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| argue that the dc limit of the universal crossover function for the conductivity at the superconductor-
insulator transition in disordered systems is an analytic function of dimensionality of the sgstem
with a simple pole atd = 1. By combining the exact result for the crossover functiondin= 1
with the recursion relations i@ = 1 + €, the leading term in the Laurent series énis computed
for the systems of disordered bosons. The universal dc critical conductivity for the system with
Coulomb interactions il = 2 is estimated to be-0.69(2¢)?/h, in satisfactory agreement with many
experiments. [S0031-9007(98)07444-4]

PACS numbers: 71.30.+h, 73.50.—h, 74.25.Fy, 74.40.+k

Different quasi-two-dimensional (2D) electronic sys- culated originate in entirely different dissipation mecha-
tems, such as thin films [1], Josephson junction arrays [2]pisms, and, while both should be universal, they have no
or underdoped highz. cuprates [3], appear to have a con-reason to be equal. As an illustration, they computed the
tinuous zero-temperature phase transition between the soenductivity in the hydrodynamic regimé&w /kzT — 0,
perconducting and the insulating states, as some parametgrthe simpler superfluid-Mott insulator (SF—MI) transition
of the system is varied. The loss of phase coherence in tharought by an external periodic potential, near its upper
ground state is believed to be due to Anderson localizaeritical dimension ofd = 3, and indeed found a different,
tion of the Cooper pairs [4,5], which through the quantumand larger, value of the critical conductivity.
uncertainty relation competes with phase ordering. Inreal- In real disordered systems the insulating phase is
ity, this purely quantumZ = 0) phenomenon is unavoid- presumably the result of Anderson localization and should
ably observed at low but finite temperatures, typically asbe a compressible Bose glass (BG) [5], not the Mott
a crossover from increasing to decreasing dc conductivitynsulator. It has been argued that, in the presence of
with temperature. Particularly interesting is the behaviodisorder, the limitsw — 0 and T — 0 may commute
of conductivity near the critical value of the tuning parame-[7], and the imaginary time Monte Carlo calculations
ter, which remains finite down to the lowest temperaturesindeed found little or no dependence of the critical
and usually very close t@e¢)?/h, the quantum unit of con- conductivity at the SF-BG transition on the ratig, /T
ductance for electron pairs. This near-universality of thg9], where w, is the Matsubara frequency. Including
metallictransport right at the superconductor-insulator (Sl)disorder makes the problem difficult to study analytically,
transitions in 2D has been a subject of numerous theoretsince the Sl transition then seems to lack the upper
cal and experimental investigations within the last decadecritical dimension, or any other obvious limit in which
Scaling arguments [6] imply that & = 0 and right at the at the criticality the system would be weakly coupled.
guantum critical point the dc conductivity must indeed beNumerical techniques [7—9] on the other hand, determine
universal, very much like the critical exponents. This in-the conductivity by extrapolating from the imaginary
sight has received a substantial amount of theoretical supdatsubara frequenciesy, = n27kgT, and thus by its
port in the form of concrete numerical [7—9] and analyticalnature are not very sensitive to any structure it might have
[7,10,11] evaluations of thE = 0 critical conductivity for  in the hydrodynamic regime. The understanding of the
various universality classes of the Sl transitions. The exrole of disorder and the calculation of the experimentally
perimental evidence for the expected universality of themeasured low temperature dc conductivity at the SI
charge transport, however, is still somewhat less convinceritical point in 2D systems thus presents itself as a
ing. In particular, measurements typically yield values offundamental and unsolved problem. The purpose of
the critical conductivity 2 to 3 times larger than the cal-this Letter is to propose its solution in a form of a
culations [1]. Most of the theoretical studies [7—11] of controlled expansion around the solvable case of the SF-
the critical conductivity, however, are in significant con- BG transition in one dimension (1D).
ceptual discord with the experiment, as recently empha- | will consider the system oflisordered interacting
sized by Damle and Sachdev [12]. They argued that thbosons of charge. = 2¢ defined, for example, by the
o = 0, T — 0 dc conductivity that is typically measured Bose-Hubbard, or Josephson junction array Hamiltonian
and theT = 0, w — 0 conductivity that is usually cal- with a random chemical potential [5,11]. This model
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is known to possess a continuous SF-BG transition asuperfluid that describes the SF-BG transition in the dirty
T = 0, and should be appropriate for description of theBose-Hubbard model id = 1 [11,14,15]:

