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Universal Statistical Behavior of Neural Spike Trains
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The statistical properties of spike trains generated by a sensory neuron are studied. It is show
the spike trains exhibit universal statistical behavior over short times, modulated by a strongly stim
dependent behavior over long times. This decomposition is accounted for by a “frequency integ
model, under conditions of time scale separation. We provide explicit formulas for the statis
properties in both the universal and the stimulus-dependent regimes, which are in very good agre
with the data. The universal regime is characterized by a dimensionless free parameter, wh
observed experimentally to remain constant under different external stimuli. [S0031-9007(98)075

PACS numbers: 87.10.+e, 05.40.+ j, 87.22.As, 84.35.+ i
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Neurons in the central nervous system communica
through the generation of stereotyped pulses, termed
tion potentials or spikes [1,2]. In many cases these spik
appear as a random sequence, even when external sen
stimuli are held constant. It is tempting to describe the
responses in terms of stochastic models [3]. On the ot
hand, neurons in isolation are described quite accurat
by microscopic, deterministic models of the form first pro
posed by Hodgkin and Huxley [4]. How do these micro
scopic dynamics relate to the observed statistics of sp
trains? A crucial ingredient in making this link must b
the properties of the noise that impinges upon the neur
but little is known about the noise sources. Here we arg
that, granting certain simple assumptions, a universal s
tistical behavior of spike sequences emerges on short ti
scales, independent of many poorly known details. T
nonuniversal component of the response reflects the in
signal and appears on longer time scales. These theo
cal results are shown to be in good agreement with d
from the fly visual system.

Many isolated neurons generate approximately regu
sequences of spikes when injected a constant current
6]. The frequency of this firing is related to the value o
the current by the nonlinear “fyI curve.” Microscopic
models aim in part at reproducing this curve correctl
simulations show that this is an essential ingredient f
realistic spike train statistics in the presence of noise [
Rather than starting from a microscopic model, we take t
fyI curve as a phenomenological description of the ce
when receiving an inputs, a frequencyfssd is determined,
and a spike occurs when the time integral of this frequen
completes a cycle. Noise from the environment, includin
photon shot noise and synaptic noise, is represented
a random functionnstd added to the signal at the inpu
(Fig. 1). The spike sequence is written as a train of Dir
d functions,rstd ­

P
k dst 2 tkd:

rstd ­
X

k

dsssXstd 2 kddd ÙXstd , (1)

where
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Xstd ­
Z t

0
ffsst0d 1 nst0dg dt0. (2)

This is closely related to the integrate-and-fire model [8
we have introduced the non-negative functionf to repre-
sent an underlying oscillator. For a constant inputsstd ­
s, the firing raterssd ­ krl is related to the frequency re-
sponse by

rssd ­ k fss 1 ndl , (3)

wherek· · ·l denotes an average over noise. The firing ra
is measurable experimentally as the average response
repeated stimulus.

In our experiment, a live immobilized fly views vari-
ous visual stimuli, chosen to excite the response of th
cell H1. This large neuron is located several layers ba
from the eyes and receives input through connections
many other cells. It is identified as a motion detector, re
sponding optimally to wide-field rigid horizontal motion,
with strong direction selectivity [9]. The fly watches a
screen with a random pattern of vertical dark and ligh
bars, moving horizontally with a velocitysstd. We record
the electric signal of H1 from the vicinity of the cell and
register a sequence of spike timingshtkj [10]. Figure 2
shows the time dependent firing raterssssstdddd of H1 in re-
sponse to a slow random signalsstd, such that the relation
(3) can be used locally in time. The plot of firing rate
as a function of the instantaneous signal value (inset
Fig. 2), gives usrssd, the noise smoothed version offssd.

Reset

Threshold

Element
s(t)

dt
(t)ρf(s+n)

n(t)

FIG. 1. Block diagram of the model for spike generation. Th
inputs are a signalsstd and a noisenstd, which are added
and passed through the frequency response functionf. The
frequency is integrated, and an action potential is generat
when the integral completes a cycle.
© 1998 The American Physical Society
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FIG. 2. Firing rate of H1 as a function of time, average
over trials: rstd ­ krstdl (dots), compared to the input signa
sstd (solid line). We repeat the signal many times to obta
a sampling of the noise ensemble. The units of velocity a
spacings of the compound eye’s lattice (ommatidia) per s
Inset: Instantaneous relation betweenr ands, which is a noise-
smoothed version of the deterministic responsefssd.

The statistical structure of spike trains in the model
Eqs. (1) and (2) can be complicated, depending on t
noise distributionnstd and the precise form of the func-
tion fssd. However, universal behavior emerges if th
stationary noisenstd is characterized by a correlation time
jn, much shorter than the typical interspike interval,1yr.
This implies that the integral in Eq. (2) is composed o
a large number of statistically independent contributio
and is therefore approximately Gaussian by the cent
limit theorem.

