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Theory and Data Analysis for Excitations in Liquid 4He Beyond the Roton Minimum

F. Pistolesi*
Institut Laue-Langevin, B.P. 156, F-38042 Grenoble Cedex 9, France

(Received 20 January 1998)

The hybridization of the single-excitation branch with the two-excitation continuum in the momentum
region beyond the roton minimum is reconsidered by including the effect of the interference term
between one and two excitations. Fits with our model to the latest experimental data allow us to
extract with improved accuracy the high momentum end of the4He dispersion relation. In contrast
with previous results we find that the undamped excitations below twice the roton energy survive up to
Q ­ 3.6 Å21 due to the attractive interaction between rotons. [S0031-9007(98)06561-2]

PACS numbers: 67.40.Db, 61.12.–q
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Although excitations in superfluid4He have been
widely studied in the last decades (see, for instanc
Ref. [1,2]), the nature of the single particle spectrum
termination remains unclear. Forty years ago, Pitaevs
predicted different kinds of termination depending on th
detailed form of the spectrum at low momenta [3]. I
the case of a decay into pairs of rotons, Pitaevskii theo
describes the avoided crossing of the bare one-excitat
branch with the continuum of two excitations. Within
this picture the low energy pole is repelled by th
continuum, so that the spectrum flattens out for largeQ
toward 2D losing spectral weight (D is the roton energy).
At the same time, a damped excitation forv . 2D

appears and shifts to higher energies. Neutron scatter
experiments later suggested that the decay of excitatio
into pairs of rotonsdid actually take place for momentum
Q * 2.6 Å21 [4]. The flattening of the spectrum at
an energy of the order of2D being the main feature in
support of Pitaevskii’s picture. Despite the goodquali-
tative agreement between theory and experiment, seve
issues addressed by the theory could not be verified d
to insufficient instrumental resolution. In particular
theory predicts a singular termination of the spectrum a
definite value of momentumQc for a repulsive interaction
(V4 . 0) between rotons. In the case of an attractiv
interaction, hybridization between the roton bound sta
and the single quasiparticles is instead expected, as p
posed by Zawadowski-Ruvalds-Solana (ZRS) [5], wit
the consequence that an undamped quasiparticle pea
an energy slightly below 2D should be present [5–8]. To
our knowledge, it has not yet been possible to distingui
clearly between these two cases.

Smithet al. [9] performed the first complete experimen
tal analysis for2.7 # Q # 3.3 Å21. Although they found
indications of a repulsive interaction (V4 . 0) using ZRS
theory, they pointed out that the experimental finding o
energies for the quasiparticle peak above2D was not ac-
counted for by the theory with reasonable values of th
parameters. As a matter of fact, the position of the low
energy peak was not extracted from the data with ZRS th
ory, but rather by fitting a Gaussian peak on a backgrou
of constant slope. The resulting spectrum reached valu
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above2D, in contrast with theoretical predictions. From
the theoretical point of view it is not possible to explain i
a simple way the presence ofsharppeaks at energies abov
2D, as the corresponding excitation should be unsta
towards decay into two rotons. Moreover, the experime
tal finding of a repulsive interaction disagrees with diffe
ent theoretical calculations that predict a negative va
for V4 [7,10]. More recent experimental investigations b
Fåk and co-workers [11,12] concentrate on the interest
temperature dependence of the dynamical structure fa
SsQ, vd and do not address directly the issue of the qua
particle energy or the interaction potential between roto
In any case they show clearly that there is a strong c
relation between the low-energy peak and the high-ene
continuum asQ increases from 2.3 to3.6 Å21 [12], thus
indicating that hybridization takes place. We further reca
that this hybridization is expected as a direct conseque
of Bose condensation as explained in detail in Ref. [1].

