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Universal Statistical Behavior of Neural Spike Trains
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The statistical properties of spike trains generated by a sensory neuron are studied. It is shown that
the spike trains exhibit universal statistical behavior over short times, modulated by a strongly stimulus-
dependent behavior over long times. This decomposition is accounted for by a “frequency integrator”
model, under conditions of time scale separation. We provide explicit formulas for the statistical
properties in both the universal and the stimulus-dependent regimes, which are in very good agreement
with the data. The universal regime is characterized by a dimensionless free parameter, which is
observed experimentally to remain constant under different external stimuli. [S0031-9007(98)07566-8]

PACS numbers: 87.10.+e, 05.40.+j, 87.22.As, 84.35.+i

Neurons in the central nervous system communicate X(1) = ftf[S(tl) + n(s)]dr'. )
through the generation of stereotyped pulses, termed ac- 0
tion potentials or spikes [1,2]. In many cases these spikeBhis is closely related to the integrate-and-fire model [8];
appear as a random sequence, even when external sens@i have introduced the non-negative functjpto repre-
stimuli are held constant. It is tempting to describe thesgent an underlying oscillator. For a constant inpluj =
responses in terms of stochastic models [3]. On the othey, the firing rater(s) = (p) is related to the frequency re-
hand, neurons in isolation are described quite accuratelponse by
by microscopic, deterministic models of the form first pro-
posed by Hodgkin and Huxley [4]. How do these micro- r(s) = (f(s + n), (3)
scopic dynamics relate to the observed statistics of spikevhere(. - -) denotes an average over noise. The firing rate
trains? A crucial ingredient in making this link must be is measurable experimentally as the average response to a
the properties of the noise that impinges upon the neuronepeated stimulus.
but little is known about the noise sources. Here we argue In our experiment, a live immobilized fly views vari-
that, granting certain simple assumptions, a universal staus visual stimuli, chosen to excite the response of the
tistical behavior of spike sequences emerges on short timgell H1. This large neuron is located several layers back
scales, independent of many poorly known details. Thérom the eyes and receives input through connections to
nonuniversal component of the response reflects the inpuhany other cells. It is identified as a motion detector, re-
signal and appears on longer time scales. These theoregiponding optimally to wide-field rigid horizontal motion,
cal results are shown to be in good agreement with dat@ith strong direction selectivity [9]. The fly watches a
from the fly visual system. screen with a random pattern of vertical dark and light
Many isolated neurons generate approximately regulasars, moving horizontally with a velocity(r). We record
sequences of spikes when injected a constant current [4the electric signal of H1 from the vicinity of the cell and
6]. The frequency of this firing is related to the value of register a sequence of spike timinfyg} [10]. Figure 2
the current by the nonlinearfI curve.” Microscopic shows the time dependent firing ratés(¢)) of H1 in re-
models aim in part at reproducing this curve correctly;sponse to a slow random signat), such that the relation
simulations show that this is an essential ingredient fo(3) can be used locally in time. The plot of firing rate
realistic spike train statistics in the presence of noise [7]as a function of the instantaneous signal value (inset of
Rather than starting from a microscopic model, we take theig. 2), gives us-(s), the noise smoothed version ffs).

f/I curve as a phenomenological description of the cell:

when receiving an input, a frequencyf (s) is determined,

and a spike occurs when the time integral of this frequency Reset

completes a cycle. Noise from the environment, including ne

photon shot noise and synaptic noise, is represented by

a random functiom(r) added to the signal at the input ‘_f— 4>‘ fat }—» T;f;';ﬂ"}-»

(Fig. 1). The spike sequence is written as a train of Dirac ~ s(t) f(s+n) P

& functions,p(t) = X 8(t — #): FIG. 1. Block diagram of the model for spike generation. The

