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A Practical Implementation of the Overlap Dirac Operator
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A practical implementation of the overlap Dirac operafdr+ yse(H)]/2 is presented. The
implementation exploits the sparsenessdfoind does not require full storage. A simple application to
parity invariant three dimensional SU(2) gauge theory is carried out to establish that zero modes related
to topology are exactly reproduced on the lattice. [S0031-9007(98)07537-1]
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The known elementary particles and their interactionsn the basic idea. This induced a subsequent search for
are described by a chiral gauge theory. This theorsimplifications. One year ago a new, equivalent but more
has a large ultraviolet cutoff of unknown nature. It is compact, formulation of exactly massless fermions on the
nevertheless useful because predictions based on Feynmlattice [6] was found. It has a fermion action induced
diagrams are independent of this cutoff—the theory igy integrating out all but one of the infinite number of
renormalizable. In general, if a renormalizable fieldfermions that produce the overlap. The fermions that
theory is not asymptotically free, all its quantitative are integrated out are heavy and the “miracle” is the
predictions have a built-in inaccuracy that is negligible forrelative simplicity of the action for the remaining massless
weak couplings but becomes large at high energies wheffermion. This action conforms to a criterion introduced
the couplings are strong. On the other hand, an asympwany years ago by Ginsparg and Wilson (GW) [7] to
totically free theory like QCD makes infinitely accurate assure continuumlike Ward identities on the lattice. The
quantitative predictions at all energies. The couplingsimple action produced by the overlap is the first known
now becomes strong at low energies, and there Feynmatceptable closed form solution to the GW requirement.
diagrams are useless: One needs nonperturbative way® date, there are no other explicit solutions. Related
to calculate. Asymptotically free chiral gauge theorieswork can be found in [8,9].
are special in that their Feynman diagrams make useful In spite of its compact form, the overlap-Dirac operator
predictions at high energies only if delicate anomalyis not easy to work with numerically, and its practical
cancellations occur. The anomaly cancellation in gaugesefulness in dimensions higher than two has been unclear
theories of QCD type is less delicate, and nonperturbativentil now. One purpose of this Letter is to present a
methods exist for low energy calculations—the Euclideamew procedure to simulate the overlap Dirac operator on
lattice provides a generic nonperturbative tool. But, itthe computer. This procedure holds the promise to be
is still controversial whether it is at all possible to do practicable in three and four dimensional gauge theories.
meaningful calculations in an asymptotically free chiral One of the central issues in gauge theories is the
gauge theory at low energies. There are no-go theorenspontaneous breakdown of global chiral symmetries. This
on the lattice indicating that chiral gauge theories arassue could not be addressed in a clean way on the lattice
fundamentally different from vectorlike gauge theoriesuntil now, but the new development makes this possible.
in this respect. Nevertheless, steady progress has beenin three dimensions there are interesting models that
made during the last five years. Now, after all, it appearsre parity invariant and have analogs of four dimensional
that asymptotically free chiral gauge theories do havelobal chiral symmetries [10]. Intensive investigations
the same predictive power as their vectorlike relativeshave indicated that spontaneous breakdown of these
This is relevant even for chiral theories containing somesymmetries takes place if the (even) number of flavors
interactions that are not asymptotically free, as long as thies small enough.
related couplings are small enough. In the continuum spontaneous chiral symmetry break-

A simpler related long-standing problem has been the&lown is correlated with an enhancement in the spectral
preservation of global chiral symmetries on the latticedensity of the Dirac operator around zero. Clean checks of
for vectorlike gauge theories, like QCD. A solution this were impossible on the lattice before the new actions.
(the overlap) has been found but in the initial stages of In four dimensions it has been suspected that configu-
the finding practical applicability seemed limited to two rations consisting of superposed instanton/anti-instantons
dimensions (2D). The overlap was developed startin@re responsible for this accumulation of almost zero eigen-
from [1], which in turn was motivated by [2] and [3]. The values. In two dimensions it is quite likely that this is
formulation of vectorlike theories, which is the main focusactually true [11]. In three dimensions there are no instan-
of this Letter, can be found in Sec. 9 of Ref. [4]. Work tons, but there is another source of low lying levels. Level
on 2D examples was successful [5] and added confidenaossings at zero must occur in backgrounds connecting
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topologically distinct pure gauge configurations. Thesg14]. The convergence of the CG iteration is controlled
crossings also happen in four dimensions. Until now, théoy thes = 1 term. There is no reason to requiteto
level crossings could not be realized on the lattice sincde a power of 2 any more, ang,(H) is a truncation of
the needed symmetries were broken by the regularizatior(H) for anyn = 1. In practice, below, | used = 48 to
Using the new action and the new procedure | shalbet ten digits precision when acting on random vectors.
exhibit below a level crossing in three dimensional SU(2)Essentially all the precision required of the CG was
gauge theory with two flavors. At the moment | see nomaintained. Sincg, is odd all that one needs to check
major difficulties left to overcome on the way to a full is how closel|f,,(H)bl||?/||b||*> is to unity for randomly
dynamical simulation of this exactly “chirally symmetric” chosen vector$. Since e(AH) = e(H) for positive A
model. Generalizations to four dimensions also no longewe also have scaled versions ff, with slightly different
appear prohibitive. It is possible that this new procedureconvergence properties. Since physics is concentrated in
will revolutionize the way fermions are treated on thethe spectrum off close to zero it is not recommended to

