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Static Scaling on an Interacting Magnetic Nanoparticle System
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The field dependence of the ac susceptibility of a concentrated frozen ferrofluid containing ultra
Fe-C particles of monodisperse nature has been analyzed using static scaling. For the first tim
divergent behavior of the nonlinear susceptibility of a dipole-dipole interacting system is demonstra
From the analysis, the critical exponentsg ­ 4.0 6 0.2 andb ­ 1.2 6 0.1 were extracted. The results
support the existence of a low temperature spin-glass-like phase in interacting magnetic nanopa
systems. [S0031-9007(98)07527-9]

PACS numbers: 75.50.Lk, 75.50.Mm, 75.50.Tt
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The dynamics of systems of magnetic nanoparticl
has been a subject of considerable interest during t
last decades [1,2] and different, often conflicting, mode
have been proposed to explain the observations [3,
In one model the interparticle interactions are account
for by a change of the energy barriers of the isolate
particles, and this model excludes collective magne
behavior of the particles [2,3]. Collective phenomen
however, play a key role in another model [4]. Hence
the possible existence of collective behavior and th
existence of a low temperature spin-glass-like phase h
been the subject of much controversy [2–9]. The ma
argument for suggesting the existence of a spin-gla
phase is that properties such as frustration and randomn
characterizing a spin glass are also found in dipole-dipo
interacting magnetic particle systems. However, there a
some dissimilarities between these systems: For a s
glass the flip time of the individual magnetic moment
is of the order of10213 s and independent of temperatur
while it can vary from nanoseconds to geological tim
scales in a magnetic particle system according tot ­
t0 expsKVykBT d, wheret0 , 10212 1029 s, KV is the
anisotropy energy, andkBT is the thermal energy. Since
all particle systems are more or less polydisperse, t
subsequent distribution of anisotropy energies inevitab
implies a distribution of flip times of the individual
magnetic moments. Furthermore, the interaction betwe
magnetic moments in spin glasses is mostly of sho
range exchange or long-range RKKY type whereas it
of long-range dipole-dipole type in a magnetic particl
system. Despite these differences it has been sho
by Djurberg et al. [7] that the dynamics of a magnetic
nanoparticle sample containing 5 vol % of amorphou
Fe12xCx (x ø 0.22) particles and an estimated dipole
dipole interaction strength ofEd2dykB ­ 44 K exhibits a
spin-glass-like critical slowing down close to the extracte
phase transition temperature,Tg ­ 40 6 2 K. These
particles have a nearly spherical shape with a medi
0031-9007y98y81(18)y3976(4)$15.00
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diameter of 4.7 nm, and the volume distribution is we
described by a log-normal distribution withsV ­ 0.22
[10]. In the critical region and for the experimentally
accessible time scales this extraordinarily narrow si
distribution implies that the characteristic time sca
corresponding to the inverse of the transition rate f
the largest individual particles is always shorter than t
shortest measurable relaxation time caused by collect
effects [7]. This is a necessary condition for probin
magnetic response governed by a spin-glass-like fix
point [6,7]. For more details about the sample and t
sample preparation see Refs. [7,10].

In this Letter the same sample as used by Djurbe
et al. [7] for the dynamic study is used to perform a
static scaling analysis of its magnetic response. Fro
the analysis the transition temperature,Tg, and the critical
exponentsg andb are determined. Values of other critica
exponents are extracted using standard scaling laws.

The appropriate quantity to study in a static scalin
analysis is the order parameter susceptibility,x, which
diverges at the phase transition temperature according

x ~

√
T
Tg

2 1

!
2g

­ e2g , T . Tg . (1)

For spin glasses it can be shown [11,12] that the order
rameter susceptibility can be obtained from measureme
of the nonlinear susceptibility,xnl ­ x0 2 myH, where
x0 is the zero field susceptibility and the magnetizatio
m, is written as

m ­ x0H 1 x2H3 1 x4H5 1 · · · . (2)

In this studyH is composed of an ac field with angula
frequencyv and amplitudeh superimposed on a dc field,
H0; i.e.,Hstd ­ H0 1 h sinsvtd. Forh ø H0 the lowest
order terms of the nonlinear susceptibility become

xnl ­ 23x2H2
0 2 5x4H4

0 2 · · · . (3)
© 1998 The American Physical Society
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Suzuki has suggested the following general scaling la
for the nonlinear susceptibility of spin glasses:

xnl ­ ebG

√
H2

eg1b

!
, (4)

whereGsxd is a scaling function [12]. An expansion o
Gsxd in powers ofx yields

xnl ­ a1e2gH2 1 a2e2s2g1bdH4 1 · · · , (5)

and from a comparison to Eq. (3) it is seen that2x2
diverges likee2g in the critical region. Geschwindet al.
have later rewritten Eq. (4) in the form

xnl ­ H2bysg1bdG̃

µ
e

H2ysg1bd

∂
, (6)

whereG̃sxd is another scaling function with an argumen
linear ine [13].

