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Density of States near the Mott-Hubbard Transition in the Limit of Large Dimensions
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The zero temperature Mott-Hubbard transition as a function of the Coulomb repulsionU is
investigated in the limit of large dimensions. The behavior of the density of states near the transition
at U ­ Uc is analyzed in all orders of the skeleton expansion. It is shown that only two transition
scenarios are consistent with the skeleton expansion forU , Uc: (i) The Mott-Hubbard transition is
“discontinuous” in the sense that in the density of states finite spectral weight is redistributed atUc.
(ii) The transition occurs via a point atU ­ Uc where the system is neither a Fermi liquid nor an
insulator. [S0031-9007(98)07525-5]

PACS numbers: 71.30.+h, 71.27.+a, 71.28.+d
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The correlation-induced metal-insulator transition [1
is a fundamental and challenging problem in condens
matter physics. Theoretical work has centered arou
the Hubbard model, where a metal-insulator transition
expected at half filling for some critical on-site Coulom
repulsionUc. A new line of approach for studying the
metal-insulator transition has recently been opened by
limit of high dimensions [2]. At present thisdynamical
mean field theoryseems the only tractable method t
obtain exact statements concerning the Mott-Hubba
transition. Such results should be of considerable inter
also for the physically relevant three dimensional case.

In the dynamical mean field approach the behavi
of the density of statesrsed near the Mott-Hubbard
transition at half filling and zero temperature is o
particular interest. Georgeset al. [3] have described in
detail a transition scenario where the spectral weight
the vicinity of the Fermi surface vanishes continuous
as U " Uc (compare Fig. 1): In some finite interva
feF 2 D, eF 1 Dg around the Fermi surface one findsZ eF1D

eF2D

rsed ! 0 asU " Uc . (1)

This implies that atUc a finite excitation gap of size2D

opens in the density of states turning the Fermi liquid
once into an insulator. However, the analytical solutio
of the d ! ` Hubbard model is unfortunately still out of
reach and the above transition scenario has been discu
controversially in the literature (see, e.g., Refs. [4,5]).

The purpose of this Letter is to establish constraints r
garding possible transition scenarios based on an anal
of the dynamical mean field equations in all orders of th
skeleton expansion. Conceptually the arguments are si
lar to the reasoning used by Luttinger [6] and Langer [
in order to derive these 2 eFd2 behavior of the imaginary
part of the self-energy in the vicinity of the Fermi surface
An asymptotic sum rule for the imaginary part of the sel
energy can be established that implies the following co
straint for the transition scenario: For all intervals wit
D . 0 around the Fermi surface the limit in Eq. (1) ha
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to be nonzero asU " Uc. Therefore the Mott-Hubbard
transition investigated here is either (i) discontinuous
the sense that finite spectral weight is redistributed atUc,
or (ii) there is nonzero spectral weight in any neighbo
hood of the Fermi surface forU ­ Uc.

Possibility (ii) implies that the density of states i
still gapless at the transition, i.e., pseudogaplike wi
rseFd ­ 0 but rsed ~ je 2 eF ja , a . 0 in the vicinity
of eF . This would signal the existence of a non-Ferm
liquid point separating metallic and insulating regime
The analysis in this Letter will also provide insights in
various analytical approximation schemes devised to so
the dynamical mean field equations.

The Hamiltonian of the Hubbard model is

H ­ 2
t

p
d
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where the hopping matrix elements are scaled astij !

ty
p

d to obtain a physically meaningful limit of large

spectral weight w
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FIG. 1. Hypothetical density of states near a metal-insulat
transition with vanishing spectral weight in the vicinity of the
Fermi surface.
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dimensions [2]. In the sequelt sets the energy scal
and half filling corresponds toeF ­ 0. For d ! ` an
effective action describing the single-site dynamics
one fermionic degree of freedomsc0a , c

y
0ad can be written

as (for details, see Ref. [3])

