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I argue that the dc limit of the universal crossover function for the conductivity at the superconduc
insulator transition in disordered systems is an analytic function of dimensionality of the systemd,
with a simple pole atd ­ 1. By combining the exact result for the crossover function ind ­ 1
with the recursion relations ind ­ 1 1 e, the leading term in the Laurent series ine is computed
for the systems of disordered bosons. The universal dc critical conductivity for the system
Coulomb interactions ind ­ 2 is estimated to be,0.69s2ed2yh, in satisfactory agreement with many
experiments. [S0031-9007(98)07444-4]

PACS numbers: 71.30.+h, 73.50.–h, 74.25.Fy, 74.40.+k
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Different quasi-two-dimensional (2D) electronic sys
tems, such as thin films [1], Josephson junction arrays [
or underdoped high-Tc cuprates [3], appear to have a con
tinuous zero-temperature phase transition between the
perconducting and the insulating states, as some param
of the system is varied. The loss of phase coherence in
ground state is believed to be due to Anderson localiz
tion of the Cooper pairs [4,5], which through the quantu
uncertainty relation competes with phase ordering. In re
ity, this purely quantum (T ­ 0) phenomenon is unavoid-
ably observed at low but finite temperatures, typically
a crossover from increasing to decreasing dc conductiv
with temperature. Particularly interesting is the behavi
of conductivity near the critical value of the tuning parame
ter, which remains finite down to the lowest temperature
and usually very close tos2ed2yh, the quantum unit of con-
ductance for electron pairs. This near-universality of th
metallictransport right at the superconductor-insulator (S
transitions in 2D has been a subject of numerous theor
cal and experimental investigations within the last decad
Scaling arguments [6] imply that atT ­ 0 and right at the
quantum critical point the dc conductivity must indeed b
universal, very much like the critical exponents. This in
sight has received a substantial amount of theoretical s
port in the form of concrete numerical [7–9] and analytic
[7,10,11] evaluations of theT ­ 0 critical conductivity for
various universality classes of the SI transitions. The e
perimental evidence for the expected universality of th
charge transport, however, is still somewhat less convin
ing. In particular, measurements typically yield values
the critical conductivity 2 to 3 times larger than the ca
culations [1]. Most of the theoretical studies [7–11] o
the critical conductivity, however, are in significant con
ceptual discord with the experiment, as recently emph
sized by Damle and Sachdev [12]. They argued that t
v ­ 0, T ! 0 dc conductivity that is typically measured
and theT ­ 0, v ! 0 conductivity that is usually cal-
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culated originate in entirely different dissipation mecha
nisms, and, while both should be universal, they have n
reason to be equal. As an illustration, they computed t
conductivity in the hydrodynamic regime,h̄vykBT ! 0,
at the simpler superfluid-Mott insulator (SF–MI) transition
brought by an external periodic potential, near its upp
critical dimension ofd ­ 3, and indeed found a different,
and larger, value of the critical conductivity.

In real disordered systems the insulating phase
presumably the result of Anderson localization and shou
be a compressible Bose glass (BG) [5], not the Mo
insulator. It has been argued that, in the presence
disorder, the limitsv ! 0 and T ! 0 may commute
[7], and the imaginary time Monte Carlo calculations
indeed found little or no dependence of the critica
conductivity at the SF-BG transition on the ratiovnyT
[9], where vn is the Matsubara frequency. Including
disorder makes the problem difficult to study analytically
since the SI transition then seems to lack the upp
critical dimension, or any other obvious limit in which
at the criticality the system would be weakly coupled
Numerical techniques [7–9] on the other hand, determin
the conductivity by extrapolating from the imaginary
Matsubara frequencies,vn ­ n2pkBT , and thus by its
nature are not very sensitive to any structure it might ha
in the hydrodynamic regime. The understanding of th
role of disorder and the calculation of the experimental
measured low temperature dc conductivity at the S
critical point in 2D systems thus presents itself as
fundamental and unsolved problem. The purpose
this Letter is to propose its solution in a form of a
controlled expansion around the solvable case of the S
BG transition in one dimension (1D).

