on t
lattice [6] was found. It has a fermion action induce
by integrating out all but one of the infinite number o
fermions that produce the overlap. The fermions th
are integrated out are heavy and the “miracle” is t
relative simplicity of the action for the remaining massle
fermion. This action conforms to a criterion introduce
many years ago by Ginsparg and Wilson (GW) [7]
assure continuumlike Ward identities on the lattice. T
simple action produced by the overlap is the first know
acceptable closed form solution to the GW requireme
To date, there are no other explicit solutions. Relat
work can be found in [8,9].

In spite of its compact form, the overlap-Dirac operat
is not easy to work with numerically, and its practica
usefulness in dimensions higher than two has been unc
until now. One purpose of this Letter is to present
new procedure to simulate the overlap Dirac operator
the computer. This procedure holds the promise to
practicable in three and four dimensional gauge theorie

One of the central issues in gauge theories is t
spontaneous breakdown of global chiral symmetries. T
issue could not be addressed in a clean way on the lat
until now, but the new development makes this possible

In three dimensions there are interesting models t
are parity invariant and have analogs of four dimension
global chiral symmetries [10]. Intensive investigation
have indicated that spontaneous breakdown of th
symmetries takes place if the (even) number of flavo
is small enough.

In the continuum spontaneous chiral symmetry brea
down is correlated with an enhancement in the spec
density of the Dirac operator around zero. Clean checks
this were impossible on the lattice before the new actio

In four dimensions it has been suspected that config
rations consisting of superposed instanton/anti-instant
are responsible for this accumulation of almost zero eige
values. In two dimensions it is quite likely that this i
actually true [11]. In three dimensions there are no insta
tons, but there is another source of low lying levels. Lev
crossings at zero must occur in backgrounds connect
© 1998 The American Physical Society
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topologically distinct pure gauge configurations. Thes
crossings also happen in four dimensions. Until now, th
level crossings could not be realized on the lattice sin
the needed symmetries were broken by the regularizati

Using the new action and the new procedure I sha
exhibit below a level crossing in three dimensional SU(2
gauge theory with two flavors. At the moment I see n
major difficulties left to overcome on the way to a ful
dynamical simulation of this exactly “chirally symmetric”
model. Generalizations to four dimensions also no long
appear prohibitive. It is possible that this new procedu
will revolutionize the way fermions are treated on th
lattice.

The compact overlap Dirac operator introduced i
[6] is

D ­
1 1 g5esHd

2
, (1)

whereH ­ g5DW . There is some freedom in choosing
DW . The simplest choice is to takeDW as the Wilson-
Dirac operator with hopping parameterk set at k ­
1ys2d 2 2d. This is the choice adopted henceforth.

The first attempt to useD directly, rather than the
original overlap formula [4], was made in two dimension
for a U(1) gauge theory by Chiu [12]. He used a Newto
iteration to find

p
H2. His method required storage of

the full matrix H in memory. It is easy to bypass the
computation of

p
H2 and establish an iteration foresHd

directly:

1
Xk11

­
1
2

√
Xk 1

1
Xk

!
;

k ­ 0, 1, 2, . . . ; X0 ­ H .
(2)

Observe now that the iteration can be “solved” by th
replacementWk ­ s1 2 Xkdys1 1 Xkd. I assume thatX0
has no eigenvalue equal to 0, and if this is true it wi
also be true of allXk . Equation (2) immediately leads to
Wk ­ sW0d2k

. Settingn ­ 2k21, we write the solution to
(2) asXk ­ fnsHd. The functionfnszd is given by

fnszd ­
s1 1 zd2n 2 s1 2 zd2n

s1 1 zd2n 1 s1 2 zd2n
. (3)

fnsHd is a rational approximant toesHd of the Padé type.
The following identity is easily derived by calculating al
the poles offnszd and their residues:

fnszd ­
z
n

nX
s­1

1

z2 cos2 p

2n ss 2
1
2 d 1 sin2 p

2n ss 2
1
2 d

.

(4)

fnsHd is relatively easy to calculate using, for example
a CG (conjugate gradient) algorithm for the inversion
Equation (4) has been previously derived by applie
mathematicians [13] in a different context.