S| transition observed in Josephson junction arrays, or & B
*He in random media. If the Coulomb interaction be-§ = = zf dxj dr{c*[9,0:(x, )] + [0,0:(x,7)]*}
tween bosons is added, it should also represent the cor- 7 i=1 . 0 5
rect universality class for the transition in homogeneous
and granular films. Although there is no upper criical ~ ~ ? Z fdxfo dr dr’ cos2[6;(x,7)
dimension for the SF-BG transition in the usual sense S B /

0;(x, 7)1, (3)

[5,13,14], the fact that the superfluid phasedir= 1 and
at T = 0 exhibits only a power-law long-range order im- where = /i/kgT, K is inversely proportional to the su-
plies thatd = 1 represents the lower critical dimension. perfluid densityc is the velocity of low-energy phononic
Recently, this observation has been used by the author &xcitations, index numerates the replicas introduced to
formulate a controlled expansion of the universal quantiaverage over disorder, anb is related to the width
ties at the SF-BG transition in powers of a small parameeof the distribution of the random potential. The usual
tere = d — 1 [14]. In particular, and as argued below, limit N — 0 and a short-distance cutoff ! in Eq. (3)
in the limit 7 — 0 the dc resistivity at the critical point are assumed. This effective action arises as the one-
is proportional to a certain power of temperature and talimensional realization of the density (dual) representa-
the value of the disorder parameter at the SF-BG critition of the dirty Bose-Hubbard model at low energies
cal point, which becomes infinitesimally smal-é) as [11], or as the bosonic representation of the disordered
dimensionality of the system is reduceddo= 1. This  Luttinger liquid [15]. The invariance under a change of
suggests that the universal part of the low temperature deutoff implies that the conductivity id = 1 can be writ-
conductivity at the critical point may be expressed as arten in the scaling form,
analytic function ofe, with a simple pole at = 0. | fie hw \ o2
compute the first term in the Laurent series for the real o(w,T) = —f(K(b),c(b),D(b), —) =, @
part of the critical dc conductivity around = 0: ksT kT J h
, hic [2=dl/z 6 x e2 where K(b), ¢(b), and D(b) are the renormalized cou-
oelo =0.T) = ksT e T o) 7 plings at the new cutofbA~!, andb = ficA/kgT. The
result of the renormalization in the theory (3) for weak
(1)  disorder is well known [14,15]: under the change of cut-
where ¢ is a microscopic constant with units off the combinationk = 1/Kc?, that is proportional to
(length?/time, z = {d, 1} is the dynamical exponent, the compressibility, stays constark, always increases,
and x = {1,2} for the short range and for the Coulomb and smallD is relevant fornp = K¢ > 1/3, and irrele-
interaction between bosons, respectively. Eor 2 this  vant otherwise. There exists a separatrix in fhe- D
leads to an estimater, =~ 0.69¢2/h for the Coulomb plane which ends in the SF-BG critical pointat= 1/3
universality class, in reasonable agreement with mangnd D = 0. At o = 0 the scaling function in Eq. (4)
experiments on thin films [1]. at weak disorder should behave fas- 1/D(b) [15] and
In general, right at the critical point in&dimensional therefore right at the separatrix should slowly (logarith-
system the real part of conductivity for frequencies andmically, ~[In(b)]?) diverge asbh — o in d = 1. Apart
temperatures much smaller than some microscopic cutoffom the logarithmic correction that derives from disorder
energy can be written as being dangerously irrelevant, at the SF-BG criticality in
e N2V Ew ) o2 1D, Eq. (4) is just a special case of the general scaling
o(w,T) = (ﬁ) d(ﬁ) f (2) form (2), ford = z = 1. Since ind = 1 + € disorder
B B at the transition scales towards a finite fixed point value
where F,;(x) is auniversalcrossover function. Itis evi- p(p) — D* ~ €, whenb — « [14], the comparison of
dent that, in principle, at the critical point the conductivity the two scaling laws in Egs. (2) and (4) leads to the iden-
in d =2 assumes two different values depending onfication
the order of limitsw — 0 and T — 0, that correspond
to the values of the crossover function either at zero Fi11+.(0) = £(1/3,1,D*,0) = %t_'_ o), (5
or at infinity, and measure completely incoherent or €
completely coherent transport, respectively. What is morevhich expresses the central idea of this work. The
surprising, although it arises as a natural consequence t#ading term in the Laurent series Bj;(0) is completely
the scaling law, is that even in the limitw /k3T — 0 of  determined by the scaling function as in 1D and by the
the incoherent, collision dominated transport, conductivityinfinitesimal value of disorder at the fixed point of the
at the critical point ind = 2 is still given by auniversal  scaling transformation id = 1 + e.
number [12]. To understand the dependence of the Inthe remainder of the paper, the entire functfonear
conductivity in this limit on dimensionality of the system, the SF-BG critical point inf = 1 is obtained, a new field-
consider the effective low-energy action for the disorderedheoretic version of the recursion relationsdn= 1 + €
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requisite for the determination of the fixed point value ofcoupling, as will be done shortly. The remaining inte-
disorder is derived, and, finally, the residuum at the polegral in (9) is convergent only for; > 1, but, once evalu-
at e = 0 in Eq. (5) for both short-range and Coulomb ated there exactly, may be defined in the transition region