: inputs are a signak(z) and a noisen(r), which are added
p(1) = % S(X(1) — X)), 1) anpd passed thrgugh( t)he frequency re(:s)ponse fungtionThe

frequency is integrated, and an action potential is generated

where when the integral completes a cycle.
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FIG. 2. Firing rate of H1 as a function of time, averaged 0.8 ' '
over trials: r(t) = (p(t)) (dots), compared to the input signal / (c)
s(r) (solid line). We repeat the signal many times to obtain Z 04t/ .
a sampling of the noise ensemble. The units of velocity are /
spacings of the compound eye’s lattice (ommatidia) per sec. 0.0 . .
Inset: Instantaneous relation betweeands, which is a noise- ~o 2 4
smoothed version of the deterministic respoyiss. <N>

FIG. 3. Statistical properties of spike trains in the universal

regime—experiment and theory. All data are taken from

The statistical structure of spike trains in the model ofan experiment in which the fly watches dark and light bars
Egs. (1) and (2) can be complicated, depending on théorming a random pattern move across the screen with a

noise distributionn(r) and the precise form of the func- Consttr?”t anguhar vgaklocityt of O-éztgég?c- F:ttif‘tg paramztters
: : . : are the overall spike rate an e irregularity parameter
tion f(s). However, universal behavior emerges if the(a) Probability distribution of the intervals between successive

stationary noise(s) is characterized by a correlation time, spikes. Histogram of intervals from the experiment (gray
&, much shorter than the typical interspike intervialy.  bars), and Eq. (5) (line). Inset: Fraction of intervals of
This implies that the integral in Eq. (2) is composed oflength less tharr (gray line) and integral of Eq. (5) (line).

a large number of statistically independent contributiondP) Autocorrelation function calculated from the data (gray
ots) and Eq. (6) (line). (c) Number variance as a function

a_m(_j is therefore approximately Gaussian by the centr f number mean, as calculated from the data (gray dots) and

limit theorem. Eq. (7) (line). For comparison, the number variance of a
Consider first a constant input signaly) = s. Inthis  Poisson process is shown by a dashed line.

case, we obtain simple analytic formulas for the statistical

properties of the spike trains. Figure 3 shows these

theoretical results with the experimental data from the fly, P(r) — (L4 7)) _f—1p/290]

for the interval distribution (Fig. 3a), the autocorrelation = [8myr3 ¢

function (Fig. 3b), and the number variance (Fig. 3c).

Data are shown in gray, and theory in solid black lines. _41 [1 + erf<T _ 1)} (5)
All three characteristics depend on two parameters, one dr 2 V2yT

of which is the average firing rate(s) = r. Rescaling [11]. The dimensionless parameter [defined by (4),
time to dimensionless units = rr, we are left with one .
with dependence on suppressed], governs both the

dimensionless parameter: essential singularity at — 0 and the exponential decay
(81%) atT — oo; it determines the coefficient of variation (ratio
(s) = &» (4)  petween standard deviation and mean) of the distribution

and is therefore interpreted as an “irregularity parameter.”
where () ={(f(s + n)), (5f> ={(f(s + n)*) — Equation (4) shows that the irregularity of the spike trains
(f(s + n))?, and &, is the correlation time of the noise. is determined both by the amplitude of the noise and by
v measures the frequency modulation depth, and it wilthe sensitivity of the frequency function [7].
be shown to characterize the degree of irregularity in the The symmetry between the two tails of the interval
resulting stochastic process. density takes the form of an exact invariance of the cu-
The distribution of intervals between neighboring mulative distribution:F(7) = F(1/7). Starting from the
spikesP(7) is the distribution of times where the oscil- measured intervals; = t,+; — #, one may construct
lator completes a cycle. Assuming), << 1/r we find the dual point process with intervalgr,. Applying this
(Fig. 3a) transformation and plotting the two (scaled) distributions
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reveals that the measured data indeed have this predictetbw random signal, a sine, and a rapid random signal.
invariance (Fig. 4). These figures show that fer < 2 the behavior is similar
The dimensionless autocorrelation function of theto Fig. 3b. We call this theuniversal regime,since

spike train,R(7) = {p(0)p(7))/{p(0))?, is found to be the statistical properties are largely independent of the

