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Theory of Strain Percolation in Metals

Robb Thomson and L. E. Levine
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland

(Received 30 July 1998)

We demonstrate that a deforming metal is a self-organizing critical system, and that the stress-strain
law can be expressed as an integration of certain derivatives of internal variables along the critical line
of the system. [S0031-9007(98)07460-2]

PACS numbers: 62.20.Fe, 64.60.Lx, 81.40.Ef
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The work hardening which occurs during the deforma
tion of metals is one of the central long standing problem
in materials science [1]. Because the large numbers
dislocations that form during deformation (distorted an
tangled in three dimensions) interact strongly with bot
long- and short-range forces, work hardening is a man
body problem of vast complexity. It remains largely un
solved today. More specifically, the major theoretica
challenge is to adequately account for the evolution of th
dislocations into partially ordered structures during defo
mation and then show how the stress-strain law follow
from the properties of these structures. After the ear
stages of deformation, which we do not address, the stru
tures become three dimensional cells consisting of int
rior regions of nearly zero dislocation density, surrounde
by walls composed of regions of high dislocation den
sity, which are locked into the lattice by immobile or ses
sile dislocations. The walls are at first very diffuse, bu
as the deformation proceeds, they become narrower a
better defined. See Argon [1] for further details of th
phenomenology.

An adequate theory of work hardening will therefore
consist of (1) a theory of the ordering process, and (2)
theory of the percolation or transport of mobile dislocation
through the blocking walls of the partially ordered struc
ture. Our purpose in this paper is to address the seco
problem, assuming that a partially ordered cell structu
exists. This second problem is particularly important be
cause the stress-strain law of the metal is a direct outco
of the transport model. We will parametrize the interac
tions of the mobile dislocations with the cell walls and ex
pect to obtain these parameters either from experimen
observations or from the results of dislocation simulation
specifically designed for the purpose.

We assume first that a metal single crystal has be
brought to a particular state of strain with generation o
a definite 3D dislocation cellular structure. After the 3D
cells have developed, Seeger [2] has shown from t
slip traces appearing on the surface of the metal that t
deformation is highly concentrated in linear slip band
randomly spaced on the surface, and that the length of the
bands is much larger than the cell size.

In the next step, we subject the system to a sma
increment,dt, in the external stress and assume that
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responding increment of strain,s0, is nucleated at the
weakest cell in a slip band. It is consistent with Seege
observations to assume that this strain nucleus percol
through the sample from cell to neighboring cell, a
the object of the model is to track the percolating stra
through the slip band. We assume that throughout
process, the strain is restricted to its initial slip plan
so the evolution is two dimensional, at least to a go
approximation.

After a strain burst is initiated and has begun
percolate through its neighboring cells, we assume t
growth of the strain cluster takes place only on
periphery. The physical reason for this restriction is th
after a given cell is strained, some of the dislocatio
participating in the strain will be incorporated into th
walls of the cell, thus hardening the walls and maki
subsequent strain in that cell more difficult.

The law for the propagation of strain from a straine
cell to a neighboring unstrained cell through the w
separating the two is assumed to be the linear relation

sp ­ sa . (1)
Here,sp is the strain induced in the unstrained cell,s is
the strain in its strained neighbor, anda is a stochastic
function, called the amplification factor, which depen
on the properties of the wall separating the two ce
Since s is equivalent to a small pileup of dislocation
expanding in the strained cell, the force on the fro
dislocation facing the wall barrier between the two ce
is proportional to the number of dislocations in the pile
[3]. Since any physical process which allows strain to
propagated through the wall will depend on the force
the front dislocation against the wall, then it is reasona
to assume thatsp is also proportional to the number o
pileup dislocations, and therefore tos.

