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The effect of nonmagnetic impurities on 2Bwave superconductors is studied beyond the weak
disorder regime. Within the Bogoliubov—de Gennes (BdG) framework, the local pairing amplitude
develops a broad distribution with significant weight near zero with increasing disorder. Surprisingly,
the density of states continues to show a finite spectral gap. The persistence of the spectral gap at large
disorder is shown to arise from the breakup of the system into superconducting “islands.” Superfluid
density and off-diagonal correlations show a substantial reduction at high disorder. A simple analysis
of phase fluctuations about the highly inhomogeneous BdG state is shown to lead to a transition to a
nonsuperconducting state. [S0031-9007(98)07517-6]
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The effect of strong disorder on superconductivity has We conclude with some comments on the implications
been a subject of considerable interest, both theoreticallgf our results for experiments on disordered films.
[1,2] and experimentally [3,4], for a long time. A gener- We model the 2D disorderegwave SC by an attrac-
ally accepted physical picture of how the superconductingive Hubbard model with on-site disorder:
(SC) state is destroyed and the nature of the non-SC state
has not yet emerged. Much of the theoretical work (“pair- . = XK — |U|Z_”n"i1 + Z(Vi - Wnig. (1)
ing of exact eigenstates” [1,5] or diagrammatics [2,6]) as- ! i
sumes that the pairing amplitudgr) is uniform in space K = —t2<ij>’g(c,t,cjg + H.c) is the kinetic energy,

(r independent) even for a highly disordered SC; see.t (. yihe creation (destruction) operator for an elec-

however, [7,8]. Recent work on universal properties atron with spin o on a siter; of a square lattice;

the SC-insulator transition [9] has also ignored amplitudg,o near-neighbor hoppingl/| the pairing interaction,

fluctuations, since phase fluctuations are presumably re- + , ,
sponsible for critica?properties. P y Niec = CigCio, andu the chemical potential. The random

In this paper we consider a simple model of a 2Dpotenti_a|\{,~ is_chosen independently at eagtfrom a uni-
s-wave superconductor &t = 0 in a random potential form distribution[ —V, V]; V thus controls the strength of

defined by Eq. (1) below, and analyze it in detail within (M€ disorder.

. " We begin by treating the spatial fluctuations of the
a Bogoliubov—de Gennes (BdG) framework [10]. Ourpairing amplitude using the standard BdG equations [10],

goal is to see how the local pairing amplitudg(r) N N

varies spatially in the presence of disorder, and the effect ( 3 A ) (”"(ri)> = (“"(ri)) )
of this inhomogeneity on physically relevant correlation A* =&" J\ () "\valr;) )’
functions. Our results can be summarized as follows. |\ hare Eun(ri) = —t S5 un(r; + ) + (Vi — Z)un(r;)

(1) With inqreasing Qisorder, the distributian(A) of 4 Auy(r;) = A(r)u,(r;), and similarly for v, (r;).

the local pairing a_lmplltude_A(r) becomes very broad, pere § = +%,+§ and i; = u + |Uln;/2 incorporate

eventually developing considerable weight ndas- 0. the site-dependent Hartree shift in the presence of dis-
(2) The spectral gap in the one-particle density of stateg§ o Starting with an initial guess fax(r;)'s and /;

persists even at _high disorder in s_pite of the gro_wing\Ne numerically solve for the BAG eigenvalu&s and
number of sites witlA(r) = 0. A detailed understanding eigenvectorsu, (r;), v,(r;)] on a finite lattice ofV' sites

of this surprising effect emerges from a study of they i neriodic boundary conditions. We then calculate the
spatial variation ofA(r) and of the BdG eigenfunctions. local pairing amplitudes and number density 7at= 0,
(3) There is substantial reduction in the superfluid Stiﬁ'given by

ness and off-diagonal correlations with increasing disor-
der; however, the amplitude fluctuations by themselved(r;) = |U|Zu”(rl~)vn*(r,~), n; = Zlvn(ri)lz, (3)
cannot destroy the superconductivity. n n