Seff ­ 2
Z b

0
dt dt0

X
a

c
y
0astdG21st 2 t0dc0ast0d

1 U
Z b

0
dt

µ
c

y
0"stdc0"std 2

1
2

∂
3

µ
c

y
0#stdc0#std 2

1
2

∂
. (2)

All local correlation functions of the original Hubbar
model can be derived from (2). The effective actio
is supplemented by a self-consistency condition relat
the Weiss local fieldG st 2 t0d and the local propagato
Gst 2 t0d ­ 2kTc0stdcy

0 st0dl.
We will investigate the self-consistency problem b

using a Bethe lattice with a large coordination numb
On a Bethe lattice the self-consistency condition take
particularly simple form [3],

G21sivnd ­ ivn 2 t2 Gsivnd . (3)

The discussion will be restricted to zero temperatu
half filling, and theparamagnetic phase. Solutions with
magnetic ordering are therefore excluded [8].

Thek-independent self-energy of the Hubbard mode
given bySse1d ­ G21se1d 2 G21se1d or

Sse1d ­ e1 2 t2
Z `

2`

dv
rsvd

e1 2 v

2

√Z `

2`

dv
rsvd

e1 2 v

!
21

,

wherersed ­ 2
1
p Im Gse1d is the local density of states

and e1 ­ e 1 i01. By introducing the principal value
integral Lsed ­ P

R`

2` dv
rsvd
e2v one can split the self-

energy into its real and imaginary partsSse1d ­ Ksed 2

iJsed leading to

Ksed ­ e 2 t2Lsed 2
Lsed

Lsed2 1 p2rsed2 , (4)

Jsed ­ 2pt2rsed 1
prsed

Lsed2 1 p2rsed2 . (5)

Notice that rsed is symmetric and thereforeLsed is
antisymmetric at half filling.

We investigate solutions near the metal-insulator tran
tion coming from the metallic sideU " Uc [9]. A key role
in this transition in the limit of large dimensions is playe
by the fixed value of the density of states at the Fermi s
face rseFd ­ 1ypt for the half filled case forU , Uc

[10]. This is due to the Fermi liquid propertyJseFd ­ 0.
In the zero temperature metal-insulator transition scena
described by Georgeset al. [3] the spectral weightw in
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the vicinity of the Fermi surface vanishes continuous
while still rseFd ­ 1ypt for U , Uc. Rephrased mathe-
matically, the local density of states separates in a lo
and a high-energy part forU " Uc,

rsed ­ rlsed 1 rhsed , (6)

where rhsed vanishes in some finite intervalf2D, Dg
around the Fermi surface. The low-energy partrlsed
describes a quasiparticle resonance at the Fermi sur
with a continuously vanishing spectral weightw as
U " Uc. Equation (6) is identical to the ansatz of Moelle
et al. [11]; see also Fig. 1.

Because of the pinningrlseFd ­ 1ypt the quasipar-
ticle resonance at the Fermi surface has a width of or
wt. The existence of one single low-energy scalewt in
this transition scenario implies that the following scalin
ansatz becomes possible in the limitw ! 0 [11],

rlsed ­
1
t

f

µ
e

wt

∂
. (7)

The dimensionless functionfsxd is normalized,R`

2` dx fsxd ­ 1, and fulfills fs0d ­ 1yp. This impliesZ D

2D

de rsed ­ w ! 0 for U " Uc . (8)

rhsed also has somew dependence since it contains th
remaining spectral weight1 2 w. This weak dependence
will be of no importance in the following discussion.

We now show that the above transition scenario can
be realized within the skeleton expansion. It is take
for granted here that the transition occurs at a fin
critical Uc , ` as supported by numerical calculation
for nonzero temperature (see Ref. [3]).

