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Theory of Strain Percolation in Metals
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We demonstrate that a deforming metal is a self-organizing critical system, and that the stress-strain
law can be expressed as an integration of certain derivatives of internal variables along the critical line
of the system. [S0031-9007(98)07460-2]
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The work hardening which occurs during the deforma-responding increment of strainy, is nucleated at the
tion of metals is one of the central long standing problemsveakest cell in a slip band. It is consistent with Seeger’s
in materials science [1]. Because the large numbers afbservations to assume that this strain nucleus percolates
dislocations that form during deformation (distorted andthrough the sample from cell to neighboring cell, and
tangled in three dimensions) interact strongly with boththe object of the model is to track the percolating strain
long- and short-range forces, work hardening is a manythrough the slip band. We assume that throughout the
body problem of vast complexity. It remains largely un- process, the strain is restricted to its initial slip plane,
solved today. More specifically, the major theoreticalso the evolution is two dimensional, at least to a good
challenge is to adequately account for the evolution of thepproximation.
dislocations into partially ordered structures during defor- After a strain burst is initiated and has begun to
mation and then show how the stress-strain law followgercolate through its neighboring cells, we assume that
from the properties of these structures. After the earlygrowth of the strain cluster takes place only on its
stages of deformation, which we do not address, the strug@eriphery. The physical reason for this restriction is that
tures become three dimensional cells consisting of inteafter a given cell is strained, some of the dislocations
rior regions of nearly zero dislocation density, surroundedarticipating in the strain will be incorporated into the
by walls composed of regions of high dislocation den-walls of the cell, thus hardening the walls and making
sity, which are locked into the lattice by immobile or ses-subsequent strain in that cell more difficult.
sile dislocations. The walls are at first very diffuse, but The law for the propagation of strain from a strained
as the deformation proceeds, they become narrower arwkll to a neighboring unstrained cell through the wall
better defined. See Argon [1] for further details of theseparating the two is assumed to be the linear relation,
phenomenology. 5" =sa. 1)

An adequate theory of work hardening will therefore Here, s* is the strain induced in the unstrained cellis
consist of (1) a theory of the ordering process, and (2) dhe strain in its strained neighbor, awrdis a stochastic
theory of the percolation or transport of mobile dislocationsfunction, called the amplification factor, which depends
through the blocking walls of the partially ordered struc-on the properties of the wall separating the two cells.
ture. Our purpose in this paper is to address the secorfsince s is equivalent to a small pileup of dislocations
problem, assuming that a partially ordered cell structureexpanding in the strained cell, the force on the front
exists. This second problem is particularly important be-dislocation facing the wall barrier between the two cells
cause the stress-strain law of the metal is a direct outcomse proportional to the number of dislocations in the pileup
of the transport model. We will parametrize the interac-[3]. Since any physical process which allows strain to be
tions of the mobile dislocations with the cell walls and ex-propagated through the wall will depend on the force of
pect to obtain these parameters either from experimentdhe front dislocation against the wall, then it is reasonable
observations or from the results of dislocation simulationgo assume that* is also proportional to the number of
specifically designed for the purpose. pileup dislocations, and therefore g0

We assume first that a metal single crystal has been An essential feature of the model is our physical picture
brought to a particular state of strain with generation offor the two quite different mechanisms by which we
a definite 3D dislocation cellular structure. After the 3D propose strain is propagated through a wall separating a
cells have developed, Seeger [2] has shown from thetrained from an unstrained cell. In the first case, if the
slip traces appearing on the surface of the metal that theall is relatively stable, then it can simply act as a source
deformation is highly concentrated in linear slip bandsof new dislocations which expand into the unstrained cell.
randomly spaced on the surface, and that the length of theJéis mechanism can be quantified by writing = P,
bands is much larger than the cell size. where( < ¢ < 1 is a random numberP; is a parameter

In the next step, we subject the system to a smalbf the order of unity which is a measure of the strength
increment, 57, in the external stress and assume that and density of sources in the wall.
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But there can be a second, and more dramatic, behavitine standard form of a Langevin equation. Its solution
of a dislocation wall. Suppose the wall is pinned to theis (exponentially) localized near the origin far < 0
lattice, for example, by Lomer-Cottrell locks [3]. Further, and has an avalanche character for> 0. A critical
assume some of these locks are not very stable and may peint exists ata = 0, where the correlation function
broken or “unzipped” by a nearby dislocation pileup, andis divergent like1/|@|. In terms of the parameters of
the wall or a portion of it is thus swept aside. In such aEq. (2), the critical point in 1D is given by
case, the pileup dislocations flow through the broken wall, o _ _
and the dislocations which were previously pinned in the G ~ac =1 =P1/2+ Pk = 1=0. (5)
wall become debris which are added to the pileup in théThe critical “point” determined by this equation becomes
newly strained cell. In contrast to the first mechanisma critical line in the space of the parametdrs,and P; k.
relating to the action of stable walls, we assume thafNote thatP, and x appear in (5) only as the product.]
weak walls are relatively rare, but when activated, yield The bimodal separation into stable and weak cell walls
a large value ofa. Quantitatively, we can write such is an essential aspect of the model. For example, the 1D
a contribution toa in the form a, = P,exp(—¢/«),  solution for P, = 0 exponentially decays from the origin
where P, > 1 is a parameter corresponding to the largefor a subcritical value o, and in 2D a corresponding
amplification of such weak walls, and < 1 determines decay will take place around an initiation site at the