I will consider the system ofdisordered interacting
bosons of chargeep ­ 2e defined, for example, by the
Bose-Hubbard, or Josephson junction array Hamiltonia
with a random chemical potential [5,11]. This mode
© 1998 The American Physical Society
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is known to possess a continuous SF-BG transition
T ­ 0, and should be appropriate for description of th
SI transition observed in Josephson junction arrays,
4He in random media. If the Coulomb interaction be
tween bosons is added, it should also represent the c
rect universality class for the transition in homogeneou
and granular films. Although there is no upper critica
dimension for the SF-BG transition in the usual sens
[5,13,14], the fact that the superfluid phase ind ­ 1 and
at T ­ 0 exhibits only a power-law long-range order im
plies thatd ­ 1 represents the lower critical dimension
Recently, this observation has been used by the autho
formulate a controlled expansion of the universal quan
ties at the SF-BG transition in powers of a small param
ter e ­ d 2 1 [14]. In particular, and as argued below
in the limit T ! 0 the dc resistivity at the critical point
is proportional to a certain power of temperature and
the value of the disorder parameter at the SF-BG cri
cal point, which becomes infinitesimally small (,e) as
dimensionality of the system is reduced tod ­ 1. This
suggests that the universal part of the low temperature
conductivity at the critical point may be expressed as a
analytic function ofe, with a simple pole ate ­ 0. I
compute the first term in the Laurent series for the re
part of the critical dc conductivity arounde ­ 0:

s0
csv ­ 0, T d ­

√
h̄c

kBT

!f22dgyz"
6

p5y2

x
e

1 Os1d

#
e2

p

h
,

(1)
where c is a microscopic constant with units
slengthdzytime, z ­ hd, 1j is the dynamical exponent,
and x ­ h1, 2j for the short range and for the Coulomb
interaction between bosons, respectively. Ford ­ 2 this
leads to an estimatesc ø 0.69e2

pyh for the Coulomb
universality class, in reasonable agreement with ma
experiments on thin films [1].

In general, right at the critical point in ad-dimensional
system the real part of conductivity for frequencies an
temperatures much smaller than some microscopic cut
energy can be written as

s0
csv, T d ­

√
h̄c

kBT

!f22dgyz

Fd

√
h̄v

kBT

!
e2

p

h
, (2)

whereFdsxd is a universalcrossover function. It is evi-
dent that, in principle, at the critical point the conductivity
in d ­ 2 assumes two different values depending o
the order of limitsv ! 0 and T ! 0, that correspond
to the values of the crossover function either at ze
or at infinity, and measure completely incoherent o
completely coherent transport, respectively. What is mo
surprising, although it arises as a natural consequence
the scaling law, is that even in the limith̄vykBT ! 0 of
the incoherent, collision dominated transport, conductivi
at the critical point ind ­ 2 is still given by auniversal
number [12]. To understand the dependence of t
conductivity in this limit on dimensionality of the system
consider the effective low-energy action for the disordere
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superfluid that describes the SF-BG transition in the dir
Bose-Hubbard model ind ­ 1 [11,14,15]:

S ­
K
p

NX
i­1

Z
dx

Z b

0
dt hc2f≠xuisx, tdg2 1 f≠tuisx, tdg2j

2 D
NX

i,j­1

Z
dx

Z b

0
dt dt0 cos2fuisx, td

2 ujsx, t0dg , (3)

whereb ­ h̄ykBT , K is inversely proportional to the su-
perfluid density,c is the velocity of low-energy phononic
excitations, indexi numerates the replicas introduced t
average over disorder, andD is related to the width
of the distribution of the random potential. The usu
limit N ! 0 and a short-distance cutoffL21 in Eq. (3)
are assumed. This effective action arises as the o
dimensional realization of the density (dual) represen
tion of the dirty Bose-Hubbard model at low energie
[11], or as the bosonic representation of the disorder
Luttinger liquid [15]. The invariance under a change o
cutoff implies that the conductivity ind ­ 1 can be writ-
ten in the scaling form,

