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The hybridization of the single-excitation branch with the two-excitation continuum in the momentum
region beyond the roton minimum is reconsidered by including the effect of the interference term
between one and two excitations. Fits with our model to the latest experimental data allow us to
extract with improved accuracy the high momentum end of“tHe dispersion relation. In contrast
with previous results we find that the undamped excitations below twice the roton energy survive up to
0 = 3.6 A~! due to the attractive interaction between rotons. [S0031-9007(98)06561-2]

PACS numbers: 67.40.Db, 61.12.—q

Although excitations in superfluidHe have been above2A, in contrast with theoretical predictions. From
widely studied in the last decades (see, for instancethe theoretical point of view it is not possible to explain in
Ref. [1,2]), the nature of the single particle spectruma simple way the presencegtiarppeaks at energies above
termination remains unclear. Forty years ago, Pitaevsk2A, as the corresponding excitation should be unstable
predicted different kinds of termination depending on thetowards decay into two rotons. Moreover, the experimen-
detailed form of the spectrum at low momenta [3]. Intal finding of a repulsive interaction disagrees with differ-
the case of a decay into pairs of rotons, Pitaevskii theorgnt theoretical calculations that predict a negative value
describes the avoided crossing of the bare one-excitatidior V, [7,10]. More recent experimental investigations by
branch with the continuum of two excitations. Within Fak and co-workers [11,12] concentrate on the interesting
this picture the low energy pole is repelled by thetemperature dependence of the dynamical structure factor
continuum, so that the spectrum flattens out for laghe S(Q, w) and do not address directly the issue of the quasi-
toward 2A losing spectral weightJ is the roton energy). particle energy or the interaction potential between rotons.
At the same time, a damped excitation far > 2A  In any case they show clearly that there is a strong cor-
appears and shifts to higher energies. Neutron scatterirglation between the low-energy peak and the high-energy
experiments later suggested that the decay of excitatiorntinuum asQ increases from 2.3 t8.6 A~! [12], thus
into pairs of rotonsdid actually take place for momentum indicating that hybridization takes place. We further recall
Q0 =26A"" [4. The flattening of the spectrum at that this hybridization is expected as a direct consequence
an energy of the order dfA being the main feature in of Bose condensation as explained in detail in Ref. [1].
support of Pitaevskii's picture. Despite the goqdali- From the theoretical point of view, we recall that the
tative agreement between theory and experiment, severahlidity of Pitaevskii and ZRS theories is restricted to a
issues addressed by the theory could not be verified dugmall region aroundZ. Indeed Pitaevskii in his original
to insufficient instrumental resolution. In particular, paper [3] exploited the logarithmic divergence appear-
theory predicts a singular termination of the spectrum at ang in the two-roton response functionFJ(Q, w) =
definite value of momentur@, for a repulsive interaction i [(dw’/27) [[d*Q'/(2%)*1G(p — p")G(p'),  where
(V4 > 0) between rotons. In the case of an attractiveG '(p) = w + i07 — w(Q), w(Q) is the measured
interaction, hybridization between the roton bound statespectrum andp = (Q, w)] to solve exactly the many-
and the single quasiparticles is instead expected, as prbody equations. This elegant theory provides explicit
posed by Zawadowski-Ruvalds-Solana (ZRS) [5], withexpressions for the Green’s and the density-density
the consequence that an undamped quasiparticle peak airrelation functions, validonly in the small energy
an energy slightly below & should be present [5-8]. To range where the singularity dominates. This fact leads
our knowledge, it has not yet been possible to distinguistio problems in data analysis wheh grows so that the
clearly between these two cases. bare excitation energy,(Q) takes values abovgA. In