A noncommercial carefully shielded SQUID magne
tometer was used for the magnetic measurements [1
The ac field had the amplitudeh ­ 4 Aym while the su-
perimposed dc field was stepwise increased in logarithm
intervals from typically 10 to 1900 Aym using a long so-
lenoid working in persistent mode to ensure a good fie
stability. The temperature was controlled with an acc
racy better than 1 mK.

One property of a magnetic particle system that c
render this kind of study more difficult is the nonlinea
response of the isolated particles. It is therefore an a
vantage if the nonlinear susceptibility of the isolated pa
ticles is small enough to be negligible compared to th
collective nonlinear response. The response of the i
lated particles was checked using a dilute sample (15 3

1023 vol %) where the mean interaction strength betwee
particles is very weak. The magnetization of the dilu
sample is plotted vsH0yT in Fig. 1 for the temperatures
T ­ 55 and 80 K and fields up to 6.4 kAym (80 Oe).
The corresponding data for the concentrated sam
is plotted for comparison. As expected for a collec
tion of randomly distributed noninteracting particles, th
magnetization data corresponding to different tempe
tures and fields collapse onto one curve when plott
vs the scaling variableH0yT [15] and, more important,
no significant effect of nonlinearity can be observed fo
H0yT up to80 Am21 K21. Since all measurements of the
nonlinear susceptibility of the concentrated sample we
made below 1.9 kAym (24 Oe) and for temperatures be
tween 55 and 80 K, the nonlinear susceptibility of the is
lated particles can safely be neglected in this study.

Another complication that may arise in dipole-dipol
interacting systems regards finding the local mean fie
acting on the individual magnetic dipole moments fo
a given sample shape. This problem has at pres
no generally accepted solution [2,16]. Moreover, eve
if such a model did exist, the actual sample sha
is unknown if it changes when going from the liquid
state at room temperature to the solid state at t
w
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FIG. 1. The magnetization vsH0yT for the dilute sample
(squares) and the concentrated sample (circles) for the t
peratures 55 and 80 K (filled and open symbols, respective
and fields up to 6.4 kAym (80 Oe). The data on the dilute
sample were normalized to the concentration of the conc
trated sample. The straight lines are included for visual clar

measuring temperatures. However, provided that cer
conditions prevail, the existing models do not exclu
the possibility of a local mean field acting on th
individual dipoles being equal to the applied field. Th
effect of the demagnetization field has been checked
measuring the spontaneous magnetic fluctuations in z
field. The imaginary part of the susceptibility,x 00sv, T d,
can be calculated from the magnetic noise power spec
Psv, T d, using the fluctuation dissipation theorem [17]:

Psv, T d ­ 2kBT
x 00sv, T d

v
. (7)

From a comparison of the calculated and measu
x 00sv, T d curves it is then possible to find the mean lo
cal field acting on the individual magnetic dipole mo
ments. A large number of time traces of the magne
noise were recorded at different temperatures and su
quently Fourier transformed to obtain noise power sp
tra in the frequency range 10 mHz–1 kHz. An accura
value of the calibration constant used in the calculation
x 00sv, T d was obtained by comparing calculated and me
suredx 00 at 40 K and at low frequencies where the noi
power spectrum is large in magnitude. The tempe
ture dependence of the measured imaginary part of the
susceptibility is displayed in Fig. 2 together with the co
responding results calculated from noise measureme
The measuredx 00sv, T d was plotted without correcting
for demagnetizing and Lorentz cavity fields and, since t
agreement between the measured and calculated curv
good, the mean local field acting on the individual dipo
moments can be set equal to the applied field.