interactions between bosons is computed. n = 1/3 via analytic continuation. Performing the inte-
The standard linear response formalism yields thagral, in the vicinity ofn = 1/3 one obtains the conduc-
conductivity ind = 1: tivity in d = 1 to be
20 e2 1 v iwc e?
= —]— — . " . 5 T = )
clo.T) = =i My 2 Omle) @) ol D) = s T /WP W (Dghao [k T)
G’ (o) is the temperature-dependent, retardgds= 0 (10)
Green's function defined as where W(T) = (w*D/c2A3e3C) (kgT/Fic A)/ ™3
B , is the dimensionless disorder variable,(T) = n +
Gon(w) = fdxfo dre'” W(T)m 3 tan(w/2n), and g(x) =[1 + (x/7)%] X

tanHx/2). Note that the result indeed may be cast
X AT70n(x, 7)0m(0,0))iv,—w+is»  (7)  into the scaling form as claimed in Eq. (4). The self-
where T, is the standard time-ordering operator. Theenergy acquired an imaginary part, which in the limit
thermal Green’s function in Eq. (7) may be evaluatediw /kgT — 0 becomes proportional to temperature and to
perturbatively in disorder and then analytically continuedthe temperature-dependent disorder varialflg’). The
to real frequencies. A similar calculation has beensignificance of the poin = 1/3 now becomes apparent:
performed before by Luther and Peschel [16] ipr> 1,  for < 1/3 the disorder-variabléV(7) scales towards
which corresponds to weak coupling in the equivalent 1Dzero with decrease in temperature, and the lowest-order
fermionic system. The SF-BG transition at weak disorderesult in Eq. (10) becomes asymptotically exact. At a
is atnp =~ 1/3, so | derive here a slightly improved version finite frequency and & = 0 the real part of conductivity
of their results which can be analytically continued intoin d = 1 then becomesr/(w) = [7¢/7(0)]6(w), and
the transition region. Introduce the thermal self-energythe system is an ideal conductor. 7> 1/3 the pertur-
asGj;(w,) = 8;;/[2(K/m)w? + 2/(w,)]. Tothe lowest bation theory breaks down, which indicates the entrance
order inD it may be written as into the insulating phase. Notice that gs— 1/3 the
8 coefficient in front of W(T') in the expansion fom(T)
S w,) = SDf dr (1 — ') (T,e20157) e~ 120;x0 - hecomes divergent, as it has a simple polejat 1/3.
0 This is reminiscent of the dimensional regularization
+ 0(D?), (8)  frequently employed in the studies of thermal critical

where the average is performed over the quadratic part gfnenomena, and suggests that the theory (3) becomes just
the action (3). The self-energy is thitself a Green’s renormalizable aj = 1/3.