the (relatively small) probability for weak walls. origin. But suppose that weak cells are distributed near

If the contributions of the two mechanisms are addedthe edge of the decayed solution just before it drops to
the form ofa becomes zero (remember the rule thatgoes to zero whem = 1).

a = P\{ + Pye Y/~ Then, a percolating strain path from weak cell to weak

(2)  cell can be found if the distance between weak cells is less

a=P/2+ Pyx. than the critical distance where the strain goes to zero. In

The second equation gives the average value of the  such a case, percolation will occur on a critical surface
distribution. The values of the parameters in the ampliin the space of the parameters describing the properties
fication function must be determined from the underlyingof the stable and weak cells, analogous to that written for
cell physics, which we emphasize must be obtained eiiD in Eg. (5). This kind of behavior, suggested by the
ther from experimental observations or from specially de-1D solution, is indeed just what is found in 2D computer
signed dislocation simulations. Such studies, of coursesimulations.
may also show that the functional form of the amplifica- Proceeding to the numerical solution of the 2D model
tion function may require modification. with the propagation law, Eq. (1), the model is “run” by
In this 2D percolation problem, since many unstrainedassuming an initiation strairsy, at the origin. A single
cells on the periphery of the cluster will have more thancluster is then grown by a method similar to that of Leath
one strained neighbor, we propose a rule that propagatigd] until the growth stops or the cluster spans the (finite)
occurs only through that cell wall with the largest valuesystem. We find that the model exhibits what seems to
of s*. be a fractal spanning cluster at the percolation threshold.
A final rule states that since strain is composed ofSee Fig. 2. We also have determined that the percolation
dislocations, the minimum amount of strain which can beexponent,», has the value A, which is the standard
induced in an unstrained cell is unity. Thus, values ofvalue for 2D percolation [5]. Further mathematical details
s* < 1 from Eq. (1) are set to zero. of the model will be presented in a subsequent paper [6].
These equations and rules fully specify the strain For the simple case aP, = 0, a single critical point
percolation model. As noted, the physical problem is 2D exists for a critical value oP; = P;. = 1.3, and the criti-
However, the analogous 1D problem has an approximateal point is independent of,. Below the critical point,
analytic solution, some aspects of which remain valid inthe strain decays near the origin in a way reminiscent
2D. Thus, the 1D solution becomes a very useful tool inof the 1D model. Above the critical point, the strain
understanding the overall problem. In 1D,sif is the becomes an avalanche. The reason only one critical
initial strain at the origin, the recursion relation, Eq. (1), point exists is that foP; < P,., the solution will always
becomes decay and never reach the (infinitely) distant boundary, no
(3)  matter what value ofy is chosen.
The presence aP, dramatically changes the character
eof the result. As in the 1D case, wheah, # 0, the

Sn+1 = QAn Sn»
where cell indices refer to cell sites on the positkaxis.
If the amplification factor is expanded about its averag

value, the continuum form of the equation can be written single critical point prands into a C““Cf?" surface ?n
' s parameter space, which separates the region of localized

= =as(n) + ¢, (4)  strain from unstable avalanche strain. But, as presented
dn so far, sg, P1, P2, and k all appear to be independent

where @ = a — 1, and ¢ (note that¢ = 0) has the parameters, which leads to undesirably complex results.

form of a stochastic “noise” term. This equation hasThe 1D model, on the other hand, suggests that the critical

