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Density of States near the Mott-Hubbard Transition in the Limit of Large Dimensions
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The zero temperature Mott-Hubbard transition as a function of the Coulomb repulsios
investigated in the limit of large dimensions. The behavior of the density of states near the transition
at U = U, is analyzed in all orders of the skeleton expansion. It is shown that only two transition
scenarios are consistent with the skeleton expansiorUfet U,: (i) The Mott-Hubbard transition is
“discontinuous” in the sense that in the density of states finite spectral weight is redistributed at
(ii) The transition occurs via a point d& = U, where the system is neither a Fermi liquid nor an
insulator. [S0031-9007(98)07525-5]

PACS numbers: 71.30.+h, 71.27.+a, 71.28.+d

The correlation-induced metal-insulator transition [1]to be nonzero ad/ T U.. Therefore the Mott-Hubbard
is a fundamental and challenging problem in condensettansition investigated here is either (i) discontinuous in
matter physics. Theoretical work has centered arounthe sense that finite spectral weight is redistributed at
the Hubbard model, where a metal-insulator transition ir (ii) there is nonzero spectral weight in any neighbor-
expected at half filling for some critical on-site Coulomb hood of the Fermi surface fdvy = U..
repulsionU,.. A new line of approach for studying the  Possibility (i) implies that the density of states is
metal-insulator transition has recently been opened by thstill gapless at the transition, i.e., pseudogaplike with
limit of high dimensions [2]. At present thidynamical p(er) = 0 but p(€) = |e — €r|%, @ > 0 in the vicinity
mean field theoryseems the only tractable method toof . This would signal the existence of a non-Fermi
obtain exact statements concerning the Mott-Hubbardiquid point separating metallic and insulating regimes.
transition. Such results should be of considerable interesthe analysis in this Letter will also provide insights in
also for the physically relevant three dimensional case. various analytical approximation schemes devised to solve

In the dynamical mean field approach the behaviothe dynamical mean field equations.
of the density of stategp(e) near the Mott-Hubbard The Hamiltonian of the Hubbard model is
transition at half filling and zero temperature is of

particular interest. Georgest al. [3] have described in H=— L Z cfacja

detail a transition scenario where the spectral weight in Vd (ij).a

the vicinity of the Fermi surface vanishes continuously N UZ(cTc _ l)(c-TC- _ l)
as U 1 U. (compare Fig. 1): In some finite interval —\ T\t )

[er — A, ep + A] around the Fermi surface one finds

ertA where the hopping matrix elements are scaled;as~
f ple) =0 asU1U.,. (1) t//d to obtain a physically meaningful limit of large
er—A
This implies that at/. a finite excitation gap of sizeA A p(g)

opens in the density of states turning the Fermi liquid at
once into an insulator. However, the analytical solution
of thed — o Hubbard model is unfortunately still out of
reach and the above transition scenario has been discussed
controversially in the literature (see, e.g., Refs. [4,5]).

The purpose of this Letter is to establish constraints re-
garding possible transition scenarios based on an analysis

of the dynamical mean field equations in all orders of the
skeleton expansion. Conceptually the arguments are simi-

1t
spectral weight w

lar to the reasoning used by Luttinger [6] and Langer [7]
in order to derive thée — er)?> behavior of the imaginary
part of the self-energy in the vicinity of the Fermi surface.
An asymptotic sum rule for the imaginary part of the self-
energy can be eStap,I'Shed that_'mpl'es the'followmg CoNkig g, Hypothetical density of states near a metal-insulator
straint for the transition scenario: For all intervals with transition with vanishing spectral weight in the vicinity of the
A > 0 around the Fermi surface the limit in Eqg. (1) hasFermi surface.

T T T T T
-U2 -a -awt g awt A U2 €
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dimensions [2]. In the sequel sets the energy scale the vicinity of the Fermi surface vanishes continuously
and half filling corresponds ter = 0. Ford — » an  while still p(er) = 1/7¢ for U < U.. Rephrased mathe-
effective action describing the single-site dynamics ofmatically, the local density of states separates in a low-

one fermionic degree of freedofny,, cl.) can be written  and a high-energy part fav 1 U,

as (for details,:ee Ref. [3]) p(e) = pi(e) + pule), (6)
_ _ / T 1 / where p,(€) vanishes in some finite intervdl-A, A]
Sett /o drdr' 3 cio(r)G™ (= 7)coa(r) around the Fermi surface. The low-energy parte)

describes a quasiparticle resonance at the Fermi surface
) with a continuously vanishing spectral weight as

