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Nonlinear Quantum Mechanics Implies Polynomial-Time Solution
for NP-Complete and #P Problems
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If quantum states exhibit small nonlinearities during time evolution, then quantum computers can be
used to solveVP-complete and # problems in polynomial time. We provide algorithms that solve
NP-complete and # oracle problems by exploiting nonlinear quantum logic gates. Using the Weinberg
model as a simple example, the explicit construction of these gates is derived from the underlying
physics. Nonlinear quantum algorithms are also presented using Polchinski type nonlinearities which
do not allow for superluminal communication. [S0031-9007(98)07489-4]

PACS numbers: 03.67.—a

Computers are physical devices: Like all physical sysinstead with the implications of nonlinear quantum me-
tems, their behavior is determined by physical laws. Thichanics on the theory of computation, should quantum me-
seemingly obvious statement has important implicationsghanics in fact turn out to be nonlinear at some level. In
because as our understanding of physical phenomena eparticular, we show that it is possible to exploit nonlin-
pands, the theoretical limits to the power of computingear time evolution so that the classes of probléw®sand
machines may grow accordingly. Recently, it has beer#P (including oracle problems) may be solved in polyno-
shown that quantum computers can in theory exploit quanmial time. An experimental question—that is, the exact
tum phenomena to perform tasks that classical computetmearity of quantum mechanics—could thereby determine
apparently cannot, such as factoring large numbers in polythe answer to what may have previously appeared to be
nomial time [1], searching databases of sizén time+~/M  a purely mathematical one. This Letter therefore estab-
[2], or simulating the detailed behavior of other quantumlishes a new link between physical law and the theoretical
systems in less than exponential time and space [3—5power of computing machines. Moreover, because almost
The realization that quantum mechanics could be usedll hard computational problems that occur naturally (in
to build a fundamentally more powerful type of comput- computer science, physics, engineering, etc.) are contained
ing machine has led to a huge amount of recent activityvithin the class of £ oracle problems, this result could be
in the field of quantum computation; for a review, seepractically important as well.

Ekert [6] or DiVincenzo [7]. The classNP is the set of problems for which it is

It has been suggested [8—12] that under some circunpossible to verify a potential solution in polynomial time.
stances the superposition principle of quantum mechanicghese include all problems in the claBgthose that can
might be violated—that is, that the time evolution of quan-be solved in polynomial time) as well as th&-complete
tum systems might be (slightly) nonlinear. While there areproblems, e.g., traveling salesman, satisfiability, and sub-
reasons to believe that a theory of quantum gravity magraph isomorphism, for which no known polynomial time
involve such nonlinear time evolution, nonlinear quantumalgorithms exist. We phrase our algorithm in terms of an
mechanics is at present hypothetical: Experiments corsracle (or “black box”), which calculates a function that
firm the linearity of quantum mechanics to a high degreemaps am bit input (between 0 an®’ — 1) to a single bit.
of accuracy [13—-16]. (There are, however, some questiond/ith a polynomial time algorithm that determines if there
about the interpretation of these tests due to the effects @xists an input value for which f(x) = 1, it is easy to
nonlinear quantum mechanics [17]). Nonlinear quantunsolve NP-complete problems.
theories have also had theoretical difficulties [17—-19]— A simple algorithm that solves th&P oracle problem
including problems with superluminal communication— can be thought of as an extension of Grover’s database
but there are nonlinear theories that do not appear to havsearch algorithm [2] to a nonlinear regime. Suppose that
these issues [17]. The validity of nonlinear quantum meit is possible to perform a nonlinear operation on a single
chanics is an important question that can be settled onlgubit that has the following property: Somewhere on the
by further experiments and the requirements of theoretitinit sphere there exists a line (of not exponentially small
cal self-consistency. However, this Letter is concernedextent) along which application of the operation causes
not with the validity of a particular nonlinear theory, but nearby points to move apart exponentially rapide can
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exploit this behavior to solvd P problems in the following  qubit nonlinearity, as follows. Use the previous algorithm
manner. Begin with an ordinary quantum computer (i.e.put calculate the valug(i) a total ofM times to obtain the
one that can perform the usual quantum logic operationjtate
and place it in an equal superposition of all possible inputs.
Then use the oracle (only once) to calculat® and obtain