An essential feature of the model is our physical pictu
for the two quite different mechanisms by which w
propose strain is propagated through a wall separatin
strained from an unstrained cell. In the first case, if t
wall is relatively stable, then it can simply act as a sou
of new dislocations which expand into the unstrained c
This mechanism can be quantified by writinga1 ­ P1z ,
where0 , z , 1 is a random number.P1 is a parameter
of the order of unity which is a measure of the streng
and density of sources in the wall.
© 1998 The American Physical Society
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But there can be a second, and more dramatic, behav
of a dislocation wall. Suppose the wall is pinned to th
lattice, for example, by Lomer-Cottrell locks [3]. Further
assume some of these locks are not very stable and may
broken or “unzipped” by a nearby dislocation pileup, an
the wall or a portion of it is thus swept aside. In such
case, the pileup dislocations flow through the broken wa
and the dislocations which were previously pinned in th
wall become debris which are added to the pileup in th
newly strained cell. In contrast to the first mechanis
relating to the action of stable walls, we assume th
weak walls are relatively rare, but when activated, yie
a large value ofa. Quantitatively, we can write such
a contribution to a in the form a2 ­ P2 exps2zykd,
whereP2 ¿ 1 is a parameter corresponding to the larg
amplification of such weak walls, andk ø 1 determines
the (relatively small) probability for weak walls.

If the contributions of the two mechanisms are adde
the form ofa becomes

a ­ P1z 1 P2e2z yk ,

ā ø P1y2 1 P2k .
(2)

The second equation gives the average value ofa in the
distribution. The values of the parameters in the amp
fication function must be determined from the underlyin
cell physics, which we emphasize must be obtained
ther from experimental observations or from specially d
signed dislocation simulations. Such studies, of cours
may also show that the functional form of the amplifica
tion function may require modification.

In this 2D percolation problem, since many unstraine
cells on the periphery of the cluster will have more tha
one strained neighbor, we propose a rule that propagat
occurs only through that cell wall with the largest valu
of sp.

A final rule states that since strain is composed
dislocations, the minimum amount of strain which can b
induced in an unstrained cell is unity. Thus, values o
sp , 1 from Eq. (1) are set to zero.

These equations and rules fully specify the stra
percolation model. As noted, the physical problem is 2D
However, the analogous 1D problem has an approxima
analytic solution, some aspects of which remain valid
2D. Thus, the 1D solution becomes a very useful tool
understanding the overall problem. In 1D, ifs0 is the
initial strain at the origin, the recursion relation, Eq. (1)
becomes

sn11 ­ an sn , (3)

where cell indices refer to cell sites on the positiveX axis.
If the amplification factor is expanded about its averag
value, the continuum form of the equation can be writte

ds
dn

­ āssnd 1 f , (4)

where ā ­ ā 2 1, and f (note that f̄ ­ 0) has the
form of a stochastic “noise” term. This equation ha
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the standard form of a Langevin equation. Its soluti
is (exponentially) localized near the origin for̄a , 0
and has an avalanche character forā . 0. A critical
point exists atā ­ 0, where the correlation function
is divergent like1yjāj. In terms of the parameters o
Eq. (2), the critical point in 1D is given by

āc ø āc 2 1 ­ P1y2 1 P2k 2 1 ­ 0 . (5)

The critical “point” determined by this equation becom
a critical line in the space of the parameters,P1 andP2k.
[Note thatP2 andk appear in (5) only as the product.]

The bimodal separation into stable and weak cell wa
is an essential aspect of the model. For example, the
solution forP2 ­ 0 exponentially decays from the origin
for a subcritical value ofP1, and in 2D a corresponding
decay will take place around an initiation site at th
origin. But suppose that weak cells are distributed ne
the edge of the decayed solution just before it drops
zero (remember the rule thats goes to zero whens ­ 1).
Then, a percolating strain path from weak cell to we
cell can be found if the distance between weak cells is l
than the critical distance where the strain goes to zero.
such a case, percolation will occur on a critical surfa
in the space of the parameters describing the proper
of the stable and weak cells, analogous to that written
1D in Eq. (5). This kind of behavior, suggested by th
1D solution, is indeed just what is found in 2D comput
simulations.