Before proceeding with actual calculations we prese
an intuitive argument why the scenario (6) is not cons
tent with the skeleton expansion. Consider a (hypothe
cal) density of states near a metal-insulator transition
sketched in Fig. 1. For simplicity we assume thatfsxd has
compact support inf2a, ag. Then for sufficiently smallw
the principal value integralLsed develops zeros fore ­
6e0 with e0 of order

p
w t. Obviouslyawt ø e0 ø D

and thereforee0 lies in the gaprs6e0d ­ 0 in the limit
w ! 0. In this caseLse0d ­ 0 leads to ad-function-like
contribution inJsed according to Eqs. (4) and (5). Henc
a density of states as depicted in Fig. 1 enforces an ima
nary part of the self-energy that vanishes everywhere
the gapexceptfor d functions at6e0 [12] [notice that
according to Eq. (5)Jsed is well behaved for all other
energies including the band edges]. In the skeleton
pansion the imaginary part of the self-energy is related
the available phase space for scattering processes. W
the above ansatz forrsed, however, this phase space doe
not increase when passing from the small energy inter
f2awt, awtg to f2D, Dg. Therefore the resonance ofJsed
in the gap cannot be explained in any order of the ske
ton expansion. This argument can be generalized also
situations without a true gap.
3913
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Let us formalize this reasoning. The method used is
demonstration by contradiction, i.e., we first assume th
solutions of thed ! ` self-consistency conditions with
the property (8) exist. In the sequelfsxd need not have
compact support. Consider the value ofLsDd in the limit
w ! 0. The contribution from the statesjej , D in the
principal value integral forLsDd behaves asZ D

2D

de
rsed

D 2 e
ø

1
D

Z D

2D

de rsed ­ wyD ,

whereas the remaining spectral weight of orderw0 for
jej . D contributes an essentiallyw-independent nega-
tive term. Therefore eventuallyLsDd , 0, and thereby,
according to (4)

KsDd . D for w ! 0 . (9)

It will be demonstrated below that the skeleton expansi
implies KsDd # 0, yielding a contradiction. In order to
show this we derive a sum rule for the imaginary part
the self-energy. The self-energy can be expressed in
following manner in a skeleton expansion [13]:

Sszd ­ fall possible skeleton diagrams with the
unperturbed propagatorGszd replaced
by the true propagatorGszdg . (10)

The diagrams in this series can be analyzed in an eleg
way introduced by Langer [7]: The imaginary part of
skeleton diagram is given by all possible Cutkosky cu
across the internal lines. Diagrams with cuts acrossn
internal hole andn 1 1 internal particle lines contributeZ `

0
dv1 · · · dvn11 d

√
n11X
i­1

vi 2 e

!

3

nY
i­1

"Z vi

0
dji rsjidrsji 2 vid

#
3 rsvn11dGsndsj1, j1 2 v1, j2, j2 2 v2, . . . , vn11d

(11)

to Jsed, whereGsnd describes generalized vertex function
[7]. In the vicinity of the Fermi surface this expansio
gives the well-known behavior of the imaginary part o
the self-energy fore ! eF [6]

Jsed ­
X̀
n­1

Gn rseFd2n11

s2nd!
se 2 eFd2n,

where the coefficientsGn are given by the above vertex
functions and their derivatives in the infrared limit. Th
reason behind the increasing powers ofe is the restriction
of the available phase space for scattering processes
(11) in the limite ! 0.

Next we investigate the behavior of
RD

2D de Jsed in the
limit w ! 0. The key observation is that the ansatz (8
automaticallyleads to a restriction of the available phas
space for scattering processes on an energy scale sm
thanD: We can consider the limitw ! 0 in (11) and this
3914
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leads to an expression for the integratedJsed,Z D

2D

de Jsed ­
X̀
n­1

G̃n

µ
w
2

∂2n11

. (12)

The coefficients G̃n are averages of the function
Gsndsj1, j1 2 v1, j2, j2 2 v2, . . . , vn11d over the Fermi
liquid region: In (11) the vertex functions are probe
only on the Fermi liquid energy scale of orderwt in the
integral

RD

2D de Jsed. Therefore one can infer the scalin
behavior ofG̃n with w from the behavior in the infrared
limit: G̃n ~ Gn for w ! 0 [14]. On the other hand, from
the scaling ansatz (7) one deducesGn ~ w22n with a
w-independent proportionality constant depending on t
function fsxd. Therefore the terms in the series (12) a
of orderw leading toZ D