Smithet al. [9] performed the first complete experimen- fact, the signal aroun@A strongly decreases wit@ and
tal analysis foR.7 = Q = 3.3 A~!. Although they found spectral weight shifts to higher energies followiag(Q).
indications of a repulsive interactiofr{ > 0) using ZRS To understand the correlation between the high-energy
theory, they pointed out that the experimental finding ofpart of the spectrum and the one-excitation contribution,
energies for the quasiparticle peak ab@# was not ac- it is necessary to extend the validity of the theory to a
counted for by the theory with reasonable values of thevider range of energies in order to describe properly
parameters. As a matter of fact, the position of the lowthe continuum contribution t6(Q, w). It then becomes
energy peak was not extracted from the data with ZRS thecrucial to consider the effect of the direct excitation of
ory, but rather by fitting a Gaussian peak on a backgrountivo quasiparticles by the neutron and its interplay with
of constant slope. The resulting spectrum reached valugbhe one-quasiparticle excitations usually considered.
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The aim of the present paper is to construct such a__ _ . _ Ve _
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with T" the half width of the excitation), it is an excellent
approximation to write the Hamiltonian directly in terms % = e’
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We consider for the moment only tH& interaction that =
induces the hybridization of the single with the double
excitation. In general, this vertex will be a function of F-=
two momenta, for instance the total momentum of the
two particles and the momentum of one of them. Wer|G 1. Full lines stand for the exact Green’s function, dashed
neglect from the outset this dependence on momentursoxes for the sum of all one-particle irreducible diagrams, and
as it is expected to be smooth in the region of interesthe black box for the sum of all diagrams with two lines closing
and less important than the frequency dependence retain%& the two ends. x(p) is the sum of all diagrams with two
in the following. SinceS(Q, w) is the imaginary part ensity insertions (wiggly lines).
of the density-density response functiop(Q, »)] it is
convenient to express the density operaiprin terms of By solving Egs. (3) and substituting and F, into the
the b and b field operators. In general this will be an expression for (p) we finally obtain
infinite series in theb fields, by retaining only the one
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and two quasiparticle terms we obtain yip) =2 + 2aBVsF(p) + '28 F(p) G, (p) . @)
G, '(p) = Vi F(p)
= a(P)[bf + b-p] + D Y(P.q) bysgb jon (4) i | | |
Pp = alp)Lby -p YP,4q) Pp+qbq Equation (4) is the basic expression that we will use

4 in the following for the fits to the dataS[Q,w) =
+ ZIB(P"I) [b;mbiq + bgb_p—q]l. (2) M x(Q,w)]. The presence of &y interaction does
q not change the above treatment since Wovertex can

0connectF to G at zero temperature. This implies that
he additional diagrams due toVa interaction contribute
only to F. Since the explicit calculation of is difficult
and in general depends on the detailed structure of the
vertex functions, we prefer to extract it directly from data
by exploiting the large (energy and momentum) region of
validity of Eq. (4). We proceed by noting that in Eq. (4)
. ; X ; , only F and w, (through G,) depend onQ. Explicit

It is pos_slble at th'.s point to calgulat(_e perturbat'velyevgiuation ofF, s(uggesgts t%a)t thepmomentum derfendence
XQ ) using the explicit form op, given in Eq. (2) .and' of F should not be pronounced in the range of interest
the Hamiltonian (1). At zero temperature the contrlbunon2 3-32 A-1. We thus drop this dependence completely
of the y(p. q) term to y vanishes, while the momentum ;"2 4 it the resulting functio () to the data. The
dependence o (p) and5(p. q) is neglected for the sake , jonendence o, is not negligible because it drives

of simplicity. The diagrammatic theory for the model ,(0) throu : : ;

) g X L 0 gh the2A line. In this way we are left with

'; show}r; n F'Ig' 1 tog((ejther W'ti the i:leflnltlon_g?f(pl), only one parameter dependent@n It is now possible to
o(p), Fi(p), F(p), andGo(p) = [@ — @, (Q)]"". N oyraet hoth (Q) and F(w) by fitting Eq. (4) to all sets

th|s.f|gu_re das.hed t_)oxes represent the sum of all ON&t data of different momenturat the same time This

particle irreducible diagramsF, stands for the sum of all procedure exploits fully the information contained in the

diagrams with two lines closing at the wo ends, anis data because it is sensitive to the correlation among sets

the self-energy without the two externa}l cogplings. SinC(i/vith different 0. For this reason we are able to extract
the momentum dependence of the vertices is neglected, e ormation for (Q) and for the functionF(w) over a