B " 1
+ U[ dT<C0T(T)C()T(T) iy
0 1 U 1 U.. Equation (6) is identical to the ansatz of Moeller

X (cgl(q-)cm(q-) - —). (2) etal.[11]; see also Fig. 1.
2 Because of the pinning,;(er) = 1/t the quasipar-
All local correlation functions of the original Hubbard ticle resonance at the Fermi surface has a width of order
model can be derived from (2). The effective actionw:. The existence of one single low-energy scalein
is supplemented by a self-consistency condition relatinghis transition scenario implies that the following scaling
the Weiss local flelcﬁ(r — 7') and the local propagator ansatz becomes possible in the limit— 0 [11],
G(r — ) = —(Teo(r)ed (7).
We will investigate the self-consistency problem by pile) = _f<_>-

using a Bethe lattice with a large coordination number
On a Bethe lattice the self-consistency condition takes
particularly simple form [3],

A
G YWiwy) =iw, — *Gliw,). (3) f depe)=w—0 forU1U,. (8)
-A

The discussion will be restricted to zero temperature,
half filling, and theparamagnetic phase Solutions with
magnetic ordering are therefore excluded [8].

The k-independent self- energy of the Hubbard model is

(7)

he dimensionless functionf(x) is normalized,
* . dx f(x) = 1, and fulfills £(0) = 1/7r. This implies

pn(e) also has somey dependence since it contains the
remaining spectral weight — w. This weak dependence
will be of no importance in the following discussion.

+ 1+ 1+ We now show that the above transition scenario cannot
given by2(e™) = G (e") (e7)or be realized within the skeleton expansion. It is taken
S(ef) =€ — f dw f("’) for granted here that the transition occurs at a finite
€T~ w critical U, < « as supported by numerical calculations
for nonzero temperature (see Ref. [3]).
d _pl@) Before di i [
" , proceeding with actual calculations we present
€ ~ o an intuitive argument why the scenario (6) is not consis-
wherep(e) _ _% ImG(e*) is the local density of states ter:t \(/jwth Fhe sfkeleton expansion. IQons;der a (hypc_)thetl-
ande’ = € + i0". By introducing the principal value cal) density of states near a metal-insulator transition as

sketched in Fig. 1. For simplicity we assume tfiat) has
integral A(e) =P [~ dw —w A compact support ifi—a, a]. Then for sufficiently smally
energy into its real and imaginary pai¢e ") = K(e) - the principal value integrah(e) develops zeros foe =
i/ (¢) leading to +€o With €y of order./w . Obviouslyawr < €y < A
_ > Ae) and thereforee lies in the gapp(*+ey) = 0 in the limit
K(e) = e = 1"Ale) ~ Ale)? + 72p(e)?’ ), = 0. Inthis caseA(e) = 0 leads to a-function-like
contribution inJ(e) according to Egs. (4) and (5). Hence
7p(e) a density of states as depicted in Fig. _1 enforces an imagi-
AR + m2p(e) (5)  nary part of the self-energy that vanishes everywhere in
p the gapexceptfor 6 functions at*ey [12] [notice that
Notice that p(e) is symmetric and thereforé\(e) is according to Eq. (5)/(e) is well behaved for all other
antisymmetric at half filling. energies including the band edges]. In the skeleton ex-
We investigate solutions near the metal-insulator transipansion the imaginary part of the self-energy is related to
tion coming from the metallic sid& T U. [9]. Akeyrole the available phase space for scattering processes. With
in this transition in the limit of large dimensions is played the above ansatz fgr(e), however, this phase space does
by the fixed value of the density of states at the Fermi surnot increase when passing from the small energy interval
face p(er) = 1/mt for the half filled case fot/ < U, [—awt,awt]to[—A, A]. Therefore the resonance.bfe)
[10]. This is due to the Fermi liquid properti{er) = 0.  in the gap cannot be explained in any order of the skele-
In the zero temperature metal-insulator transition scenariton expansion. This argument can be generalized also to
described by Georgest al. [3] the spectral weighty in  situations without a true gap.