The computational cost is not much higher than a sing
inversion since the inversions for alls are related by shifts
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[14]. The convergence of the CG iteration is controlle
by the s ­ 1 term. There is no reason to requiren to
be a power of 2 any more, andfnsHd is a truncation of
esHd for anyn $ 1. In practice, below, I usedn ­ 48 to
get ten digits precision when acting on random vecto
Essentially all the precision required of the CG wa
maintained. Sincefn is odd all that one needs to chec
is how closekfnsHdbk2ykbk2 is to unity for randomly
chosen vectorsb. Since eslHd ­ esHd for positive l

we also have scaled versions offn, with slightly different
convergence properties. Since physics is concentrated
the spectrum ofH close to zero it is not recommended t
choose al to ensure optimal overall convergence. Fo
simplicity, I have keptl ­ 1 in what follows.

The formula for H appropriate for three dimensions
was obtained by dimensional reduction along directio
4 from four dimensions [15]. The boundary condition
obeyed by the fermions are picked periodic in direction
and antiperiodic in directions 1, 2, 3. I used the re
form of H introduced in [16]. Starting from a single
Dirac fermion in four dimensions we end up with two
Dirac fermions in three dimensions. Let us deno
g5esHd by V . V is orthogonal and obeysg5Vg5 ­
g4Vg4 ­ V T , and consequentlyfg4g5, V g ­ 0. The first
two identities are of GW type. The three propertie
together constitute the lattice realization of the glob
“chiral” SU(2) symmetry known in the continuum. The
reality of V implies that parity is conserved at the actio
level. In the continuum, it is believed that parity doe
not break down spontaneously, but the global SU(
symmetry does. The breaking is accompanied by tw
massless “pions.”

The crossing we wish to see occurs when we interp
late smoothly unit link variables to a lattice pure gaug
configuration of special type. The gauge transformati
defining the latter is a discretized form of a known non
trivial continuum map from the three torus in the contin
uum to the SU(2) group manifold [17]. The interpolatio
parameter is denoted byt and goes from 0 to 1. There is
a built-in symmetry in the configuration undert ! 1 2 t.
Thus, the crossing is expected exactly att ­ 0.5.

To see the crossing I compute the lowest few eigenv
ues of1 1

1
2 sV 1 V T d by a CG based variational method

[18]. The lowest state is found to be doubly degenera
It corresponds to two conjugate eigenvalues ofV , e6iu.
For t close to 0.5,u is close top, and the crossing can
easily be seen from a plot of the square root of the eige
value1 1 cosustd as a function oft. The flow is shown
in Fig. 1.

The crossing takes place on lattices as small as63 and
has been confirmed by the indirect method of [17]. Th
method is based on the Herzberg–Longuet-Higgins effe
[19]. Without any effort I increased the volume to163.
At this point H is a 32 768 3 32 768 real matrix. QCD
on a 64 lattice has a complex fermionic matrix of size
15 552 3 15 552. This is comparable to our example
4061
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FIG. 1. The level crossing.

The preceding computation of low eigenvalues is simila
in effort to an inversion of1 1 V .

Many refinements of the procedure outlined here a
possible. Lurking behind the scenes are Chebysh
polynomials, and they have appeared in this conte
before, in the analysis of another truncation of th
overlap, studied in [20,21]. The light fermions in the
latter truncation are usually referred to as domain wa
fermions. There also are heavy fermions which woul
have to be explicitly removed in simulations of dynami
fermions. Although I suspect that the method present
here is superior to domain wall fermions, numerica
efforts employing the latter should also be pursue
because they will produce useful results. Space does
permit a more thorough discussion at this time.

In this Letter a new and direct approach to treat th
overlap actionf1 1 g5esHdgy2 on potentially realistic
lattices in three and four dimensions has been define
The feasibility of a serious numerical study ind ­ 3 of
a certain class of interesting models has been establish
These results open up many directions for future resear

This work was supported in part by the DOE un
der Grant No. DE-FG05-96ER40559. I am grateful t
Claudio Rebbi for providing me with the qcdf90 packag
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[22] which I adapted to my needs in this work. I am grate
ful to Artan Boriçi for sending me a copy of Ref. [13] and
for related comments. I became aware of Ref. [13] fol
lowing the initial submission of this manuscript.
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