(Fig. 3b) input signal and are described by one parameter which is

(7] + k) , insensitive to many microscopic details of the neuron and

R(r) = 8(r) + > — ¢ UrI=R7/29171 - (6)  of the noise. On longer times the curves begin to reflect

iz0 V8myl7l correlations in the input signal (Figs. 5d—5f). Since these

It is composed of an infinite sum of functions similar to Structures appear on times where the universal oscillations

the interval distribution, with shifted peaks. The numberhave already decayed, the two types of correlations

of peaks resolved is proportional tgy. decompose into a product:
The number of spikes in a time interval of length GO G(n) (r + k) .
is N(r) = [i p(')dr'. Itis a random variable, and its R(r) = [T 2y7] ()

. 2
varianceNV = (§N?) can be calculated under the same r 70 8Ty T

conditions (Fig. 3c): The term r(s(0))r(s(7)) is the correlation function

of the input signal, as seen through the noise-averaged
response. In many cases, simple approximations give
good fits to the long-time behavior. In Fig. 5f, a step

(7) approximation was used, giving rise to an exponential
Here y determines the slope of the asymptotic lineardecay envelope typical of telegraph signals [12]. The
growth of the number variance [2]. For large the exponent gives us the typical time scale of the filtered
“diffusion” in the number of spikes is higher, indicating signal acting as the effective(r) in our model, about
again a more irregular behavior. 20 ms in this experiment [2].

Data from two experiments with different constant Since the irregularity is still a relevant parameter with
stimuli were analyzed, and although the average firing ratélynamic stimuli (describing the behavior on short times),
varied, statistical properties agreed with the theory withit is natural to ask how this parameter changes under
similar values ofy. different stimulus ensembles. We observe experimentally

How are the results for a constant stimulus relevant fokhat in different ensembles of stationary signalssan be
the more natural case of dynamic stimuli?s(f) is slowly  kept constant, although the mean firing ratehanges.
varying relative tol/r, it is expected that on short times Figure 6 shows that the correlation function from four
the above results will hold, and slower modulations will experiments, with different types of input signal, overlap
appear on longer times. In our experiment, we control
the velocity signal on the screen, but this signal passes
several stages of processing in the visual pathway before
arriving at the measured cell H1. The filtering of the o |
incoming signal by photoreceptors and other elements
render the effective signal arriving at H1 relatively slow
and induce a natural separation of time scales between
the effective signal and the spiking. Figures 5a—5c show
the correlation functions of spike trains over short times _, _
from three experiments with different input signals: a & o p#&" ¥

d 1 2,2
NV = + ——[1 — coq2 m2mimiyT]
yr mgl (W)Z[ Qamr)e ]

T T T J“u
10 r ' ' ' '
3 () 1
2 L 4
& 05 ¢ Ry R
— intervals -20 0 20 -100 0 100 200
—— frequencies t (ms) t (ms)
0.0 : : : : FIG. 5. Correlation functions of the spike trains over short
0.0 1.0 2.0 3.0 times—the universal regime [(a)—(c)]; and over long times—

scaled interval/frequency the nonuniversal regime [(b)-(d)]. Data are shown in gray and
theory [Eq. (8)], in black. (a),(d): random signal with a 5 Hz
FIG. 4. The symmetry of the point process: distributions ofbandwidth; (b),(e): sine wave signal of period 0.25 sec; (c),(f):
normalized intervals and local frequencies/r are similar. random signal with 250 Hz bandwidth.
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T random (5H2) ' ' of the n_oiseg,,, the typi'cal tim'e for spikingl/r, and the
____________ random (20H2) correlation time of the input signal, (¢, < 1/r < fs).'
———- constant The smaliness of, r is a phenomenological observation,
sine I whose consequences (formulas for the statistical proper-
A ties at constant stimulus) are consistent with our data; it
A ‘ remains a challange to give a microscopic explanation to
TNy s
0.5 |