(4) Phase fluctuations about the inhomogeneous Bd@nd iterate the process until self-consistency is achieved
state are described by a quant¥ model whose pa- for n; and A(r;) at each site w is determined by
rameters, compressibility and phase stiffness, are obtaindd' N >’ ; n; = (n), where(n) is the average density.
from the BdG results. A simple analysis of this effec- We have studied the model (1) for a range of parameters:
tive model within a self-consistent harmonic approxima-1 = |U|/t = 8and0 = V/r = 12 on lattices of siz&/ =
tion leads to a transition to a hon-SC state. 12 X 12 (some checks were made @4 X 24 systems).
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We focus below onlU|/t = 2 and4, (n) = 0.875; similar  fluctuations properly, miss this remarkable feature, as do
results are obtained for other parameters. The numbeimplified models in whichA(r;)’s are assumed to be
of iterations necessary to obtain self-consistency growsdependent random variables at each site.
with disorder; we have checked that the same solution is To understand the persistence of a finite spectral gap
obtained for different initial guesses. Results are averagealt high disorder, when a large fraction of the sites have
over 16—20 different realizations of the disorder. near vanishing pairing amplitude, it is useful to study the
The distributionP(A) of local pairing amplitudes for spatial variation of the\(r;)’s and the BdG eigenvectors
|U| = 4 is plotted in Fig. 1. ForV =< 0.25¢, P(A) has  [u,(r;), v,(r;)] for individual realizations of the disorder
a sharp peak near thé = 0 BCS value ofAy = 1.36¢.  potential. A particularly simple picture emerges at high
In the smallV limit, pairing of exact eigenstates is justi- disorder: there are spatially correlated clusters of sites at
fied, since this naturally leads [11] to uniforfy(r). How-  whichA(r;) is large (“SC islands”), and these are separated
ever, this approximation fails with increasingas P(A) by large regions wheré(r;) = 0 [see Fig. 3(b)]. We
becomes extremely broad fér ~ ¢, eventually becoming find that the SC islands correlate well with regions where
rather skewed af = 2 with a large number of sites with the absolute magnitude of the random potentigl is
A(r) = 0. small; deep valleys and high mountains in the potential
To study how the spectral gap evolves as the pairinglo not allow for number fluctuations and are thus not
amplitude becomes highly inhomogeneous, we look atonducive to pairing. The density(r) is also highly
the (disorder averaged) one-particle density of statemhomogeneous, and, for moderdfé| (= 4¢) and high
(DOS)N(w) = 1/N Y, 8(w — E,), defined in terms of disorder, we have found clear evidence for “particle-hole
the BdG eigenvalueg,. (Numerically,§ functions are mixing in real space,” i.e., a spatial correlation between
broadened into Lorentzians with a width of order spacingA(r) andn(r)/2[1 — n(r)/2] [13].
betweenE,’s.) From Fig. 2 we see that with increasing At high disorder, we found that the eigenfunctions
disorder the DOS pileup at the gap edge is progressivelgorresponding to low-lying excitations live entirely on the
smeared out, and that states are pushed up to high&C islands [i.e., the darker regions in Fig. 3(b)] resulting
energies. But the most remarkable feature of Fig. 2 isn the finite spectral gap. On the other hand, regions where
the presence of a finite spectral gap even at high disordethe pairing amplitude is small correspond to very large
While we cannot rule out an exponentially small tail in values of|V;|, as explained above, and thus support even
the low energy DOS from a finite system calculation,higher energy excitations. Clearly this simple picture of
we always found, for each disorder realization, that theSC islands is well defined only in the large disorder regime;
lowest BAG eigenvalue remains nonzero and of the ordemevertheless, it is useful for understanding the spectral gap
of the zero-disorder BCS gap; see also Fig. 3(a). Weén this limit. In the opposite limit of low disorder, of
also emphasize that approximate treatments of the Bd@ourse, the BCS-like spectral gap is obvious.
equations [12], which do not treat the local amplitude We next turn to the question of how superconductivity
is affected in the highly inhomogeneous BdG state. The
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FIG. 1. The distribution”(A) of the pairing amplitude\ (r;)