the state

2" — 5
2n

|000---0>+2s—n|111-.-1>. 3)
1= plus noise. By making/ sufficiently large—a constant
¥ = N li, f() (1) multiple of n will suffice—the amplitude of the states
0 . . with more 1's than 0’s (such akl11011...)) caused
Now perform ar /2 rotation on each of the firstqubits.  py random noise will be exponentially smaller than the
Each state|i) then maps into a superposition over all gmplitude caused by the existence of a single solution
possibleli), with amplitude=(1/+/2"). In particular, each  for which (i) = 1. Hence, any nonlinear operator that
state|i) contributes+(1/+/2") of its amplitude to the state rapidly increases the amplitude of such states with respect
|00 - - - 0), for a total contribution of amplitudg: from each  to the amplitude of states with more 0’s than 1’s will suf-
li). At Ieastéz" of these states correspond to a particularfice to distinguish reliably the cases= 0 ands = 1, as
value of f(i) = a, and thus the stat¢00---0,a) has required. Moreover, a nonlinearity of this type satisfies
amplitude at leas}. A measurement on the firstqubits ~ the Polchinksi criterion [17] for nonlinear quantum me-
will therefore yield the stat¢00 - - - 0) with probability at ~ chanics without superluminal communication, and need

Ieastf—‘. The system will then be in the state not violate the second law of thermodynamics. (A similar
on nonlinear operator is described in more detail by Czachor
== — = |00---0) in [20].)

V2 —2nFls 4 25 Finally, we describe below another algorithm that is

o g P robust against small errors and show explicitly how to
® { —10) + - II)}, (2) construct the necessary nonlinearities from the underlying

2 2 physics using the Weinberg model, because of its simplic-

wheres is the number of solutionsfor which f(i) = 1. ity and generality, and because it is well known. We be-

The last qubit now contains the necessary information; ngin as before with a quantum computer that can perform
small s, however, a measurement of the last qubit willthe usual quantum logic operations, and that can in addi-
almost always returnj0), yielding no information. We tion perform a simple nonlinear operator whose form will
wish to distinguish between the cases= 0 ands > 0.  be described shortly. In order to simplify the description,
This is accomplished by repeatedly applying the nonlineagve assume for now that there is at most a single value
operation to drive the states representing these two casfsr which f(x) = 1. Once again, we begin by placing the
apart at an exponential rate: eventually, at a time detelcomputer in an equal superposition of all possible inputs
mined by a polynomial function of the number of qubits and use the oracle (only once) to calculgié), thereby
n, the number of solutions, and the rate of spreading, the obtaining the same state as before [Eq. (1)]. In what fol-
two cases will become macroscopically distinguishable. Aows, we call the firsi: qubits index bits and the final qubit
measurement on the last qubit will now reveal the solutioncontainingf (i) the flag bit. Now consider the first (index)
Of course, if the angular extent of the nonlinear region isqubit separately, and group all the states of the superposi-
small, it may be necessary to repeat the algorithm severgbn into pairs based on the value of qubilts..,n. That
times in order to determine the solution with high proba-is, the qubit, ..., n define2”~! subspaces of dimension
bility. In general, the algorithm will requir@((w/n)*) 4 = 2 (dimensions for qubit 1)< 2 (dimensions for the
trials, wheren is the angular extent of the nonlinear re- flag qubit). Within each subspace, the computer will be
gion. The oracle may need to be called only once-xfor in one of the following states (where we write the value of
sufficiently large. the first qubit followed by the value of the flag qubit, and
Problems in the classP#ask us to determine the exact ignore the normalization constants):
number of solutions. This is approximately found by
counting the number of times that the nonlinear operator [00Y + |11), (4a)
was applied. To determine exactly, one proceeds with
finer and finer estimates by rotating the final qubit such that |01) + [10), (4b)
the current best estimate is centered in the nonlinear region; |00) + |10). (4c)
in this way, applying the nonlinear operator separates states
with s near this value so that they are distinguishable. With (At the start of the computation, most of the superposi-
only a polynomial number of iterations, one determines theion will be in the third state, because the flag qubltisin
values exactly. at most only 1 of th@” components.) A distinctly nonlin-
The above algorithm has one disadvantage in that iear transformation¥” is then applied to these two qubits
requires exponential precision. It can be made robusiwe show below how virtually any deterministic nonlinear
against small amounts of noise by introducing a multipleoperator can be recast into this form):
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|00) + |11) — [01) + [11), (5a)  can place two state vectors in any particular position on