ssv, T d ­
h̄c

kBT
f

√
Ksbd, csbd, Dsbd,

h̄v

kBT

!
e2

p

h
, (4)

where Ksbd, csbd, and Dsbd are the renormalized cou-
plings at the new cutoffbL21, andb ­ h̄cLykBT . The
result of the renormalization in the theory (3) for wea
disorder is well known [14,15]: under the change of cu
off the combinationk ­ 1yKc2, that is proportional to
the compressibility, stays constant,K always increases,
and smallD is relevant forh ­ Kc . 1y3, and irrele-
vant otherwise. There exists a separatrix in theh 2 D
plane which ends in the SF-BG critical point ath ­ 1y3
and D ­ 0. At v ­ 0 the scaling function in Eq. (4)
at weak disorder should behave asf , 1yDsbd [15] and
therefore right at the separatrix should slowly (logarith
mically, ,flnsbdg2) diverge asb ! ` in d ­ 1. Apart
from the logarithmic correction that derives from disorde
being dangerously irrelevant, at the SF-BG criticality i
1D, Eq. (4) is just a special case of the general scali
form (2), for d ­ z ­ 1. Since ind ­ 1 1 e disorder
at the transition scales towards a finite fixed point valu
Dsbd ! Dp , e, when b ! ` [14], the comparison of
the two scaling laws in Eqs. (2) and (4) leads to the ide
tification

F11es0d ­ fs1y3, 1, Dp, 0d ­
const

e
1 Os1d , (5)

which expresses the central idea of this work. Th
leading term in the Laurent series forFds0d is completely
determined by the scaling function as in 1D and by th
infinitesimal value of disorder at the fixed point of th
scaling transformation ind ­ 1 1 e.

In the remainder of the paper, the entire functionf near
the SF-BG critical point ind ­ 1 is obtained, a new field-
theoretic version of the recursion relations ind ­ 1 1 e
3917
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requisite for the determination of the fixed point value o
disorder is derived, and, finally, the residuum at the po
at e ­ 0 in Eq. (5) for both short-range and Coulomb
interactions between bosons is computed.

The standard linear response formalism yields th
conductivity ind ­ 1:

ssv, T d ­ 2i
2v

p

e2
p

h
lim
N!0

1
N

NX
n,m­1

Gr
nmsvd . (6)

Gr
nmsvd is the temperature-dependent, retarded,q ­ 0

Green’s function defined as

Gr
nmsvd ­

Z
dx

Z b

0
dt eivnt

3 kTtunsx, tdums0, 0dlivn!v1id , (7)

where Tt is the standard time-ordering operator. Th
thermal Green’s function in Eq. (7) may be evaluate
perturbatively in disorder and then analytically continue
to real frequencies. A similar calculation has bee
performed before by Luther and Peschel [16] forh . 1,
which corresponds to weak coupling in the equivalent 1
fermionic system. The SF-BG transition at weak disord
is ath ø 1y3, so I derive here a slightly improved version
of their results which can be analytically continued int
the transition region. Introduce the thermal self-energ
asGt

ijsvnd ­ dijyf2sKypdv2
n 1 Stsvndg. To the lowest

order inD it may be written as

Stsvnd ­ 8D
Z b

0
dt s1 2 eivntd kTtei2ujsx,tde2i2ujsx,0dl0

1 OsD2d , (8)

where the average is performed over the quadratic part
the action (3). The self-energy is thusitself a Green’s
function, which enables one to perform the analyt
continuation to real frequencies by first rotating th
integrand in (8) to real time byt ! it to find the
real time time-ordered propagator, and from it finally t
determine the retarded one by using the standard relat
between them [17]. Performing the Fourier transform
at the resulting expression then gives the retarded se
energy