Proceeding to the numerical solution of the 2D mod
with the propagation law, Eq. (1), the model is “run” b
assuming an initiation strain,s0, at the origin. A single
cluster is then grown by a method similar to that of Lea
[4] until the growth stops or the cluster spans the (finit
system. We find that the model exhibits what seems
be a fractal spanning cluster at the percolation thresho
See Fig. 2. We also have determined that the percola
exponent,n, has the value 4y3, which is the standard
value for 2D percolation [5]. Further mathematical deta
of the model will be presented in a subsequent paper [6

For the simple case ofP2 ­ 0, a single critical point
exists for a critical value ofP1 ­ P1c ø 1.3, and the criti-
cal point is independent ofs0. Below the critical point,
the strain decays near the origin in a way reminisce
of the 1D model. Above the critical point, the strai
becomes an avalanche. The reason only one crit
point exists is that forP1 , P1c, the solution will always
decay and never reach the (infinitely) distant boundary,
matter what value ofs0 is chosen.

The presence ofP2 dramatically changes the charact
of the result. As in the 1D case, whenP2 fi 0, the
single critical point expands into a critical surface
parameter space, which separates the region of local
strain from unstable avalanche strain. But, as presen
so far, s0, P1, P2, and k all appear to be independen
parameters, which leads to undesirably complex resu
The 1D model, on the other hand, suggests that the crit
3885
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surface may be independent ofs0, and depend only onP1
and the product,P2k. If these results remain valid for
2D, the complexity would be reduced to very manageab
proportions. We have, therefore, explored the role ofs0
and found that although the critical surface does in fa
depend ons0, its dependence is slow compared to th
of the other parameters. Also, the critical surface do
not depend exactly on the product,P2k, but P2 andk do
exhibit an inverse relationship, such that the product c
be taken as a rough approximation. Consequently, we
led to propose a modification of Eq. (5) for 2D which w
expect to be roughly valid,

āc ­ P1y2 1 P2k ø 0.65 . (6)

The constant, 0.65, was determined from the percolat
simulations for the caseP2 ­ 0 above.

According to these rough approximations, the critic
point now becomes a critical line, as shown in Fig. 1.
the figure, we show the critical line as straight in acco
with Eq. (6), but the reader is reminded that this is only
rough approximation.

This behavior is intimately connected with the physic
of the cell wall response, as shown in Fig. 2. Th
figure shows the fractal shape of the spanning clus
overlaid with cells where the strain is greater than som
arbitrary large value. These latter cells are dominat
by the term inP2. In these (low probability) cells, the
amplification factor is large compared to unity, and
large strain develops. In cells surrounding these sit
however, the strain decays because of the subcritical va
of P1. Percolation through the entire system occurs wh
the decaying strain surrounding a weak cell can, on t
average, reach another weak cell before the strain
decayed to below unity. This general behavior is just th

Localized

Avalanche

P

Critical
Line

1

P
2

κ

FIG. 1. Critical line, showing the path taken for increasin
dt.
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expected from the previous qualitative predictions for 2
based on the 1D model.

In light of these results, the simplified 2D model a
encapsulated in Eq. (6) will be adopted as the stand
model in what follows. One must always recogniz
however, that the simplified model is only a roug
approximation to the actual 2D strain percolation proble
But the clarity of the general physical picture whic
the simplified model permits is well worth the loss i
precision.

We have not yet raised the question of how the inter
parameters depend on the external observable param
of total strain in an individual slip bandksl (the order
parameter in this problem), and the applied stress,dt.
It is this connection between the internal paramet
and the external observables which gives the model
ultimate usefulness in the stress-strain relations. T
dependence can be answered only by an appeal to the
physics which underlies the model, either by experimen
observation, or by direct dislocation simulation. But ev
though this information is not available, in the remaind
of the paper, we explore what can be learned by the f
that such a relationship exists, even if its precise form
not known.

