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Super-Rough Dynamics on Tumor Growth
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The growth of a cultivated typical brain tumor is studied in this work. The tumor is analyzed both
dynamically and morphologically. We have measured its fractal dimension to bedf  1.21 6 0.05.
From its dynamical behavior we determine the scaling critical exponents of this circular symmetry
system which are compatible with the linear molecular beam epitaxy universality class. A very
important feature of tumor profiles is that they aresuper-rough,which constitutes the first (1 1 1)-
dimensional experiment in literature with super-roughness. The results obtained from the dynamics
study make manifest two very surprising features of tumor growth: Its dynamics is mainly due to
contour cells and the tendency of an interface cell to duplicate is a function of the local curvature.
[S0031-9007(98)07545-0]

PACS numbers: 87.22.As, 47.53.+n, 47.54.+r, 68.35.Ct
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Over the past two decades, many systems exhibiti
rough interfaces in their development process have be
successfully described by means of scaling analysis,
powerful tool used in the study of fractal geometry. In
this way processes such as fluids invading porous med
fire fronts, crystal growth, etc. [1], have been understoo
In the field of biology, we can find a large variety of
systems which develop rough interfaces. Among the mo
interesting and important ones are growing tumors. Th
shape of the tumor profile will allow us to study and
classify the type of tumor according to its geometry an
dynamics. The contour form is a valuable indication o
the tumor dynamics behavior, something that has also be
observed in tumoral cells. The form of the contour ce
determines the number and type of cell exchange channe
Moreover, the morphology of single cells may determin
its malignant nature, as we learned in a very enlightenin
paper of Losaet al. [2]. This result has been extrapolated
to the case of tumors to predict their malignant natur
There are several works where the fractal dimension
tumors has been measured with the aim to classify the
and determine their malignant nature [3]. On the othe
hand, there have been different attempts to construc
mathematical model describing tumor growth [4–9], bu
they are too restrictive in their hypothesis. In this paper w
propose a purely descriptive mathematical model deriv
from the study of the time evolution of tumor growth,
which will serve to draw some conclusions about th
mechanisms of this growth process.

We have grown four brain tumorsin vitro from the
cellular stable line C6 of rat astrocyte glioma. Approxi
mately 103 104 partially dissociated cells were plated
on 35 mm diameter Petri dishes, in a volume of5 ml
of medium (a mixture of Dulbecco’s modified Eagle’s
medium (DMEM) and F12 Ham’s mixture (F12) in a
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1:1 ratio) in a 5% CO2 and 95% humidity atmosphere.
Once attached, fresh medium was added up to a volum
of 2 ml, and the cells were maintained in these condition
for several days. This procedure allowed cells to gro
mainly on the plate surface; i.e., for our purposes the t
mor can be considered a two-dimensional system. T
four tumors were photographed during their growth b
using an inverted microscope equipped with a contrast fi
ter and a coupled photocamera. We will henceforth lab
these tumorsA, B, C, andD. Growing times range from
about 50 hours (tumorA) up to 311 hours (tumorD). The
analysis of the tumor evolution is based on the sha
of their profiles. The photographs were scanned in
a personal computer, achieving a final resolution o
1.3 mmypixel, and the profiles were hand traced. Som
typical tumor profiles are shown in the inset of Fig. 1.

FIG. 1. Fractal dimension of the tumorB calculated with the
box-counting method att  0h (up triangles),21h (circles),
29h (squares), and52h (down triangles). The inset shows
snapshots of tumor interface corresponding at the same time
© 1998 The American Physical Society
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In order to characterize the tumors morphometrical
we have used the box-counting fractal dimension.
Fig. 1 we show the box counting analysis results for th
interface of tumorB at four different times. The value
obtained for the fractal dimension isdf  1.21 6 0.05.
The same analysis has been made on the other th
tumors, and the values obtained fordf are the same within
the error bars. We stress that the measureddf value is
independent of both time and experiment.