3885



VOLUME 81, NUMBER 18 PHYSICAL REVIEW LETTERS 2 MVEMBER 1998

surface may be independentsf and depend only oR; expected from the previous qualitative predictions for 2D
and the productP,«. If these results remain valid for based on the 1D model.
2D, the complexity would be reduced to very manageable In light of these results, the simplified 2D model as
proportions. We have, therefore, explored the rolepf encapsulated in Eqg. (6) will be adopted as the standard
and found that although the critical surface does in factnodel in what follows. One must always recognize,
depend ons, its dependence is slow compared to thathowever, that the simplified model is only a rough
of the other parameters. Also, the critical surface doespproximation to the actual 2D strain percolation problem.
not depend exactly on the produégk, but P, and« do  But the clarity of the general physical picture which
exhibit an inverse relationship, such that the product cathe simplified model permits is well worth the loss in
be taken as a rough approximation. Consequently, we agrecision.
led to propose a modification of Eq. (5) for 2D which we We have not yet raised the question of how the internal
expect to be roughly valid, parameters depend on the external observable parameters
_ . of total strain in an individual slip bands) (the order
de = P1/2 + Pk =~ 0.65. (6) parameter in this problem), and the applied stre®s,
The constant, 0.65, was determined from the percolatioft is this connection between the internal parameters
simulations for the casB, = 0 above. and the external observables which gives the model its
According to these rough approximations, the criticalultimate usefulness in the stress-strain relations. This
point now becomes a critical line, as shown in Fig. 1. Independence can be answered only by an appeal to the cell
the figure, we show the critical line as straight in accordphysics which underlies the model, either by experimental
with Eq. (6), but the reader is reminded that this is only aobservation, or by direct dislocation simulation. But even
rough approximation. though this information is not available, in the remainder
This behavior is intimately connected with the physicsof the paper, we explore what can be learned by the fact
of the cell wall response, as shown in Fig. 2. Thisthat such a relationship exists, even if its precise form is
figure shows the fractal shape of the spanning clustenot known.
overlaid with cells where the strain is greater than some From the solutions of the 2D model described above,
arbitrary large value. These latter cells are dominatedve know that a critical surface exists in the space of
by the term inP,. In these (low probability) cells, the the independent internal parameters (a critical line in
amplification factor is large compared to unity, and athe case of the variables?; and P,k), and that this
large strain develops. In cells surrounding these sitesurface separates a region of localized strain from an
however, the strain decays because of the subcritical valuievalanche region. All the internal parameters are, in
of P;. Percolation through the entire system occurs wherprinciple, functions of the external driving forcér. But
the decaying strain surrounding a weak cell can, on thave need greater specificity in the functionality existing
average, reach another weak cell before the strain hdsetween the external variables and the internal parameters
decayed to below unity. This general behavior is just thatn order to obtain useful information. In the simplified
model adopted with internal variableB; and P,«, we
will assume that onlyP,x depends significantly o .
P k Our reason is that the unzipping of weak locks should
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FIG. 2. Spanning cluster. Large circles represent cells with
FIG. 1. Ciritical line, showing the path taken for increasinglarge strain; small circles represent cells with smaller strain.
ST, Py =0.2; P, = 6.07;, k = 0.07.
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be a very nonlinear function of the external stress, while-1/2. The first two terms must, of course, be determined
Py will depend only oné7 in linear fashion. This from independent dislocation simulation studies or from
nonlinear dependence, in our opinion, should overwhelnexperiment. We emphasize that the various terms on the
the weaker dependence 8f on 7. This reasoning is right side of Eqg. (7) must be evaluated on the critical
very judgmental, and, to repeat, must be confirmed by éine (or more generally on the critical surface). This
more detailed study of the underlying cell physics. requirement means that the critical state must be known

Thus, if the system is started at a subcritical valuewhen working at the individual cell level, and this can be
of 67, and the external stress is continuously increasedn important practical difficulty. However, information
(Fig. 1), the system will ultimately reach the critical such as that provided by the 1D model could prove useful
surface, where a strain excursion takes place as the systémthis connection. More generally, any analytic approach
begins to go into an unstable avalanche. If the systerwhich can be developed for the 2D case, such as a mean
does not sustain an immediate global instability (i.e.field approximation, would have the same usefulness.
the Portevin-LeChatelier instability [7] is inhibited), then In conclusion, we do not claim a “derivation” of the
some of the new dislocations will be absorbed in thestress-strain law, but we have, instead, successfully for-
existing walls, thereby hardening them. The hardeningnulated a statistical “framework,” as we prefer to call it,
walls will in turn stop the dislocation population surge for converting the physics of dislocation behavior at the
and bring the system back to a new point on the criticakingle cell level into the desired stress-strain constitutive
surface. Thus, the deforming metal “lives” on the criticallaw. Furthermore, the framework, as we have developed it,
surface, and in the case under discussion, the state of tivedicates what the internal variables in the system might be,
system moves to the left in Fig. 1 abr is increased. and, more importantly, how to obtain them from the under-
Such a system is self-organizing [8]. lying cell physics. And finally, we propose that the enor-

In the simplified model, we will assume that the mously complex nonlinear and nonequilibrium stochastic
strain hardening primarily affects the stable wall strengthproblem of metal deformation can be described as a self-
parameterP;, and neglect any effect of strain hardeningorganizing critical system, subject to the powerful univer-
on P;k. sality theorems of percolation theory.
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