Consider first a constant input signal,sstd ­ s. In this
case, we obtain simple analytic formulas for the statistic
properties of the spike trains. Figure 3 shows the
theoretical results with the experimental data from the fl
for the interval distribution (Fig. 3a), the autocorrelatio
function (Fig. 3b), and the number variance (Fig. 3c
Data are shown in gray, and theory in solid black line
All three characteristics depend on two parameters, o
of which is the average firing raterssd ; r. Rescaling
time to dimensionless unitst ­ rt, we are left with one
dimensionless parameter:

gssd ­ jn
kdf2l
k fl

, (4)

where k fl ­ k fss 1 ndl, kdf2l ­ k fss 1 nd2l 2

k fss 1 ndl2, andjn is the correlation time of the noise.
g measures the frequency modulation depth, and it w
be shown to characterize the degree of irregularity in t
resulting stochastic process.

The distribution of intervals between neighborin
spikesPstd is the distribution of times where the oscil
lator completes a cycle. Assumingjn ø 1yr we find
(Fig. 3a)
d
l
in
re

ec.

of
he

e
,

f
ns
ral

al
se
y,
n
).
s.
ne

ill
he

g
-

50

100

150

P
(t

) 
[1

/s
]

0.00 0.02
t [sec]

0.0

0.5

1.0

0.00 0.02 0.04
t [sec]

0

1

   
   

   
   

   

0 2 4
<N>

0.0

0.4

0.8

N
V

R
(t

)

(a)

(b)

(c)

(a)

(b)

(c)

FIG. 3. Statistical properties of spike trains in the univers
regime—experiment and theory. All data are taken fro
an experiment in which the fly watches dark and light ba
forming a random pattern move across the screen with
constant angular velocity of 0.12 degysec. Fitting parameters
are the overall spike rate and the irregularity parameterg.
(a) Probability distribution of the intervals between success
spikes. Histogram of intervals from the experiment (gr
bars), and Eq. (5) (line). Inset: Fraction of intervals
length less thant (gray line) and integral of Eq. (5) (line).
(b) Autocorrelation function calculated from the data (gra
dots) and Eq. (6) (line). (c) Number variance as a functi
of number mean, as calculated from the data (gray dots)
Eq. (7) (line). For comparison, the number variance of
Poisson process is shown by a dashed line.

Pstd ­
s1 1 tdp
8pgt3

e2fst21d2y2gtg

­
d

dt

1
2

"
1 1 erf

√
t 2 1
p

2gt

!#
(5)

[11]. The dimensionless parameterg [defined by (4),
with dependence ons suppressed], governs both th
essential singularity att °! 0 and the exponential decay
at t °! `; it determines the coefficient of variation (rati
between standard deviation and mean) of the distribut
and is therefore interpreted as an “irregularity paramete
Equation (4) shows that the irregularity of the spike trai
is determined both by the amplitude of the noise and
the sensitivity of the frequency function [7].

The symmetry between the two tails of the interv
density takes the form of an exact invariance of the c
mulative distribution:Fstd ­ Fs1ytd. Starting from the
measured intervalstk ­ tk11 2 tk, one may construct
the dual point process with intervals1ytk . Applying this
transformation and plotting the two (scaled) distributio
4001
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reveals that the measured data indeed have this predic
invariance (Fig. 4).

The dimensionless autocorrelation function of th
spike train,Rstd ­ krs0drstdlykrs0dl2, is found to be
(Fig. 3b)

Rstd ­ dstd 1
X
kfi0

sjtj 1 kdp
8pgjtj3

e2fsjtj2kd2y2gjtjg. (6)

It is composed of an infinite sum of functions similar to
the interval distribution, with shifted peaks. The numbe
of peaks resolved is proportional to1yg.

The number of spikes in a time interval of lengtht

is Nstd ­
Rt

0 rst0d dt0. It is a random variable, and its
varianceNV ­ kdN2l can be calculated under the sam
conditions (Fig. 3c):

NV ­ gt 1
X̀

m­1

1
smpd2 f1 2 coss2pmtde22p2m2gtg .

(7)

Here g determines the slope of the asymptotic linea
growth of the number variance [2]. For largeg, the
“diffusion” in the number of spikes is higher, indicating
again a more irregular behavior.

Data from two experiments with different constan
stimuli were analyzed, and although the average firing ra
varied, statistical properties agreed with the theory wit
similar values ofg.