To describe the dynamics of tumor growth we study th
scale-invariant behavior of the profiles. The dynamics
many physical systems exhibiting rough interfaces can
characterized by a set of critical exponents obtained fro
scale-invariant properties of certain physical quantitie
The first one is the mean tumor radius, the first ord
moment of the interface position,krl  N21

PN
i1 ristd,

whereN is the number of points of the tumor interface
and ri are the distances of these points from the cent
of mass of the tumor. Another important quantity i
the second order moment of the interface position as
function of the arc lengthl and timet:

wsl, td 

(
1
l

X
riel

fristd 2 krillg2

)1y2

L

, (1)

where k?ll means the local average of subsets of a
length l, and h?jL is the average over all of the system
This quantity measures the interface width and provid
a measure of local fluctuations of the interface at abo
its local average value. A system with circular symmetr
showing negligible overhangs compared with the syste
size behaves like a linear system with a time depende
size. This result has been tested using different metho
for determining the critical exponents [10]. The width
function of these rough interfaces, depending on the a
lengthl and timet, shows the scaling behavior

wsl, td 

Ω
tb if t ø ts ,
la if t ¿ ts .

(2)

with a the roughness exponent,b the growth exponent,
and ts the saturation time which depends on the windo
size, wherez is the dynamical exponent, which charac
terizes the time scaling behavior of the lateral correlatio
length, lc , t1yz . These three critical exponents are re
lated throughz  ayb, as in linear geometry. Although
this description is valid for a great variety of physica
systems, there exist some cases in which it is not val
When the local widthwsl, td differs from the global width
wsL, td, we can definealoc and a, the local and global
roughness exponents, respectively, as

wsl, td , laloc , wsL, td , La , t ¿ ts , (3)

with L being the whole contour length of the circula
interface.

There are some systems in which the surface h
a global roughness exponenta . 1 [1,11–13]. These
systems are termed super-rough. In these cases, the l
ly
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surface width does not saturate as in (3), but crosses o
to a new behavior in the intermediate time regimelz ø
t ø Lz , characterized by a different growth expone
bp, wsl, t ¿ lzd , ltbp , where bp  b 2 alocyz. A
scaling showing this behavior is known asanomalous
scaling[14]. The interface Fourier transform gives us th
power spectrum

Ssk, td  k2s2a11dsskt1yzd , (4)

where s is the structure factor which shows the scalin
behavior

ssud 

Ω
const if u ¿ 1 ,
u2s2a11d if u ø 1 .

(5)

By applying this scaling analysis to the tumors we obta
some very interesting results. In Fig. 2 we can obser
the time evolution of the mean radius, measured fro
the tumor center of mass. Note that the four curv
have been shifted in order to match the initial radius
t  t0. The radius grows linearly with time [15]. As
shown in Fig. 2, the interface speed growth obtained
kyl  2.9 6 0.1 mmyh. This result is striking because
the growth rate is assumed to be exponential in tum
literature [16,17].

In Fig. 3 we plot the local width of the interfaces
of tumor D at several times. We can establish for th
local roughness exponent the valuealoc  0.87 6 0.05.
Notice thatdf 1 aloc  2.08 6 0.10, in good agreement
with the exact result 2 (the Euclidean dimension) [18
The global interface roughness exponent,a, is obtained
from the power spectrum of the tumor interfaces. A
shown in Fig. 4 the power spectrum decays ask2m with
m  2a 1 1  4.0 6 0.2, hencea  1.5 6 0.1.

This result (a . 1) indicates that tumor interfaces
are super-rough, i.e., they exhibitanomalous scaling.
Super-rough interfaces have been observed experim
tally in crystal growth in (2 1 1)-dimensions, where
super-roughness is marginal [19,20].
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FIG. 2. Time evolution of the tumors mean radii showing
linear behavior [tumorA (up triangles), tumorB (circles), tumor
C (squares), and tumorD (down triangles)]. In the inset we
can see the fit for early times.
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FIG. 3. Local width of tumorD vs window size at times
48h (circles), 72h (squares),144h (triangles),168h (pluses),
and311h (stars). From the initial slope of the curves we obtai
the local roughness exponentaloc  0.87 6 0.05. In the inset,
data are collapsed using exponentsa  1.5 andz  4.0.