From the theoretical point of view, we recall that th
validity of Pitaevskii and ZRS theories is restricted to
small region around 2D. Indeed Pitaevskii in his original
paper [3] exploited the logarithmic divergence appea
ing in the two-roton response function [FosQ, vd ­
i

R
sdv0y2pd

R
fd3Q0ys2pd3gGsp 2 p0dGsp0d, where

G21spd ­ v 1 i 01 2 vsQd, vsQd is the measured
spectrum andp ­ sQ, vd] to solve exactly the many-
body equations. This elegant theory provides expli
expressions for the Green’s and the density-dens
correlation functions, validonly in the small energy
range where the singularity dominates. This fact lea
to problems in data analysis whenQ grows so that the
bare excitation energyvosQd takes values above2D. In
fact, the signal around2D strongly decreases withQ and
spectral weight shifts to higher energies followingvosQd.
To understand the correlation between the high-ene
part of the spectrum and the one-excitation contributio
it is necessary to extend the validity of the theory to
wider range of energies in order to describe prope
the continuum contribution toSsQ, vd. It then becomes
crucial to consider the effect of the direct excitation o
two quasiparticles by the neutron and its interplay wi
the one-quasiparticle excitations usually considered.
© 1998 The American Physical Society 397
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The aim of the present paper is to construct such
extension of the theory to describe experimental data f
SsQ, vd at very low temperatures. Since excitations i
4He are stable (GsQdyvsQd ø 1022 for rotons at1.3 K
with G the half width of the excitation), it is an excellent
approximation to write the Hamiltonian directly in terms
of the creation and destruction operatorsby andb of these
excitations:

Ho ­
X
p

vospdby
p by

p 1 V3

X
p,q

fby
p by

q bp1q 1 ccg . (1)

We consider for the moment only theV3 interaction that
induces the hybridization of the single with the doubl
excitation. In general, this vertex will be a function o
two momenta, for instance the total momentum of th
two particles and the momentum of one of them. W
neglect from the outset this dependence on momentu
as it is expected to be smooth in the region of intere
and less important than the frequency dependence retai
in the following. SinceSsQ, vd is the imaginary part
of the density-density response function [xsQ, vd] it is
convenient to express the density operatorrp in terms of
the b and by field operators. In general this will be an
infinite series in theb fields, by retaining only the one
and two quasiparticle terms we obtain

rp ­ aspd fby
p 1 b2pg 1

X
q

gsp, qd b
y
p1qbq

1
X
q

bsp, qd fby
p1qby

2q 1 bqb2p2qg . (2)

Equation (2) gives the most general second order form f
rp in terms ofb andby that fulfills parity, time-reversal,
and ry

p ­ r2p transformation properties. For the sam
invariances the three functions introduceda, b, andg are
bound to be real. Although the above expression forrp
is quite general it can be obtained microscopically withi
a particular approximation scheme [13].

It is possible at this point to calculate perturbativel
xsQ, vd using the explicit form ofrp given in Eq. (2) and
the Hamiltonian (1). At zero temperature the contributio
of the gsp, qd term to x vanishes, while the momentum
dependence ofaspd andbsp, qd is neglected for the sake
of simplicity. The diagrammatic theory for the mode
is shown in Fig. 1 together with the definition ofxspd,
Fospd, Ftspd, Fspd, andGospd ­ fv 2 vosQdg21. In
this figure dashed boxes represent the sum of all on
particle irreducible diagrams.Ft stands for the sum of all
diagrams with two lines closing at the two ends, andF is
the self-energy without the two external couplings. Sinc
the momentum dependence of the vertices is neglected,
Dyson equations forG andFt (see Fig. 1) take the simple
form of a coupled algebraic system:

Gspd ­ Gospd 1 Gospd V3 Fspd V3 Gspd , (3a)

Ftspd ­ Fspd 1 Fspd V3 Gospd V3 Ftspd . (3b)
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FIG. 1. Full lines stand for the exact Green’s function, dash
boxes for the sum of all one-particle irreducible diagrams, a
the black box for the sum of all diagrams with two lines closin
at the two ends. xspd is the sum of all diagrams with two
density insertions (wiggly lines).

By solving Eqs. (3) and substitutingG andFt into the
expression forxspd we finally obtain

xspd ­
a2 1 2abV3Fspd 1 b2Fspd G21

o spd
G21

o spd 2 V 2
3 Fspd

. (4)

Equation (4) is the basic expression that we will us
in the following for the fits to the data [SsQ, vd ­
2Im xsQ, vd]. The presence of aV4 interaction does
not change the above treatment since noV4 vertex can
connectF to G at zero temperature. This implies tha
the additional diagrams due to aV4 interaction contribute
only to F. Since the explicit calculation ofF is difficult
and in general depends on the detailed structure of
vertex functions, we prefer to extract it directly from dat
by exploiting the large (energy and momentum) region
validity of Eq. (4). We proceed by noting that in Eq. (4
only F and vo (through Go) depend onQ. Explicit
evaluation ofFo suggests that the momentum dependen
of F should not be pronounced in the range of intere
2.3 3.2 Å21. We thus drop this dependence complete
in F and fit the resulting functionFsvd to the data. The
Q dependence ofvo is not negligible because it drives
vosQd through the2D line. In this way we are left with
only one parameter dependent onQ. It is now possible to
extract bothvsQd andFsvd by fitting Eq. (4) to all sets
of data of different momentumat the same time. This
procedure exploits fully the information contained in th
data because it is sensitive to the correlation among s
with different Q. For this reason we are able to extrac
information for vsQd and for the functionFsvd over a
scale (slightly) smaller than the instrumental resolution.