2@ one can split the self-

J(e) = —mt*p(e) +
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Let us formalize this reasoning. The method used is deads to an expression for the integrafid),
demonstration by contradiction, i.e., we first assume that A Z w2t
solutions of thed — « self-consistency conditions with [ de J(e) = Z Ly <5>
the property (8) exist. In the sequg(x) need not have A n=1
compact support. Consider the value/dfA) in the limit

(12)

The coefficients I, are averages of the functions

w — 0. The contribution from the statds| < A in the rn(g ;
e : LE — w, €, 6 — w,...,w,41) Over the Fermi
principal value integral foA\(A) behaves as liquid region: In (11) the vertex functions are probed
A p(€) 1 (A only on the Fermi liquid energy scale of order in the
]A A—c A fAdE p(e) = w/A, integral [* , de J(e). Therefore one can infer the scaling

behavior ofl", with w from the behavior in the infrared
whereas the remaining spectral weight of ora€r for  limit: I', « T, for w — 0 [14]. On the other hand, from
le|] > A contributes an essentially-independent nega- the scaling ansatz (7) one deducEs =« w™?" with a
tive term. Therefore eventuallx(A) < 0, and thereby, w-independent proportionality constant depending on the

according to (4) function f(x). Therefore the terms in the series (12) are
K(A) > A forw— 0. (9) of orderw leading to
A
It will be demonstrated below that the skeleton expansion ] deJ(e) = awt> + O(w?) (13)
implies K(A) = 0, yielding a contradiction. In order to -A

show this we derive a sum rule for the imaginary part ofwith some dimensionless constaat that is finite for
the self-energy. The self-energy can be expressed in then integrable functionf(x). Since K(e) and J(e) are

following manner in a skeleton expansion [13]: connected by a Kramers-Kronig relation [6],
3.(z) = [all possible skeleton diagrams with the 1 * J(w)
unperturbed propagat@j(z) replaced K(e) = p P/_m do ——~, (14)
by the true propagataf(z)]. (10)

) o i ] Eqg. (13) implies that the positive contributionsR@A) in
The diagrams in this series can be analyzed in an elegam4) vanish forw — 0, leading to

way introduced by Langer [7]: The imaginary part of a

skeleton diagram is given by all possible Cutkosky cuts K(A) =0 forw—0. (15)
across the internal lines. Diagrams with cuts acress Equations (9) and (15) are in obvious contradiction in
internal hole andk + 1 internal particle lines contribute  the limit w — 0: For sufficiently small buhonzerow,

o n+tl depending on the detailed structure of the upper and lower
[ do| - dw,+i 5(2 w; — e) Hubbard bands and the functigitx), these two relations

0 i=1 exclude each other. Therefore we obtain a contradiction
d @i already for some/ < U. in the metallic regime. This

X E [[0 dgip(&p(éi — “”')} excludes solutions of the dynamical mean field equations

X plns ) TOEL € — w1, €ribr — . Ons1) gisggggg'the transition scenario (1) within the skeleton
(11) In this context a comment on the frequently used
“iterated perturbation theory” (IPT) approach [15] to
d — o problems seems in order. IPT is second order
perturbation theory for the self-energy i where the
Weiss propagatog (e *) is used for the internal lines,

to J(e), whereI'™ describes generalized vertex functions
[7]. In the vicinity of the Fermi surface this expansion
gives the well-known behavior of the imaginary part of
the self-energy foe — er [6]

€
® r 2n+1 (IPT) — 2 _
J(e) = Z n p(GF)' (e — ep)". J () =wU fo du pole — u)
n=1 (2]’1)
o

where the coefficient§’, are given by the above vertex X fo dv po(—v)po(n — v)  (16)
functions and their derivatives in the infrared limit. The
reason behind the increasing powers:0§ the restriction  with pg(e) = —% ImG(e*). This approximation leads
of the available phase space for scattering processes io a metal-insulator transition that isot seenwhen the
(11) in the limite — 0. full propagator is used for the internal lines in similar

Next we investigate the behavior gﬁfiA de J(e) inthe schemes [10]. Since the noninteracting density of states
limit w — 0. The key observation is that the ansatz (8)p(€) develops resonances on the energy s¢ale close
automaticallyleads to a restriction of the available phaseto a hypothetical metal-insulator transition like in Fig. 1,
space for scattering processes on an energy scale smalgmilar resonances are found H'*7)(e). This mecha-
thanA: We can consider the limit — 0in (11) and this nism permits one to fulfill the self-consistency conditions
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within the IPT approximation. However, from the results Rev. Mod. Phys68, 13 (1996).

in this Letter it is clear that such resonances/iH™)(e) [4] F. Gebhard, The Mott Metal-Insulator Transition
are an artifact of the non-self-consistent approximation  (Springer-Verlag, Berlin, 1997).

used: Ifall orders of perturbation theory are summed [5] D-E. Logan and P. Nozieres, Philos. Trans. R. Soc.
up there is no phase space for scattering states availabIF London A 356 249 (1998).

on the energy scalgw 7. This observation raises serious L0} J-M. Luttinger, Phys. Revi21 942 (1961).