Sr svd ­
16pD

cL

µ
pkBT
h̄cL

∂s1yhd21

sin

µ
p

2h

∂
eCyh

3
Z `

0
dt

1 2 eis h̄vykBT dt

fsinhsptdg1yh
, (9)

whereC ø 0.577 is the Euler’s constant, and I assume
that h̄cLykBT ¿ 1, i.e., the continuum (or equivalently,
the low-temperature) limit. The appearance of a partic
lar numerical constant is a consequence of the assum
tion that the dispersion in (3) isv ­ ck for all momenta
0 , k , L, and is a nonuniversal, short-distance featur
This, nevertheless, does not compromise the universa
of the conductivity at the transition, since any nonun
versal constant such asC may at the end be absorbed
into the definition of the running, dimensionless disorde
3918
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coupling, as will be done shortly. The remaining inte-
gral in (9) is convergent only forh . 1, but, once evalu-
ated there exactly, may be defined in the transition regio
h ø 1y3 via analytic continuation. Performing the inte-
gral, in the vicinity ofh ­ 1y3 one obtains the conduc-
tivity in d ­ 1 to be

ssv, T d ­
ivc

hsT dv2 1 i2skBTyh̄d2WsT dgsh̄vykBT d
e2

p

h
,

(10)
where WsT d ­ sp4Dyc2L3e3Cd skBTyh̄cLds1yhd23

is the dimensionless disorder variable,hsT d ­ h 1

WsT dp23y2 tanspy2hd, and gsxd ­ f1 1 sxypd2g 3

tanhsxy2d. Note that the result indeed may be cas
into the scaling form as claimed in Eq. (4). The self-
energy acquired an imaginary part, which in the limi
h̄vykBT ! 0 becomes proportional to temperature and t
the temperature-dependent disorder variableWsT d. The
significance of the pointh ­ 1y3 now becomes apparent:
for h , 1y3 the disorder-variableWsT d scales towards
zero with decrease in temperature, and the lowest-ord
result in Eq. (10) becomes asymptotically exact. At a
finite frequency and atT ­ 0 the real part of conductivity
in d ­ 1 then becomess0svd ­ fpcyhs0dgdsvd, and
the system is an ideal conductor. Ifh . 1y3 the pertur-
bation theory breaks down, which indicates the entranc
into the insulating phase. Notice that ash ! 1y32 the
coefficient in front ofWsT d in the expansion forhsT d
becomes divergent, as it has a simple pole ath ­ 1y3.
This is reminiscent of the dimensional regularization
frequently employed in the studies of thermal critica
phenomena, and suggests that the theory (3) becomes
renormalizable ath ­ 1y3.

In the continuum limit, the effect of change of tempera
ture on the low-frequency conductivity ind ­ 1 may
be expressed entirely through the effective values o
the coupling constantshsT d, WsT d, and, if we had
retained the momentum dependence of the propagat
the compressibilityksT d. Taking into account the finite
canonical dimensions of the coupling constantsh and k

away from d ­ 1 [14], close toh ­ 1y3 the effective
couplings satisfy the differential equations:

ÙhsT d ­ z21sd 2 1dhsT d 2
2

p5y2 WsT d 1 OsssW2sT dddd ,

(11)

ÙWsT d ­ sh21 2 3dW sT d 1 OsssW2sT dddd, (12)

ÙksT d ­ z21sz 2 ddksT d , (13)

where Ùx ­ dxyd lnskBTyh̄cLd. The d-dependent terms
in Eqs. (11) and (13) follow from the scaling of the su-
perfluid densityrsf , K21 , j22z2d and the compress-
ibility k , 1yKc2 , jz2d near the critical point (where
T , j2z , and j is the diverging correlation length).
These scaling relations can be directly read from the low
energy theory for the superfluid [5], as discussed at leng
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elsewhere [14]. Note that in Eq. (13), unlike in Eq. (11
there are no terms dependent onWsT d. This is a conse-
quence of the exact symmetry of the interaction term
the action (2) underuisx, td ! uisx, td 1 hsxd, for arbi-
trary functionhsxd, and fixes the value of dynamical expo
nent toz ­ d for the system with short-range interaction
[14]. Linearization of the flow close to the fixed poin
of Eqs. (11) and (12) gives the correlation length exp
nentn ­ s1y

p
3e d 1 Os1d, in agreement with the result

of the momentum-shell renormalization group [14]. Th
fixed point is located atWpsT d ­ p5y2ey6 1 Ose2d and
hpsT d ­ 1y3 1 Osed. Using Eqs. (10) and (5) one ob-
tains the main result announced in Eq. (1), for the sho
range interactions between bosons.