A few words are necessary to explain how we can fin
the complex functionFsvd from the data. The imaginary
and real part ofF are related by the relation ReFsvd ­
2s1ypdP

R
dv0 Im Fsvdysv 2 v0d. We thus need only
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to parametrize one of them, we chooseIm Fsvd, since on
this function it is easier to apply the physical constrai
that excitations are kinematically stable for energie
smaller than 2D. This condition readsIm Fsvd ­ 0 for
v , 2D (the small spectral density betweenvsQd and
2D can be neglected). A simple way to parametrize t
function Im F is then to choose a set of values ofv

say hv1, v2, . . . , vN j with 2D ­ v1 , v2 , · · · , vN

reasonably spaced and to assign afree parameter,ai ,
to each of them. Im Fsvd can then be defined as a
cubic spline interpolation on such a set. The integr
to calculate the real part can be performed analytica
so that its evaluation is fast and reliable also near t
logarithmic singularity at the threshold.

We take advantage of a symmetry in Eq. (4) to defin
a dimensionless functionfsvd ­ lFsvd, constrained by
the normalization condition

RvN

2D dv Im fsvd ­ vN 2

2D. We thus defineg3 ­ V3yl1y2, andb̂ ­ bysl1y2ad.
In this way a, b̂, g3, and theN 2 1 parameters that
define f are independent and can be fitted to the da
We setIm fsvd ­ aN for v . vN and subtract out the
infinite constant that would appear in ReFsvd.

We thus fitted Eq. (4) (convolved with the known in
strumental resolution) to experimental data of Ref. [1
(at 1.30 K) by minimizing numericallyx2 for the parame-
ters:a, b̂, g3, vsQ1d, . . . , vsQnd, a1, . . . , aN21 (N ­ 15
for the fit presented). The minimization procedure h
been performed with different standard routines and t
result turned out to be independent of the choice ofhvij
and the initial value ofai. A typical starting point for
Im f is simplyai ­ 1 for all i. The resulting fit is shown
in Fig. 2. Good agreement between theory and expe

FIG. 2. Fit to the data from Ref. [12] with a parametrize
Im f. In the inset the resultingIm f is shown compared with
Im Fo averaged over2.3 , Q , 3.2 Å21 and properly scaled.
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ment is obtained with a reducedx2 (x2
R) of nearly 4, thus

indicating that even if we are leaving a large freedom inf
the agreement is significant.

Our main result is summarized by the dispersio
relation for the undamped excitation shown in Fig. 3
where it is compared with the one reported in Ref. [14
We find that the model canquantitativelyexplain that the
peak position ofSsQ, vd is slightly larger than2D for
Q . 2.6 Å21. This originates from a mixing within the
instrumental resolution of the contribution of the shar
peak at energyvQ slightly smaller than 2D with that of
the continuum of two rotons excitations starting at2D.
On general grounds the continuum should depend stron
on v near2D, as forv . 2D there are much more states
available to decay into. For these reasons, the assumpt
of a background of constant slope, used to obtain th
values of Ref. [14], is not valid in this momentum region
Our procedure exploits instead the theoretical model f
xspd to extract the value ofvQ. In this way we can
find the final part of the dispersion relation with improved
accuracy and it turns out that data agree with a dispersi
relation for the excitations always below 2D.

The importance of the fitted parameterb̂ has been
checked by studying the functionx2sb̂d, where all the
other parameters are properly modified to minimizex2

for each value ofb̂. The confidence region for̂b, i.e.,
the values ofb̂ such thatx2sb̂dyx

2
min , 1.5, turns out to

be20.17 , b̂ , 20.01 meV21y2 with a best valuêb ­
20.06 meV21y2. This implies that the direct excitations
of two quasiparticles by the neutron gives a small bu
sizable contribution to SsQ, vd. Concerning the other
parameters we finda2 ­ 1.4 andg3 ­ 0.8 meV1y2.