Eysonfequatiolnsdfolﬁ agd{:’ (se;e F‘Q- 1) take the simple scale (slightly) smaller than the instrumental resolution.
orm ot a coupled algebraic system. A few words are necessary to explain how we can find
. the complex functior’(w) from the data. The imaginary
G(P) = Golp) + Golp) Vs F(p) V3 G(p). (33) ;1 eal part of" are related by the relation R&(w) =
F.(p)=F(p) + F(p)V3G,(p)VsF:(p). @Bb) —(1/7)P [dw'ImF(w)/(0 — »'). We thus need only

Equation (2) gives the most general second order form f
pp in terms ofb andb! that fulfills parity, time-reversal,
and p;{ = p-_p transformation properties. For the same
invariances the three functions introduaedg, andy are
bound to be real. Although the above expressiondpr

is quite general it can be obtained microscopically within
a particular approximation scheme [13].
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to parametrize one of them, we chodse F(w), since on  ment is obtained with a reducegd (y3) of nearly 4, thus
this function it is easier to apply the physical constraintindicating that even if we are leaving a large freedonf in
that excitations are kinematically stable for energieghe agreement is significant.
smaller than A. This condition read$m F(w) = 0 for Our main result is summarized by the dispersion
o < 2A (the small spectral density betweanQ) and relation for the undamped excitation shown in Fig. 3,
2A can be neglected). A simple way to parametrize thavhere it is compared with the one reported in Ref. [14].
function Im F is then to choose a set of values of We find that the model caguantitativelyexplain that the
say{wy, ws,..., oy} With 2A = 0 < wy; < -+ < wy peak position ofS(Q, w) is slightly larger tham2A for
reasonably spaced and to assigrfree parameter,a;, Q > 2.6 A~'. This originates from a mixing within the
to each of them. Im F(w) can then be defined as a instrumental resolution of the contribution of the sharp
cubic spline interpolation on such a set. The integrapeak at energyw, slightly smaller than & with that of
to calculate the real part can be performed analyticallythe continuum of two rotons excitations starting2a\.
so that its evaluation is fast and reliable also near th@©n general grounds the continuum should depend strongly
logarithmic singularity at the threshold. on w near2A, as forw > 2A there are much more states
We take advantage of a symmetry in Eq. (4) to defineavailable to decay into. For these reasons, the assumption
a dimensionless functiofi(w) = AF(w), constrained by of a background of constant slope, used to obtain the
the normalization conditionf5; dw Im f(w) = oy —  values of Ref. [14], is not valid in this momentum region.
2A. We thus defing; = V3/)\1/2 andB = B/(A'2a).  Our procedure exploits instead the theoretical model for
In this way a, B, g3, and theN — 1 parameters that x(p) to extract the value ofvg. In this way we can
define f are independent and can be fitted to the datafind the final part of the dispersion relation with improved
We setlm f(w) = ay for ® > wy and subtract out the accuracy and it turns out that data agree with a dispersion
infinite constant that would appear in Réw). relation for the excitations always belowA2
We thus fitted Eq. (4) (convolved with the known in- The importance of the fitted paramet@r has been
strumental resolution) to experimental data of Ref. [12]checked by studying the functiop?(3), where all the
(at 1.30 K) by minimizing numerically * for the parame-  other parameters are properly modified to mlnlmpze
ters:a, B3, g3, @(Q1),...,w(Q,), ai,...,ay—1 (N =15  for each value of3. The confidence region fo8, i.e.,
for the fit presented) The minimization procedure haghe values ofﬂ such that)(z(ﬁ)/Xmm < 1.5, turns out to
been performed with different standard routines and thée —0.17 < 8 < —0.01 meV~ /2 with a best valug3 =
result turned out to be independent of the choicéaft ~ —0.06 meV~/2. This implies that the direct excitations
and the initial value ofa;. A typical starting point for of two quasiparticles by the neutron gives a small but
Im f is simplya; = 1 for all i. The resulting fit is shown sizable contribution to S(Q, w). Concerning the other
in Fig. 2. Good agreement between theory and experiparameters we find? = 1.4 andg; = 0.8 meV'/2.
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FIG. 2. Fit to the data from Ref. [12] with a parametrized FIG. 3. Dispersion relation found in the present work (solid
Im f. In the inset the resultindm f is shown compared with line), and in Refs. [4,14] (dashed line). The inset shows the
Im F, averaged ove2.3 < Q0 < 3.2 A~! and properly scaled. complete dispersion relation.
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The shape ofm f found by the fit has two main fea- effect of the maxon-roton peak becomes important. Thus
tures: a clear peak a = 2 meV and a “quasidivergent” use of the Pitaevskii-ZRS theory fét in our expression
behavior at the threshold. The peak is due to the maxon4) does not give a good description of the data if the
roton van Hove singularity. This can be verified by com-cutoff in energy is removed. This indicates that the
paring the functionlm F,(Q, w), averaged ove2.3 =  maxon-roton structure and, in general, the whole shape
0 = 3.2 A~ and properly scaled, with the fittdeh f(w)  of Im f plays acrucial role in determinings(Q, ).