. . _[7] J.S. Langer, Phys. Rew24, 997 (1961).
doubts Whethe'r IPT mcorpq_ates the correct mechanis 8] This is the usual setting in the literature for investigat-
that actually drives the transition.

. : , _ ing the Mott-Hubbard transition also on other lattices.
In summary in this Letter we have investigated the  powever, it should be kept in mind that the= 0 Mott-

zero temperature metal-insulator transition in the half-  Hupbard transition is generically hidden by an antiferro-
filled Hubbard model in the paramagnetic phase on a  magnetic (AF) phase. For a critical discussion, see, e.g.,
Bethe lattice with large connectivity [8]. The framework Ref. [4]. But notice that the self-consistency condition (3)

used for this investigation was the skeleton expansion to s identically also realized for a fully frustrated lattice with
all orders: The pointwise convergence of the skeleton  random couplings; where there is no such AF phase (for
expansion in the metallic phase is the basssumption details, see Ref. [3]). Instead of the Bethe lattice we can
(but compare [16]) used in this Letter. Therefore our therefore also use this fully frustrated model as the start-
analysis was restricted to the metallic side of the transition ., M9 PoInt

. . [9] In the literature often two critical point¢/., < U., are
since the skeleton expansion is known not to converge for discussed [3,5] This leads to a coexistence region

an ins.ulator. . . . [U.1, U] of an insulating and a metallic solution. The
An important constraint for the transition scenario fol- idea is that atU,, the insulating gap and at/., the
lows from the asymptotic sum rule (13) for the imagi- quasiparticle peak of the corresponding branch of solution

nary part of the self-energy. This sum rule leads to a  vanishes. Notice that the discussion in this Letter always
competitionbetween the availability of phase space for focuses on the metallic branch; therefdre as defined in
scattering states and the suppression of spectral weight this Letter corresponds to the abobe;.

in the density of states in the vicinity of the Fermi sur-[10] E. Mller-Hartmann, Z. Phys. B6, 211 (1989).

face. This competition must be taken into account wherl1l G. Moeller, Q. Si, G. Kotliar, M. Rozenberg, and D.S.
investigating the Mott-Hubbard transition in the limit of Fisher, Phys. Rev. Leti4, 2082 (1995).

large dimensions. It eliminates the scenario of a metalll2 The existence of resonances Jf) on the energy scale

. o . e . : +,/wt in this transition scenario was already observed by
insulator transition with vanishing spectral weight in the X.Y. Zhang, M. J. Rozenberg, and G. Kotliar, Phys. Rev.

vicinity of the Fermi surface; compare Eq. (1). Only two Lett. 70, 1666 (1993).
transition scenarios are consistent with the skeleton ex13) 5 m. L,uttinger and J.C. Ward, Phys. Re¢18 1417

pansion forU < U,: (i) A “discontinuous” transition oc- (1960).
curs atU = U, in the sense that finite spectral weight is[14] This proportionality holds uniformly im, i.e., the infrared
redistributed. (ii) ForU = U, there is nonzero spectral limit is approached uniformly for alk asw — 0. This is

weight in any neighborhood of the Fermi surface (pseu- due to the separation of tr_le Hamiltonian in a gapped.high-
dogap behavior), corresponding to some non-Fermi-liquid ~ energy part and an effective low-energy Kondo Hamilton-
point separating metallic and insulating regimes. Careful ~ 1an after a suitable unitary transformation that becomes
numerical studies are required to establish whether such Poss'b'eb""he” d(lzj.holds.[lll]. Thf‘:;[' 'og"?gergy Ha(;n_"ton'
a pseudogap solution of the self-consistency equations a0 ¢an be made dimensionless after dividingibyand its

. . . o dimensionless couplings remain essentially unchanged as
is possible. Finally, the competition effect demonstrated

b b ted 10 be of i : ; U 1 U,. Therefore alll'™ contain a trivial overallw 2"
above can be expected 1o be of importance tor nonzero dependence and remain otherwise form-invariant functions

temperature too. _ of dimensionless variableg;/wt as U 1 U.. This uni-
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M. Kollar are acknowledged. in a pseudogap-transition scenario with a critical point
atU..
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