FIG. 3. Dispersion relation found in the present work (soli
line), and in Refs. [4,14] (dashed line). The inset shows th
complete dispersion relation.
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The shape ofIm f found by the fit has two main fea-
tures: a clear peak atv ø 2 meV and a “quasidivergent”
behavior at the threshold. The peak is due to the max
roton van Hove singularity. This can be verified by com
paring the functionIm FosQ, vd, averaged over2.3 #

Q # 3.2 Å21 and properly scaled, with the fittedIm fsvd
(see the inset of Fig. 2). Hence it is clear that the peak c
responds in shape and position to the maxon-roton sin
larity. It is remarkable that no trace of the peak is appare
in any of the experimental plots. It is only by exploiting
the correlation between plots with differentQ that we have
been able to extract this information. On this basis, usi
the fitted parameters it is also possible to predict tha
peak and its shape should be observable with a resolu
of 0.1 meV (to be compared with0.5 meV of Fig. 2).

The quasisingularity at threshold can be understood
an interaction effect, namely a signature of the attracti
interaction between rotons. As a matter of fact, in th
small region of energy near the threshold we can ap
Pitaevski-ZRS [3,5,6] theory to evaluateFsvd that reads

FsQ, vd ­ 4r ln
2D 2 v

D

µ
1 2 g4 ln

2D 2 v

D

∂21

,

(5)

where r ­ 2Im FosQ, v ­ 2D1dy2p is the threshold
density of states,g4 ­ 2V4r, and D is a cutoff that
can be set to 1 meV as changes inD can be easily
reabsorbed in small variations ofvo, g3, and g4. One
can thus readily verify that with a negative value ofg4

Eq. (5) gives aIm F that forv ! 2D1 reproduces quali-
tatively Im f of Fig. 2. To verify quantitatively this
fact and to find an estimate ofg4 we have repeated the
data fit using Eq. (5) to parametrizefsvd (instead of the
spline parametrization), and setting a cutoff in ener
at 2D 1 0.2 meV, in such a way to apply Eq. (5)only
where it is supposed to hold. The resultingx

2
R ­ 2 for

the fit gives evidence that the theory worksquantitatively
in this region, and we get for the interaction param
ter V4 ­ g4ys2rd ø 24.7 meV Å3 (g4 ­ 20.15). The
bound-state energy that we obtain from Eq. (5) is inde
very smallEB ­ D exph1yg4j ø 1.3 meV. This second
fit gives also an additional estimate of the dispersi
relation that agrees with the previous one and confir
that an undamped state is present up toQ ­ 3.6 Å21.
The confidence region forg4 is 20.22 , g4 , 20.08,
restrictingb̂ to its confidence region already found, whic
indicates that the interaction is definitelyattractive.

Some final comments are in order. First, while Fig.
shows the fit for2.3 # Q # 3.2, the inclusion of the
additional set of data forQ ­ 3.6 increases slightlyx2

R
(since the momentum range over which we are assum
the vertices to be momentum-independent may be
large) but it remains in any case a good fit to data. For t
reason we report in Fig. 3 the value forvsQd obtained in
this way. Second, we studied the cutoff dependence
x

2
R when fsvd is parametrized according to Eq. (5) an

we found that it is very weak up tov ­ 2 meV where the
400
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effect of the maxon-roton peak becomes important. Th
use of the Pitaevskii-ZRS theory forF in our expression
(4) does not give a good description of the data if t
cutoff in energy is removed. This indicates that th
maxon-roton structure and, in general, the whole sha
of Im f plays acrucial role in determiningSsQ, vd.

In conclusion, we presented a theory forSsQ, vd
that takes into account both one- and two-quasiparti
excitations by the neutron. The theory reproduces
experimental result over a large range of energy a
momentum. We have thus been able to extract the fi
part of the spectrum dispersion relation in4He. Our
theory can be regarded as an extension of the Pitaevs
ZRS theory taking into account the effect of two-partic
excitations. Moreover, the range of validity is enlarged
we make no hypothesis on theF function, but we extract
it directly from data. In the region where Pitaevskii-ZR
theory holds we have used it to parametrizeF in Eq. (4),
and we found that the interaction potential among roto
(V4) is attractive in this momentum region.
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