1.0

R@M/R(1)

A aathes, it this observation. The smallness bfé;r is induced by
J S i filtering of the incoming motion signals in the photorecep-

] tors and other stages of the visual pathway. We expect our
results to be relevant also in other sensory neurons where
the above conditions on the time scales hold. A higher
degree of universality is observed as the system keeps the
\ parametery fixed when external conditions are varied, so

0.0 ' e ' < that the irregularity parameter characterized a given neuron
-3.0 0.0 3.0 under a set of conditions. This is a reflection of adapta-
T tional processes used to adjust to different steady states;
relatively little is known about such processes.
FIG. 6. Adaptation effects: correlation functions from experi- Many thanks to G. Lewen for preparing the experiments

ments with different stimuli, plotted in dimensionless time and to N. Tishby and A. Schweitzer for comments.
units, are similar in the short time regime.

on short times. The figure is in dimensionless time units, [1] D.J. Aidley

. S . in The Physiology of Excitable Cellsdited
so this overlap indicates a constant valueyof Since

by D.J. Aidley (Cambridge University Press, Cambridge,

v is composed of the first two moments 6f and since England, 1989).
the ensembles are varied by a different choice of signal,[2] F. Rieke, D. Warland, R. de Ruyter van Steveninck, and
changes in the response functirmust occur in order to W. Bialek, Spikes: Exploring the Neural CodMIT Press,

keepy constant. This has the simple interpretation of a =~ Cambridge, MA, 1997).
gain control mechanism used by the system in adapting[3] A.V. Holden, Models of the Stochastic Activity of Neu-
to different steady states, which is separate from the spike  "ons, Lecture Notes in Biomathematics (Springer-Verlag,
generating mechanism. Berlin, 1976). . .

In conclusion, we have shown that a simple model pre- 4] ‘I]:'l‘]' B. JECk.'t %l Ngbllf,glnd R('jW' I;I'smﬁlegtr:cc (éurlrg%
dicts the statistical behavior of spike trains generated by 2[5] ow in Excitable Cell{(Clarendon Press, Oxford, 1975),

. . D.A. McCormick, B.W. Connors, B.W. Lighthall, and
visual sensory neuron. Experiments were performed on D.A. Prince, J. Neurophysiob4, 782 (1985).

live fly, which was presented with a visual stimulug); [6] Z.F. Mainen and T.J. Sejnowski, Scien@68 1503
the effect of the environment was modeled by a naigg, (1995).
and the response of the neuron was represented by a rg7] T.W. Troyer and K.D. Miller, Neural. Comput9, 971
sponse functionf(s + n). The statistical properties of (1997).

the spike trains are robust to the details of this responsd8] H.C. Tuckwell, Introduction to Theoretical Neurobiology
function as well as to the details of the noise. All these  (Cambridge University Press, Cambridge, England, 1988).
turn out to be described by one dimensionless parametef®] K. Hausen and M. Egelhaaf, ifacets of Visionedited by
v [see Eq. (4)], which depends on the first two moments ?égé)Stavenga and R.C. Hardie (Springer-Verlag, Berlin,
e 1 e s b sl St Ly s s . s o van san o
. : ) ' . Bialek, Philos. Trans. R. Soc. London318, 321 (1995).
input signals(z). On longer time scales the universal ef- [11]

. e Equation (5) is similar, but not identical, to the first

erties of the spike trains are determined by input signal.  B. Mandelbrot, Biophys. 4, 41 (1964); see also [8] and
These results are a consequence of a separation among the K. Lindenberget al.,J. Stat. Physl2, 217 (1975).

three basic time scales in the problem: the correlation tim§l2] A more detailed account will be given elsewhere.
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