We can obtainz from a scaled local width,wsl, tdyla ,
vs scaled window size,lyt1yz, log-log plot. According to
(2) and (3), the local interface width curves at differen
times should collapse onto one curve which exhibits tw
different regimes, each with a characteristic decay. T
measure the dynamical exponent,z, we consider tumor
D because of its larger growth time. The inset o
Fig. 3 shows the collapse of tumorD, using a  1.5
and z  4.0. The exponent of the first regime ism 
aloc 2 a  20.55 6 0.10 and that of the second regime
is m  2a  21.4 6 0.1. In the same way, and to
corroborate these latest values, we can obtaina and z
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FIG. 4. Structure factor at times 48h (circles), 72h
(squares),144h (triangles), 168h (pluses), and311h (stars)
of tumor D. The shape of the curves provides us a glob
roughness exponent ofa  1.5 6 0.1. In the inset, data are
collapsed using exponentsa  1.5 andz  4.0.
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from the collapse of the power spectrum of the interface
It can be seen that the spectrum curves at different tim
collapse onto a single universal curve. In the inset o
Fig. 4 we show a log-log plot ofSsk, tdk2a11 vs kt1yz for
a  1.5 andz  4.0.

In summary, we have obtained the following set o
critical exponents:aloc  0.87 6 0.05, a  1.5 6 0.1,
z  4.0 6 0.2, b  0.375 6 0.03, and bp  0.15 6

0.05. This set of critical exponents values is compatibl
with the well-known linear MBE (molecular beam epi-
taxy) growth model, which describes growth processe
dominated by surface diffusion and deposition, as i
crystal growth. This universality class has been foun
in some deposition models [11,21,22]. The continuum
equation which describes this universality class is

≠h
≠t

 2K
≠4h
≠x4 1 F 1 hsx, td , (6)

where h is the interface height,K is the surface
diffusion coefficient, andhsx, td is a random noise
with khsx, tdl  0 and correlationskhsx, tdhsx0, t0dl 
2Ddsx 2 x0ddst 2 t0d. In our caseF represents a cell
division rate. This linear equation can be exactly solve
by using Fourier transformation, givinga  1.5 and
z  4, i.e., b  3y8. In atomic deposition described by
MBE processes, atomic diffusion depends only on th
number of bonds which must be broken for diffusion to
take place instead of the local height of the interface. W
can gain further knowledge of the microscopic growth
process by means of the local curvature models [22,23
which considers nonequilibrium growth models driven
by deposition and surface diffusion. In this model, th
relaxation process follows the rule that any particle de
posited at the interface will choose the site that increas
the local curvature of the surface between itself and i
nearest neighbors. The number of bonds a particle m
form increases with the local curvature of the interfac
at that point. If the local curvature radius is positive the
atom has a large number of neighbors and it is able
diffuse easily. In the case of tumors, the cell division
plays the role of both deposition and surface diffusion
Depending on the local curvature, the interface cells wi
have, in some sense, a larger probability of duplicating
A high positive local curvature corresponds to a high ce
duplication probability and vice versa. This result reveal
a new surprising and important feature of tumor growth.

Finally, we have shown that this type of tumor has a dy
namical behavior described by a mathematical model. O
the other hand, it constitutes the first (1 1 1)-dimension
experiment developing super-rough interfaces. All o
these results can be effectively achieved only in cell cu
ture, although it is important to assess the significanc
of the results for the growth behavior of cells in animals
The final goal of our research is to classify tumors accord
ing to their dynamical behavior, as well as to establish
connection between the physical environment of a tum



VOLUME 81, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 2 NOVEMBER 1998

E

a,

,

r

.

.

and the mathematical parameters. The latter would ha
outstanding medical consequences as it reveals the mec
nism to control—or even to stop—the growth of a tumor
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