The imaginary part of the ac susceptibility is shown
the inset of Fig. 2 for the frequenciesvy2p ­ 10 mHz
3977
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FIG. 2. x 00sv, T d vs temperature for the concentrated sampl
The frequencies are from left to rightvy2p ­ 17 mHz,
170 mHz, 1.7 Hz, 17 Hz, and 170 Hz (full lines). The symbol
showx 00sv, Td calculated from noise measurements. The ins
shows x 00sv, T d vs temperature forH0 ­ 0 (open symbols)
and 400 Aym (5 Oe) (filled symbols) and the frequencie
vy2p ­ 10 mHz (circles) and 1.7 Hz (squares).

and 1.7 Hz and the dc fieldsH0 ­ 0 and 400 Aym.
When a dc field is applied, the magnitude of the suscep
bility is suppressed compared to the zero field susceptib
ity. Moreover, the temperature corresponding to the ons
of a nonzerox 00 decreases with increasing field implying
that the temperature at which the magnetic response fa
out of equilibrium decreases with increasing field. In
static scaling analysis it is crucial to use nonlinear susce
tibility data corresponding to thermodynamic equilibrium
and therefore the frequencyvy2p ­ 1.7 Hz is used in
this study to probe the equilibrium magnetic respons
down toT ­ 64 K, and the frequencyvy2p ­ 10 mHz
is used for lower temperatures down toT ­ 55 K.

Since the time scale of the experiments is at most
orders of magnitude larger than the individual particl
relaxation time in the temperature range used for th
scaling analysis [7], the temperature range, where t
static susceptibility can be observed, is restricted to
region relatively far fromTg and corrections to scaling
might therefore be important. The situation is reminisce
to Monte Carlo (MC) simulations of model spin glasse
where the time scale of the experiment is typically onl
4–7 orders of magnitude larger than the individual sp
flip time. Ogielski [18] performed MC simulations of
a three-dimensional short-range Ising spin glass on
special purpose computer and found that the temperat
dependence of the correlation time followed a critica
behavior up to the reduced temperaturee ø 0.55. At
higher temperatures a considerable deviation from critic
behavior was observed because the correlation length
these high temperatures extends only over a few latti
spacings. In the present study the nonlinear susceptibi
was measured up toT ­ 80 K corresponding to a reduced
3978
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temperature of order unity. A crossover to a noncritica
behavior at the highest measuring temperatures m
therefore be expected.

The nonlinear susceptibility,xnl, is presented vs field
in a log-log plot in Fig. 3(a) for some temperatures
between 55 and 78 K. As expected from Eq. (5) th
low-field behavior of xnl is proportional to H2 and,
hence,x2sT d can be determined. The extracted values o
x2sT d are shown vs the reduced temperature in Fig. 3(b
for temperatures between 55 and 80 K. A best powe
law fit to Eq. (1) using temperatures belowT ­ 69 K
(e ø 0.77) is shown as the full line in Fig. 3(b) and yields
Tg ­ 39 6 1 K and g ­ 4.0 6 0.2. By also including
thex2sT d data obtained at higher temperatures a deviatio
from a straight line is observed which drivesTg to
a higher value and subsequentlyg to a lower value.
Accordingly, a best fit using data in the temperatur
range 55–80 K yieldsTg ­ 42 6 2 K and g ­ 3.5 6

0.4. The upward deviation of the experimentalx2sT d data
from the extrapolated power-law fit (dotted line) at highe
temperatures in Fig. 3(b) is as expected for a crossov
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FIG. 3. (a)xnlsT , H0d vs H0 for the temperatures 55, 57, 59,
61, 64, 67, 70, 74, and 78 K (from left to right). (b)2x2sTd
vs the reduced temperature,e ­ sTyTg 2 1d, with Tg ­ 39 K.
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FIG. 4. Scaling plot of the nonlinear ac susceptibility fo
the temperatures 55, 56,. . . , 69 K, and dcfields between 10
and 1900 Aym. The inset shows a magnified part of th
scaling plot.

to noncritical behavior [18]. The present extracted valu
of Tg is within the rangeTg ­ 40 6 2 K, previously
estimated using a dynamic scaling analysis [7].

In order to also extract the exponentb, an overall
scaling of the measured nonlinear susceptibility data h
been performed using the equation of state [Eq. (6
The data are plotted accordingly in Fig. 4 using th
extractedTg ­ 39 6 1 K and g ­ 4.0 6 0.2. The best
data collapse is obtained withb ­ 1.2 6 0.1. It is
now possible to derive other critical exponents from
scaling laws. The exponent for the specific heat
a ­ 2 2 2b 2 g ­ 24.4 6 0.4, and the exponentn
describing the divergence of the correlation length,j, as
j ~ e2n is determined from the hyperscaling law,n ­
s2 2 adyd ­ 2.15 6 0.15, where d denotes the spatial
dimension. By adopting the transition temperature fou
in this study, a reanalysis of the data used for the dynam
scaling analysis in Ref. [7] giveszn ­ 12.5 6 1.5. The
exponent, z, relating the correlation time,t, to the
correlation length ast ~ jz is thenz ­ 5.9 6 0.4. This
value is similar to estimates from MC simulations o
model spin glasses wherez ­ 5.0 6 0.7 [18,19].