How are the results for a constant stimulus relevant f
the more natural case of dynamic stimuli? Ifsstd is slowly
varying relative to1yr, it is expected that on short times
the above results will hold, and slower modulations wi
appear on longer times. In our experiment, we contr
the velocity signal on the screen, but this signal pass
several stages of processing in the visual pathway befo
arriving at the measured cell H1. The filtering of the
incoming signal by photoreceptors and other elemen
render the effective signal arriving at H1 relatively slow
and induce a natural separation of time scales betwe
the effective signal and the spiking. Figures 5a–5c sho
the correlation functions of spike trains over short time
from three experiments with different input signals:

0.0 1.0 2.0 3.0
scaled interval/frequency

0.0

0.5

1.0

P

intervals
frequencies

FIG. 4. The symmetry of the point process: distributions o
normalized intervalst and local frequencies1yt are similar.
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slow random signal, a sine, and a rapid random sign
These figures show that fort , 2 the behavior is similar
to Fig. 3b. We call this theuniversal regime,since
the statistical properties are largely independent of th
input signal and are described by one parameter which
insensitive to many microscopic details of the neuron an
of the noise. On longer times the curves begin to refle
correlations in the input signal (Figs. 5d–5f). Since thes
structures appear on times where the universal oscillatio
have already decayed, the two types of correlation
decompose into a product:

Rstd ø
rsssss0ddddrssssstdddd

r2

X
kfi0

st 1 kdp
8pgt3

e2fst2kd2y2gtg. (8)

The term rsssss0ddddrssssstdddd is the correlation function
of the input signal, as seen through the noise-averag
response. In many cases, simple approximations gi
good fits to the long-time behavior. In Fig. 5f, a step
approximation was used, giving rise to an exponenti
decay envelope typical of telegraph signals [12]. Th
exponent gives us the typical time scale of the filtere
signal acting as the effectivesstd in our model, about
20 ms in this experiment [2].

Since the irregularityg is still a relevant parameter with
dynamic stimuli (describing the behavior on short times
it is natural to ask how this parameter changes und
different stimulus ensembles. We observe experimenta
that in different ensembles of stationary signals,g can be
kept constant, although the mean firing rater changes.
Figure 6 shows that the correlation function from fou
experiments, with different types of input signal, overla

0 200100-100
t  (ms)

1

2

3

2

4

R
(t

)

0 20-20
t  (ms)

1

2

3

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5. Correlation functions of the spike trains over sho
times—the universal regime [(a)–(c)]; and over long times—
the nonuniversal regime [(b)-(d)]. Data are shown in gray an
theory [Eq. (8)], in black. (a),(d): random signal with a 5 Hz
bandwidth; (b),(e): sine wave signal of period 0.25 sec; (c),(f
random signal with 250 Hz bandwidth.
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FIG. 6. Adaptation effects: correlation functions from exper
ments with different stimuli, plotted in dimensionless time
units, are similar in the short time regime.

on short times. The figure is in dimensionless time unit
so this overlap indicates a constant value ofg. Since
g is composed of the first two moments off, and since
the ensembles are varied by a different choice of sign
changes in the response functionf must occur in order to
keepg constant. This has the simple interpretation of
gain control mechanism used by the system in adapti
to different steady states, which is separate from the sp
generating mechanism.

In conclusion, we have shown that a simple model pr
dicts the statistical behavior of spike trains generated by
visual sensory neuron. Experiments were performed on
live fly, which was presented with a visual stimulussstd;
the effect of the environment was modeled by a noisenstd,
and the response of the neuron was represented by a
sponse functionfss 1 nd. The statistical properties of
the spike trains are robust to the details of this respon
function as well as to the details of the noise. All thes
turn out to be described by one dimensionless parame
g [see Eq. (4)], which depends on the first two momen
of thefss 1 nd. The spike trains exhibit universal statis
tical behavior over short time scales, independent of t
input signalsstd. On longer time scales the universal ef
fects are attenuated by the noise, and the statistical pr
erties of the spike trains are determined by input sign
These results are a consequence of a separation among
three basic time scales in the problem: the correlation tim
i-
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of the noisejn, the typical time for spiking1yr, and the
correlation time of the input signaljs (jn ø 1yr ø js).
The smallness ofjnr is a phenomenological observation,
whose consequences (formulas for the statistical prope
ties at constant stimulus) are consistent with our data;
remains a challange to give a microscopic explanation
this observation. The smallness of1yjsr is induced by
filtering of the incoming motion signals in the photorecep
tors and other stages of the visual pathway. We expect o
results to be relevant also in other sensory neurons whe
the above conditions on the time scales hold. A highe
degree of universality is observed as the system keeps
parameterg fixed when external conditions are varied, so
that the irregularity parameter characterized a given neur
under a set of conditions. This is a reflection of adapta
tional processes used to adjust to different steady stat
relatively little is known about such processes.

Many thanks to G. Lewen for preparing the experimen
and to N. Tishby and A. Schweitzer for comments.
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