01) + [10) — [01) + [11), (5b) the sphere, they can never change the angle between two
state vectors. A nonlinear transformation corresponds to a

|00) + [10) — [00) + [10). (5¢c)  stretching of the sphere, which will in general modify this

This transformation is like aanD gate—it ignores the angle. The desired gatés. and . are two particular
index qubit and places the flag qubit in the stdteif and ~ €xamples of such operations. Excepting perhaps certain
only if either of the original components had the stdte pathological cases (e.qg., discontinuous transformations), it
for the flag qubit [21]. The step is then repeated using eacl$ evident that virtually any nonlinear operator, when used
of the firstn qubits as the index (and the remainimg- 1 repeatedly in combination with ordinary unitary transfor-
qubits to define the”~! subspaces). After each iteration, mations (which can be used to place the two state vec-
the number of components in the superposition that havtors in an arbitrary position on the sphere), can be used
a |1) for the flag qubit doubles. Aften iterations, the 1O arbitrarily increase or decrease thg angIeAbetween two
flag qubit is no longer entangled with the firstqubits: ~ states, as needed to generate the gatesndn.. We
It is either in the statdl) for every component of the describe in detail how these gates can be obtained using
superposition or the stal@) for every component of the the model of nonlinear quantum mechanics put forth by
superposition. One can then simply measure the flag qubWeinberg.
to determine the solution. In Weinberg’s model, the “Hamiltonian” is a real homo-

Thus, if one can perform the two qubit nonlinear trans-geneous nonbilinear functidn(¢, ¢*) of degree one, that
formation N one can find the answer to aWP-complete  is [9]
problem with certainty in polynomial (in fact linear) time, oh ., dh
using only a single evaluation of the oracle. Although the i 3—¢k = 3_(/,; -
operationN may appear unnatural, it can be obtained by
using ordinary unitary operations and much simpler and*
more “natural” single qubit nonlinear operators (that is, to 9 _ . 9h 8)

1 ¥ -

the extent that any nonlinear operation in quantum mechan- ot Py

ics can be considered “natural”). One possible techniqugollowing Weinberg [9], one can always perform a canoni-

for generating the transformation would be to use the folcg] homogeneous transformation such that a two-state
lowing steps: first, act on the two qubits with the unitary system (i.e., a qubit) can be described by a Hamiltonian

h )

nd state vectors time-evolve according to the equation

operator function
10 0 1 h = nh(a), )
1101 1 0 ©)
2o 1 -1 0 | where
1o 0 -1 n=lyl* + lyal, (10)
yvhere the basis is assumed to |9€), |01), |10), |_11),_ 2
in that order. Next, operate on the second qubit with a a=—"=—. (11)
simple one qubit nonlinear gafe. that maps both0) and _ o _
1) to the statd0). One then obtains the std®) for both It is easy to verify his solution to the time dependent

cases (a) and (b), and some unknown s4idor case (c) nonlinear Schrodinger equation (8), which is
[see Egs. (4) and (5)]. (The stdt€) is unknown because