In conclusion, the critical exponents in a dipole-dipo
interacting magnetic nanoparticle system have been de
mined for the first time using static scaling analysis of th
nonlinear susceptibility. The inherent properties of a ma
netic particle system imply that the scaling analysis mu
be performed at comparably large reduced temperatu
which may yield higher apparent values of the critical e
ponents [20]. However, according to extensive MC sim
lations on an Ising spin-glass system, the critical regi
is found to extend up to reduced temperaturese ø 0.55
[18]. In the present analysis this is supported by the o
servation of corrections to scaling at reduced temperatur
e * 0.77. From the analysis, the critical temperatur
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Tg ­ 39 6 1 K and the critical exponentsg ­ 4.0 6 0.2
andb ­ 1.2 6 0.1 were extracted. Corresponding value
for short-range Ising and Heisenberg spin glasses fall in
rangeg ­ 4.0 6 0.5 andb ­ 0.6 6 0.1 [13,19,21–23].
The larger value ofb obtained for the magnetic nanopar
ticle system may indicate a system closer to its lower cri
cal dimension sinceb is predicted to diverge at its lower
critical dimension [24]. It could also be that a system
with long-range dipole-dipole interaction is better com
pared with RKKY spin glasses. Unfortunately, there
a large diversity in the reported values for the critical e
ponents for metallic spin glasses which makes such a co
parison unreliable [21].

This work was financially supported by The Swedis
Science Research Council (NFR) and by the Dani
Council for Technical Research.

[1] Studies of Magnetic Properties of Fine Particles and the
Relevance to Materials Science,edited by J. L. Dormann
and D. Fiorani (North-Holland, Amsterdam, 1992).

[2] J. L. Dormann, D. Fiorani, and E. Tronc, Adv. Chem
Phys.98, 283 (1997).

[3] D. Fiorani, J. Tholence, and J. L. Dormann, J. Phys. C19,
5495 (1986).

[4] S. Mørup, Europhys. Lett.28, 671 (1994).
[5] M. F. Hansen and S. Mørup, J. Magn. Magn. Mater.184,

262 (1998).
[6] T. Jonsson, P. Norblad, and P. Svedlindh, Phys. Rev.

57, 497 (1998).
[7] C. Djurberget al., Phys. Rev. Lett.79, 5154 (1997).
[8] D. Fiorani, J. Magn. Magn. Mater.54–57, 173 (1986).
[9] H. Mamiya, I. Nakatani, and T. Furubayashi, Phys. Re

Lett. 80, 177 (1998).
[10] M. F. Hansenet al., J. Magn. Magn. Mater.177–181, 928

(1997).
[11] J. Chalupa, Solid State Commun.22, 315 (1977);24, 429

(1977).
[12] M. Suzuki, Prog. Theor. Phys.58, 1151 (1977).
[13] S. Geschwind, D. A. Huse, and G. E. Devlin, Phys. Rev.

41, 2650 (1990).
[14] J. Magnussonet al., Rev. Sci. Instrum.68, 3761 (1997).
[15] H. D. Williams et al., J. Magn. Magn. Mater.122, 129

(1993).
[16] L. Onsager, J. Am. Chem. Soc.58, 1286 (1936); F. N. H.

Robinson, inMacroscopic Electromagnetism(Pergamon,
Oxford, 1973).

[17] R. Kubo, Rep. Prog. Phys.29, 255 (1966).
[18] A. T. Ogielski, Phys. Rev. B32, 7384 (1985).
[19] K. H. Fisher and J. A. Herz, inSpin Glasses(Cambridge

University, Cambridge, England, 1993).
[20] H. Bouchiat, J. Phys. (Paris)47, 71 (1986).
[21] P. Nordblad and P. Svedlindh, inSpin-glasses and

Random Fields,edited by A. P. Young (World Scientific,
Singapore, 1998).

[22] K. Gunnarssonet al., Phys. Rev. B43, 8199 (1991).
[23] B. Leclercqet al., Phys. Rev. B47, 6169 (1993).
[24] D. S. Fisher and D. A. Huse, Phys. Rev. B38, 386 (1988).
3979