To make a comparison with the experiments on th
films [1] or on high-Tc cuprates [3] one must include
the long-range Coulomb repulsion between the ele
tron pairs. A way to do this was proposed previous
by the author in Ref. [14], where the long-range in
teractions between the bosons was defined asV s$rd ­
e2

R
dd $q expsi $q ? $rdyqd21, so that it coincides with the

Coulomb interaction ford . 1, and with the short-range
interaction precisely atd ­ 1. The calculation of the con-
ductivity in d ­ 1 then remains the same, but the re
cursion relations (11)–(13) need to be modified in tw
ways [14]. First, instead of the equation for compres
ibility, one now has the equation for the temperatur
dependent chargee2sT d, which has the exactly same
form as Eq. (13), except forsz 2 dd ! sz 2 1d. Con-
sequently, since now it ise2 , 1yKc2, the couplingh ­
Kc , T s12ddy2z, and the first term in Eq. (11) is twice
smaller. It then follows that with the Coulomb interac
tions presentz ­ 1, n ­

p
2y3e 1 Os1d, and the fixed

point value WpsT d ­ p5y2ey12 1 Ose2d. This yields
the second result quoted in Eq. (1), for the Coulomb un
versality class. To the lowest order, the critical dc co
ductivity is larger if the Coulomb interaction is presen
This may have been intuitively expected: a longer-ran
interaction suppresses the phase order more efficiently
it takes less disorder to finally turn the system into a
insulator.

Although there is no very good agreement on the val
of the critical conductivity between different experiment
most of the measurements [1] on thin films are very clo
to sc ø 1s2ed2yh. Recent measurements [18] performe
on amorphous bismuth films at temperatures below 0.5
yield sc . 0.86s2ed2yh, in encouraging agreement with
my lowest-order estimate for the Coulomb universali
class. It is also interesting to note that for both universa
ity classes the critical conductivity in the hydrodynami
regime obtained here turns out to be larger than the one
the coherent,T ­ 0 limit [9,11], similarly as in the SF-
MI transition in a commensurate periodic potential [12
By continuity, Eq. (10) implies that the crossover func
tion Fdsxd is a continuously decreasing function of its ar
gument ford ­ 1 1 e, with a maximum,1ye at x ­ 0,
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and vanishing as,eyxs12edyz for largex. Although not
ruled out, it does seem unlikely that ind ­ 2 this depen-
dence onx ­ h̄vykBT completely disappears. In fact
the difference in the estimated critical conductivities i
completely coherent and incoherent regimes suggests
the situation ind ­ 2 is likely to be qualitatively simi-
lar to the one ind ­ 1 1 e: the real part of conductivity
should continuously decrease as a function ofh̄vykBT ,
interpolating between the two finite,v ­ 0 and T ­ 0,
limits.

Finally, the field-theoretic formulation of the renormal
ization group transformation derived here has the adva
tage over the usual momentum-shell calculation [14,1
in that it facilitates a systematic higher-order calculatio
The observation thath in d ­ 1 plays a role similar to di-
mensionality in the classical critical phenomena sugge
a procedure analogous to the standard dimensional re
larization for thed-independent part of the recursion re
lations. Adding the effect of dimensionality whend . 1
as described in Ref. [14] and as done in Eqs. (11)–(1
would then yield the higher-order corrections for the e
ponentn and the critical dc conductivity. It would be
very interesting to compare the results of such an an
lytical calculation with the experiments and the numeric
simulations, as it could lead to a more definite understan
ing of the SF-BG quantum critical behavior.
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