From the solutions of the 2D model described abov
we know that a critical surface exists in the space
the independent internal parameters (a critical line
the case of the variables,P1 and P2k), and that this
surface separates a region of localized strain from
avalanche region. All the internal parameters are,
principle, functions of the external driving force,dt. But
we need greater specificity in the functionality existin
between the external variables and the internal parame
in order to obtain useful information. In the simplifie
model adopted with internal variables,P1 and P2k, we
will assume that onlyP2k depends significantly ondt.
Our reason is that the unzipping of weak locks shou

FIG. 2. Spanning cluster. Large circles represent cells w
large strain; small circles represent cells with smaller stra
P1 ­ 0.2; P2 ­ 6.07; k ­ 0.07.
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be a very nonlinear function of the external stress, whi
P1 will depend only on dt in linear fashion. This
nonlinear dependence, in our opinion, should overwhel
the weaker dependence ofP1 on dt. This reasoning is
very judgmental, and, to repeat, must be confirmed by
more detailed study of the underlying cell physics.

Thus, if the system is started at a subcritical valu
of dt, and the external stress is continuously increas
(Fig. 1), the system will ultimately reach the critical
surface, where a strain excursion takes place as the sys
begins to go into an unstable avalanche. If the syste
does not sustain an immediate global instability (i.e
the Portevin-LeChatelier instability [7] is inhibited), then
some of the new dislocations will be absorbed in th
existing walls, thereby hardening them. The hardenin
walls will in turn stop the dislocation population surge
and bring the system back to a new point on the critic
surface. Thus, the deforming metal “lives” on the critica
surface, and in the case under discussion, the state of
system moves to the left in Fig. 1 asdt is increased.
Such a system is self-organizing [8].

In the simplified model, we will assume that the
strain hardening primarily affects the stable wall streng
parameter,P1, and neglect any effect of strain hardening
on P2k.

These results, which link the internal variables with th
external stress-strain relation, can be given a quantitati
form by writing the expression

dsdtd
dksl

­
dsdtd

dsP2kd
dP1

dksl
dsP2kd

dP1
. (7)

In this equationksl is the average calculated strain in
a critical strain cluster induced bydt and is related to
the strain,S, in the total system by a sum over the slip
bands,S ­

P
ksl. The left-hand side, therefore, expresse

the stress-strain law in differential form. The right-han
side is obtained by simple chain rule differentiation o
the left, recognizing the functional dependences alrea
proposed. Thus, the first term on the right relates th
internal variable,P2k, to the external stress, the secon
is the wall hardening law, and the third is found from
the universal character of the percolation model itse
For the simplified model in question,dsP2kdydP1 ­
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21y2. The first two terms must, of course, be determine
from independent dislocation simulation studies or from
experiment. We emphasize that the various terms on t
right side of Eq. (7) must be evaluated on the critica
line (or more generally on the critical surface). This
requirement means that the critical state must be know
when working at the individual cell level, and this can b
an important practical difficulty. However, information
such as that provided by the 1D model could prove usef
in this connection. More generally, any analytic approac
which can be developed for the 2D case, such as a me
field approximation, would have the same usefulness.

In conclusion, we do not claim a “derivation” of the
stress-strain law, but we have, instead, successfully fo
mulated a statistical “framework,” as we prefer to call it
for converting the physics of dislocation behavior at th
single cell level into the desired stress-strain constitutiv
law. Furthermore, the framework, as we have developed
indicates what the internal variables in the system might b
and, more importantly, how to obtain them from the unde
lying cell physics. And finally, we propose that the enor
mously complex nonlinear and nonequilibrium stochast
problem of metal deformation can be described as a se
organizing critical system, subject to the powerful univer
sality theorems of percolation theory.

It is a pleasure to acknowledge useful criticism an
comments from J. Douglas, J. Warren, and R. Minich.
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