lattice. choose ax to ensure optimal overall convergence. For
The compact overlap Dirac operator introduced insimplicity, | have keptA = 1 in what follows.
[6] is The formula for H appropriate for three dimensions
1 + yse(H) was obtained. by di_mensional reduction along dirg_ction
D = — s (1) 4 from four dimensions [15]. The boundary conditions

obeyed by the fermions are picked periodic in direction 4
whereH = ysDy. There is some freedom in choosing and antiperiodic in directions 1, 2, 3. | used the real
Dy. The simplest choice is to takBy as the Wilson-  form of H introduced in [16]. Starting from a single
Dirac operator with hopping parametar set at« =  Dijrac fermion in four dimensions we end up with two
1/(2d — 2). This is the choice adopted henceforth. Dirac fermions in three dimensions. Let us denote

The first attempt to usé directly, rather than the yse(H) by V. V is orthogonal and obeyysVys =
original overlap formula [4], was made in two dimensions vy, = v, and consequentlyy.ys, V] = 0. The first
for a U(1) gauge theory by Chiu [12]. He used a Newtonyyo identities are of GW type. The three properties
iteration to findv/H2. His method required storage of together constitute the lattice realization of the global
the full matrix H_in memory. It is easy to bypass the “chiral” SU(2) symmetry known in the continuum. The
computation ofv/H2 and establish an iteration far(H)  reality of V implies that parity is conserved at the action

directly: level. In the continuum, it is believed that parity does
1 1 1 not break down spontaneously, but the global SU(2)
% =5 (Xk + X—); symmetry does. The breaking is accompanied by two

k+1 k

(2) massless “pions.”
k=0,1,2,...; Xo=H. The crossing we wish to see occurs when we interpo-

. . “ " late smoothly unit link variables to a lattice pure gauge

gbls::é?ngr?t\/lvv tiazltrf' }l(te)r/aztlloi ;a;\ ?Zs:lj)rlxg?ha:’y theconfiguration of special type. The gauge transformation

P ok k fege TS 0 defining the latter is a discretized form of a known non-
has no eigenvalue equal to 0, and if this is true it will

also be true of alK,. Equation (2) immediately leads to trivial continuum map from the three torus in the contin-
W, = (Wo)*. Settingn = 2%~1, we write the solution to uum to the SU(2) group manifold [17]. The interpolation

o . o parameter is denoted byand goes from O to 1. There is
(2) asXy = fu(H). The functionf,(z) is given by a built-in symmetry in the configuration under— 1 — .
(1 + Z)2n _ (1 _ Z)Zn

Thus, the crossing is expected exactly at 0.5.

A+ + (0 — ) ) To see the crossing | compute the lowest few eigenval-
ues ofl + % (V + vT) by a CG based variational method
[18]. The lowest state is found to be doubly degenerate.
It corresponds to two conjugate eigenvaluesVofe =,
For ¢ close to 0.5, is close to7r, and the crossing can

fulz) =

f.(H) is a rational approximant te(H) of the Padé type.
The following identity is easily derived by calculating all
the poles off,(z) and their residues:

Iy 1 easily be seen from a plot of the square root of the eigen-
fale) = n Zl 2085 (s — by 4+ sitZ (s — 4y valuel + cosf(r) as a function of. The flow is shown
o 2n 2 2n 2 (@) nFig. L

The crossing takes place on lattices as smab*aand
f(H) is relatively easy to calculate using, for example,has been confirmed by the indirect method of [17]. That
a CG (conjugate gradient) algorithm for the inversions.method is based on the Herzberg—Longuet-Higgins effect
Equation (4) has been previously derived by applied19]. Without any effort | increased the volume t6°.
mathematicians [13] in a different context. At this point H is a32768 X 32768 real matrix. QCD
The computational cost is not much higher than a singlen a 6* lattice has a complex fermionic matrix of size
inversion since the inversions for allare related by shifts 15552 X 15552. This is comparable to our example.
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Flow in smooth gauge field [22] which | adapted to my needs in this work. | am grate-
kappa=.25, 16X16X16 ful to Artan Borigi for sending me a copy of Ref. [13] and
0.03 ; ; ; for related comments. | became aware of Ref. [13] fol-
lowing the initial submission of this manuscript.
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