— —iwg(a)t
we have not specified the behavior of the nonlinear gate ilt) = cre ’ (12)
on [0) + [1) or [1) — |0)). Whatever the statpA) may  where
be, we can perform a unitary operation that will transform TN
the first qubit into the pure stat®) while leaving the wi(a) = hla) = ah'(a), (13)
state|00) in place. A second nonlinear gate is now wy(a) = Tila) + (1 — a)ﬁl(a). (14)

required that will map the state|0) + y|1) to the state
[1), while leaving the stat)) unchanged. After this gate  For nonlinear:(a), one sees that the frequencies depend
is applied, the computer is then in the stii®) for cases on the magnitude of the initial amplitude in each basis
(a) and (b) and in the stat®1) for case (c). The two state. Intuitively, one can imagine a transformation on
qubit transformationV is then easily obtained withi@oT  the unit sphere which, instead of rotating the sphere at a
gate on the second qubit andmg/2 rotation on the first particular rate, twists the sphere in such a way so that each
qubit. point rotates at a rate which depends upon its addtem
Having thus shown how to generatg the question is the axis (clearly, this transformation involves stretching of
now reduced to that of generating the simpler single qubithe surface). One can exploit this stretching of the sphere
gatesr_ andn.. If one considers the state of a qubit as ato build the gaté:_ as follows:
point on the unit sphere, then all unitary operations corre- Step 1-—Perform arotation on the first qubit by an angle
spond to rotations of the sphere; and while such rotationg < 45°:
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|0y — cog¢)|0) — sin(¢) 1), (15)  clusions might be viewed most profitably as further evi-
dence that this is indeed the case. Nevertheless, the theo-
|1) — sin(¢) |0) + cog¢)|1). (16) retical implications and practical applications that would

result from a discovery to the contrary may warrant fur-
ther investigation into the matter.

D.S. A. acknowledges support from NDSEG, and help-
ful discussions with J. Jacobson, |. Singer, S. Johnson,
I. Park, and T. Wang. Portions of this research were sup-

Step 2—Time-evolve the system according to the non-
linear Hamiltonianh = nh(a). Thus

|0) — cog¢) |0) — sin(¢)[1) — a cog¢)|0)

— Bsin(¢)[1), (17)  ported by the ONR, by ARO and DARPA under QUIC,
. the Quantum Information and Computation initiative, and

[1) —sin(¢)10) + coge)[1) — y coge)|0) by a DARPA grant to NMRQC, the Nuclear Magnetic
+ ssin(é)1), (18) Resonance Quantum Computing initiative.

wherea, B, v, andé are phase factors. Because the ini-
tial amplitudes of the basis states are different in the two
cases, the nonlinear Hamiltonian will cause the compo-

nents to evolve at different frequencies. As long as these,

frequencies are incommensurate, there is a titewhich
a =vy=26=1andB = —1 (to within an accuracy).
(Further, this time is a polynomial function of the desired
accuracye.) The net result of these two steps is then

|0) — cod¢)|0) + sin(¢)[1), (19)
[1) — sin(¢) [0) + cog¢)|1). (20)
Step 3—Reverse the first step. Thus
|0) — cod2¢)0) + sin(2¢) (1), (21)
1) — [1). (22)

Essentially, we have reduced the angle between the tw
states by an amount¢2 By suitable repetition of this
procedure (that is, by choosing appropriately for each
iteration), or simply by choosing precisely in the first
step, the statef)) and|1) can be mapped to withia of
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In conclusion, we have demonstrated that nonlinear
time evolution can in fact be exploited to allow a quan-
tum computer to solvé&VP-complete and # problems in
polynomial time. We have shown how to accomplish this
exponential speedup using both the Polchinski and Wein-
berg models of nonlinear quantum mechanics. Finally, we
would like to note that we believe that quantum mechanics
is in all likelihood exactly linear, and that the above con-

mechanics which we should address here. When the
superposition principle is abandoned, it is not imme-
diately clear how entangled qubits will evolve. We
follow the Weinberg model, in which the time evolution
for a joint system composed of two subsystems is
specified in terms of a preferred basis of vectors for
the tensor product Hilbert space. For the purpose of
using the nonlinear dynamics to perform quantum logic,
we specify the joint dynamics in terms of the basis
{Ib)} ={|0---00),[0---01),...,|1---11)} for each sub-
system. The Weinberg prescription is as follows: write
the joint state for the systerfW');, as >, a,|b )l )

and then act on eachy, ), independently with the
nonlinear transformatiofv.

3995