(see the inset of Fig. 2). Hence itis clear that the peak cor- In conclusion, we presented a theory f6XQ, w)
responds in shape and position to the maxon-roton singuhat takes into account both one- and two-quasiparticle
larity. Itis remarkable that no trace of the peak is apparenéxcitations by the neutron. The theory reproduces the
in any of the experimental plots. It is only by exploiting experimental result over a large range of energy and
the correlation between plots with differefitthat we have momentum. We have thus been able to extract the final
been able to extract this information. On this basis, usingart of the spectrum dispersion relation fie. Our

the fitted parameters it is also possible to predict that @gheory can be regarded as an extension of the Pitaevskii-
peak and its shape should be observable with a resolutic®RS theory taking into account the effect of two-particle
of 0.1 meV (to be compared with.5 meV of Fig. 2). excitations. Moreover, the range of validity is enlarged as

The quasisingularity at threshold can be understood ase make no hypothesis on tefunction, but we extract
an interaction effect, namely a signature of the attractivat directly from data. In the region where Pitaevskii-ZRS
interaction between rotons. As a matter of fact, in thetheory holds we have used it to parametrizén Eq. (4),
small region of energy near the threshold we can applyand we found that the interaction potential among rotons
Pitaevski-ZRS [3,5,6] theory to evaluatdw) that reads  (V,) is attractive in this momentum region.

A — o\ ! | am indebted to P. Noziéres for suggesting this
—> , problem to me and for many discussions. | gratefully
D 5) acknowledge B. Fak for discussions and critical reading
of the manuscript. | acknowledge B. Fak and J. Bossy for
where p = —Im F,(Q, w = 2A™)/27 is the threshold letting me use their data prior to publication. 1 also thank
density of statesgy, = 2V4p, and D is a cutoff that N. Cooper, N. Manini, A. Wiirger, P. Pieri, G. C. Strinati,
can be set to 1 meV as changes Iin can be easily and H.R. Glyde for useful discussions.
reabsorbed in small variations @f,, g3, and g4. One
can thus readily verify that with a negative value gf
Eq. (5) gives dm F that foro — 2A™ reproduces quali-
tatively Im f of Fig. 2. To verify quantitatively this
fact and to find an estimate @f, we have repeated the

F(Q,w) =4p|n2AT_w<l — g4ln
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