for different disorder strengthig. For smallV, P(A) is peaked FIG. 2. Density of stated/(w) for three disorder strengths
around the BCS\(, but becomes increasingly broad at higher which show the the persistence of a spectral gap at all disorder.
V, indicative of a highly inhomogeneous state. (Note the different vertical scale for each case.)
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FIG. 3. (a) Left panel:T = 0 spectral gapE,,, and order FIG. 4. The 7 = 0 BdG superfluid stiffnesngJ and the
parameterApp (see text) as functions of disordéf. The  spectral gapE,,, plotted as a function of disorder strength for
two coincide for smallv but become very different at large two different values of attractiof/|. Note that irrespective of
disorder. (b) Right panel: Gray-scale plot showing the spatiaivhetherD? is larger than or comparable f,,, atV = 0, the
variation of A(r;) for the same disorder configuration with gap persists with increasing disorder while stiffness decreases.
different V. Larger A(r;)'s are indicated by darker shades.
Note the spatially correlated structures lat= 2¢ with “SC
islands” separated by a “sea” of nearly vanishikig. To make a rough estimate of the effect of phase fluctua-
tions about the inhomogeneous BdG state we use a quan-
tum XY model with an effective Hamiltonian [1}, =
off-diagonal long range order parameté&rpp is de- —(K/S)Zj 0} + (D§/4)Z<jk> cog6; — 6;), whose pa-
fined by the (disorder averaged) correlation functionrameters are obtained from the preceding analysis: the bare
(chelejeiy — Adp/IUP for large |r; — rjl. From DY is the BAG superfluid stiffness and = dn/dpu is
Fig. 3(a) we see thakop is the same as the spectral gapthe BdG compressibility. The large reductiondn/d u
(and both equal the uniform pairing amplitude) for smallwith disorder seen in Fig. 5(a) can be understood qualita-
disorder, as expected from BCS theory. However beyontively at largeV in terms of the charging energy of the SC
a certainV the two quantities deviate from each other: inislands. Note that, in this simplified description usitig,
contrast to the spectral gap, the order parameter decreasie ignore the inhomogeneity in the local bare stiffness and
with increasing disorder (we find thatop = [dA x  charging energies.
AP(A), i.e., the average value of the pairing amplitude). ~We use a variational approximation [18] to estimate
The superfluid stiffnes®? is given by [14]D°/7 =  the renormalized superfluid stiffnesd, = D(«, DY),
(—ky) = Axx(gr = 0,y — 0, = 0). The diamagnetic by finding the best harmoniél ;.1 = —(x/8) 3 ; 0]2 +
term(—k,) is one-half (in 2D) the kinetic energy-XK), (Ds/8) Z<jk>(0j — 6;)%, which describesi,. The phase
and the paramagnetic terrn, is the (disorder averaged) variables#; are assumed to live on a lattice with lattice
transverse current-current correlation function. We haveonstant set by the BdG coherence length For U =

also checked that the charge stiffnd3% is equal toD?. —4t we chooseé, = 1.8 [19] by demanding that the
[D° is the strength of the delta function im(w), and  renormalizedD, atV = 0 agrees with that obtained from
given in terms ofA,,(q = 0, ® — 0) [14].] guantum Monte Carlo (QMC) [20]f; /7 = 0.45¢) for

The DY calculated within BdG theory shows a large the pure case.

reduction [15] by 2 orders of magnitude with increasing We now calculate the renormalizdd, as a function
disorder; see Fig. 4. We see thattor= —2¢, atV = 0,  of disorder, using thé/-dependent« and D? from the

DY > E,,,, characteristic of weak coupling BCS theory, BdG analysis as input and keepigg fixed (details will
where the vanishing of the gap determinBs while  be presented elsewhere [13]). As shown in Fig. 5(h),
for U = —4¢, D? and E,,, are comparable av =0, is driven to zero beyond a critical disord&; which is
indicative of an intermediate coupling regime [16] wherein very reasonable agreement with QMC [20]. Thus a
thermal phase fluctuations are important for determiningransition to a non-SC (insulating) state is indeed obtained
T. [17]. However, forall |U|/t, we always findD? < by incorporating the effects of phase fluctuations about the
Eg,p at large disorder, and thus phase fluctuations have tmhomogeneous BdG state.

be taken into account. In fact, the reason why is not We emphasize that the finite spectral gap obtained
driven to zero at largd/ within the BdG framework is in the BdG analysis at larg®& will survive inclusion
due to the neglect of these fluctuations. of phase fluctuations, since this gap is related to the
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