2D

de Jsed ­ awt2 1 Osw2d (13)

with some dimensionless constanta that is finite for
an integrable functionfsxd. Since Ksed and Jsed are
connected by a Kramers-Kronig relation [6],

Ksed ­
1
p

P
Z `

2`

dv
Jsvd

e 2 v
, (14)

Eq. (13) implies that the positive contributions toKsDd in
(14) vanish forw ! 0, leading to

KsDd # 0 for w ! 0 . (15)

Equations (9) and (15) are in obvious contradiction
the limit w ! 0: For sufficiently small butnonzerow,
depending on the detailed structure of the upper and low
Hubbard bands and the functionfsxd, these two relations
exclude each other. Therefore we obtain a contradict
already for someU , Uc in the metallic regime. This
excludes solutions of the dynamical mean field equatio
describing the transition scenario (1) within the skelet
expansion.

In this context a comment on the frequently use
“iterated perturbation theory” (IPT) approach [15] t
d ! ` problems seems in order. IPT is second ord
perturbation theory for the self-energy inU where the
Weiss propagatorG se1d is used for the internal lines,

J sIPTdsed ­ pU2
Z e

0
dm r0se 2 md

3
Z m

0
dn r0s2ndr0sm 2 nd (16)

with r0sed ­ 2
1
p Im Gse1d. This approximation leads

to a metal-insulator transition that isnot seenwhen the
full propagator is used for the internal lines in simila
schemes [10]. Since the noninteracting density of sta
r0sed develops resonances on the energy scale

p
w t close

to a hypothetical metal-insulator transition like in Fig. 1
similar resonances are found inJsIPTdsed. This mecha-
nism permits one to fulfill the self-consistency condition
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within the IPT approximation. However, from the result
in this Letter it is clear that such resonances inJ sIPTdsed
are an artifact of the non-self-consistent approximatio
used: If all orders of perturbation theory are summe
up there is no phase space for scattering states availa
on the energy scale

p
w t. This observation raises serious

doubts whether IPT incorporates the correct mechanis
that actually drives the transition.

In summary in this Letter we have investigated th
zero temperature metal-insulator transition in the hal
filled Hubbard model in the paramagnetic phase on
Bethe lattice with large connectivity [8]. The framework
used for this investigation was the skeleton expansion
all orders: The pointwise convergence of the skeleto
expansion in the metallic phase is the basicassumption
(but compare [16]) used in this Letter. Therefore ou
analysis was restricted to the metallic side of the transitio
since the skeleton expansion is known not to converge f
an insulator.

An important constraint for the transition scenario fol
lows from the asymptotic sum rule (13) for the imagi
nary part of the self-energy. This sum rule leads to
competitionbetween the availability of phase space fo
scattering states and the suppression of spectral wei
in the density of states in the vicinity of the Fermi sur
face. This competition must be taken into account whe
investigating the Mott-Hubbard transition in the limit of
large dimensions. It eliminates the scenario of a meta
insulator transition with vanishing spectral weight in th
vicinity of the Fermi surface; compare Eq. (1). Only two
transition scenarios are consistent with the skeleton e
pansion forU , Uc: (i) A “discontinuous” transition oc-
curs atU ­ Uc in the sense that finite spectral weight is
redistributed. (ii) ForU ­ Uc there is nonzero spectral
weight in any neighborhood of the Fermi surface (pse
dogap behavior), corresponding to some non-Fermi-liqu
point separating metallic and insulating regimes. Caref
numerical studies are required to establish whether su
a pseudogap solution of the self-consistency equatio
is possible. Finally, the competition effect demonstrate
above can be expected to be of importance for nonze
temperature too.

The author is greatly indebted to D. Vollhardt, P. G. J
van Dongen, F. Gebhard, and W. Metzner for valuab
discussions and many important remarks. Discussio
on related subjects with W. Hofstetter, J. Schlipf, an
M. Kollar are acknowledged.
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