function, which enables one to perform the analytic In the continuum limit, the effect of change of tempera-
continuation to real frequencies by first rotating theture on the low-frequency conductivity id = 1 may
integrand in (8) to real time byr — ir to find the be expressed entirely through the effective values of
real time time-ordered propagator, and from it finally tothe coupling constants(7), W(T), and, if we had
determine the retarded one by using the standard relatidigtained the momentum dependence of the propagator,
between them [17]. Performing the Fourier transformthe compressibility«(7). Taking into account the finite

at the resulting expression then gives the retarded selfanonical dimensions of the coupling constantsind «

energy away fromd = 1 [14], close ton = 1/3 the effective
(1/m)—1 couplings satisfy the differential equations:
S7(e) = 167D <7rkBT> " Sin( 77) c/n 5
w) = — |e
cA \ ficA 27 () = z7'(d = Dn(T) = —5;5 W(T) + O(W(T)),
o 1 — ei(ﬁw/kBT)t T
X dt ———————, 9

fo ! [sinh(zr )]/ ©) (11)
whereC = 0.577 is the Euler's constant, and | assumed W(T) = (n~' = 3IW(T) + OWX(T)), (12)

thaticA/kgT > 1, i.e., the continuum (or equivalently, . _q
the low-temperature) limit. The appearance of a particu- k(T) =z (z = Dx(T), (13)

lar numerical constant is a consequence of the assumprherex = dx/dIn(kgT/hicA). The d-dependent terms
tion that the dispersion in (3) i® = ck for all momenta in Eqgs. (11) and (13) follow from the scaling of the su-
0 < k < A, and is a nonuniversal, short-distance featureperfluid densityp,; ~ K~! ~ ¢272~¢ and the compress-
This, nevertheless, does not compromise the universalitipility « ~ 1/Kc?> ~ £27¢ near the critical point (where
of the conductivity at the transition, since any nonuni-T ~ ¢7%, and ¢ is the diverging correlation length).
versal constant such a may at the end be absorbed These scaling relations can be directly read from the low-
into the definition of the running, dimensionless disorderenergy theory for the superfluid [5], as discussed at length
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elsewhere [14]. Note that in Eq. (13), unlike in Eq. (11),and vanishing as-e/x(! =€/ for largex. Although not
there are no terms dependent i{T'). This is a conse- ruled out, it does seem unlikely that éih= 2 this depen-
guence of the exact symmetry of the interaction term irdence onx = hiw/kgT completely disappears. In fact,
the action (2) unde®;(x,7) — 0;(x,7) + h(x), for arbi- the difference in the estimated critical conductivities in
trary functioni(x), and fixes the value of dynamical expo- completely coherent and incoherent regimes suggests that
nent toz = d for the system with short-range interactionsthe situation ind = 2 is likely to be qualitatively simi-
[14]. Linearization of the flow close to the fixed point lar to the one ind = 1 + e€: the real part of conductivity
of Egs. (11) and (12) gives the correlation length exposhould continuously decrease as a functionzaf/kpT,
nentr = (1/3/3€) + O(1), in agreement with the result interpolating between the two finitey = 0 andT = 0,
of the momentum-shell renormalization group [14]. Thelimits.
fixed point is located aW*(T) = 7%/2¢/6 + O(e?) and Finally, the field-theoretic formulation of the renormal-
7n*(T) = 1/3 + O(e). Using Egs. (10) and (5) one ob- ization group transformation derived here has the advan-
tains the main result announced in Eq. (1), for the shorttage over the usual momentum-shell calculation [14,15]
range interactions between bosons. in that it facilitates a systematic higher-order calculation.
To make a comparison with the experiments on thinThe observation thag in d = 1 plays a role similar to di-
films [1] or on high?. cuprates [3] one must include mensionality in the classical critical phenomena suggests
the long-range Coulomb repulsion between the eleca procedure analogous to the standard dimensional regu-
tron pairs. A way to do this was proposed previouslylarization for thed-independent part of the recursion re-
by the author in Ref. [14], where the long-range in-lations. Adding the effect of dimensionality wheh> 1
teractions between the bosons was definedVé® =  as described in Ref. [14] and as done in Egs. (11)—(13)
e? [digexpig - 7)/q?"", so that it coincides with the would then yield the higher-order corrections for the ex-
Coulomb interaction foe/ > 1, and with the short-range ponentr and the critical dc conductivity. It would be
interaction precisely al = 1. The calculation of the con- very interesting to compare the results of such an ana-
ductivity in d = 1 then remains the same, but the re-lytical calculation with the experiments and the numerical
cursion relations (11)—(13) need to be modified in twosimulations, as it could lead to a more definite understand-
ways [14]. First, instead of the equation for compressing of the SF-BG quantum critical behavior.
ibility, one now has the equation for the temperature- The author is grateful to NSERC of Canada and the
dependent charge?(T), which has the exactly same lzaak Walton Killam foundation for the financial support.
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