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We study the effect of nonlinear gradient terms on breathing localized solutions in the complex
Ginzburg-Landau equation. It is found that even small nonlinear gradient terms—which appear at the
same order as the quintic term—can cause dramatic changes in the behavior of the solution, such as
causing opposite sides of an otherwise monoperiodic symmetrically breathing solution to breathe at
different frequencies, thus causing the solution to breathe periodically or chaotically on only one side
or the solution to rapidly spread. [S0031-9007(98)07488-2]

PACS numbers: 47.20.Ky, 03.40.Gc, 03.40.Kf, 05.70.Ln

For over thirty years now it has been known that stablechaotically [15]. By stable is meant that the solution lies
localized solutions can exist for certain nonlinear partialon an attractor. These breathing DDL solutions, which
differential equations. The best-known example of suctwere found for the quintic CGL equation, bare no rela-
solutions is the soliton [1,2], a localized solution which tion to the “breathers” of the sine-Gordon equation. Also
occurs in purely dispersive systems such as the nonlirthey are very different from the slowly spreading chaotic
ear Schrodinger equation. More recently stable localizetbcalized solutions of the quintic CGL equation [16,17].
solutions have been found to occur in quintic complexThe breathing DDL solutions exhibit interesting interac-
Ginzburg-Landau (CGL) equations [3—7]—ageneric equation behavior such as dependence on initial conditions for
tions with both dissipatiomnd dispersion and which de- the outcome of collisions and eveensitivedependence
scribe systems near a subcritical bifurcation to travelingon initial conditions for the outcome of collisions involv-
waves. These dissipative-dispersive localized (DDL) soing chaoticbreathing DDL solutions [18].
lutions can be considered to be the analog of the solitons For the breathing DDL solutions of the quintic CGL
that occur in purely dispersive systems. Although thesequation, nonlinear gradient terms have thus far been
DDL solutions share some properties with solitons, sucmeglected for simplicity. However, for an actual physical
as a fixed shape for the modulus and interaction behavi®ystem nonlinear gradient terms will always be present
in which shape and size are preserved during collisionsince they occur at the same order as the quintic term [19].
[4,5], there are fundamental differences. For exampleTherefore, an important question is whether there are any
these DDL solutions also exhibit mutual annihilation dur-qualitative changes in the behavior as a result of the non-
ing collisions [4,5], a property which does not occur for linear gradient terms.
solitons. Also, in contrast to solitons which require no en- In this Letter we study the effect of nonlinear gradient
ergy input for their existence, the DDL solutions dependterms on the breathing DDL solutions of the quintic CGL
on a constant influx of energy in order to overcome the disequation. We find that even small nonlinear gradient
sipation. Stable DDL solutions have also been studied inerms can dramatically alter the behavior of solutions, such
a two-dimensional (2D) quintic CGL equation [3,8], in a as causing opposite sides of an otherwise monoperiodic
2D equation for systems with broken rotational symmetrysymmetrically breathing solution to breathe at different
[9], and in equations describing systems in nonlinear opfrequencies, causing the solution to breathe periodically
tics—a dye laser with saturable absorber [10] and a systemr chaotically on only one side, or causing the solution to
exhibiting optical bistability [11]. Experimentally, stable rapidly spread. We find that itis also possible for nonlinear
DDL solutions have been found in binary fluid convectiongradient terms to cause an otherwise fixed-shape solution
[12,13] and in a dye laser with saturable absorber [14]. to breathe periodically or even chaotically.

Until recently the behavior of localized solutions of The quintic CGL equation with nonlinear gradient terms
prototype equations has been limited to solutions witlreads
fixed modulus such as the_ soliton; and D_DL soluti_on_s dis- A + VA, = YA + yA. — BIAIPA — 5lA[*A
cussed above, or to solutions which oscillate periodically 5 5 s
about zero (for real equations) such as the “breathers” of — AlAFA, — pA”AL, (1)
the sine Gordon equation. Therefore, an interesting disahereA is a slowly varying complex amplitude and the
covery was that of stable localized solutions for which thecoefficients (except for the group velocity are in general
modulus breathes periodically, quasiperiodically, or evercomplex, i.e., of the forny = z, + iz;. Since we take
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periodic boundary conditions, the convective term,

may be transformed away by going into a moving frame
of reference. Also, the parameterwhich is proportional

to the distance from criticality, can be taken as real,
since the imaginary part can be transformed away by a
simple transformation. We takg < 0 and 8, < 0 so

that the system is subcritical and take > 0 to guarantee
saturation. The last two terms are the nonlinear gradient
terms. For fixed-shape solutions, these terms cause the
solution to become asymmetric and to move at a velocity
other than the group velocity [5]. We note that Eq. (1) is
the most general equation to the lowest consistent order
in an envelope expansion near onset (as discussed first in
the appendix of Ref. [19(b)]) and is thus generic in nature.
We also stress that there are no other terms that occur at
this order. For slightly negative values gf, the scaling

of the amplitude is determined by the quintic saturation
term. The scaling for the spatial derivatives is unchanged,
thus ruling out higher order derivative terms linear in the
amplitudeA.

Figure 1 shows space-time plots of the modulusAof
for various values of the nonlinear gradient terms, keeping
the other parameter values fixed. The numerical method
used was a time-splitting method [20]. The linear terms
are integrated exactly in time using Fourier transforms,
and the nonlinear terms are integrated using second-order
Runge-Kutta, fourth-order spatial differencing being used
for the nonlinear gradient terms. The time step is 0.01
and the number of Fourier modes and grid points is 1024.
The state was prepared by first starting with a Gaussian
centered about = 50 and integrating in time (without
the nonlinear gradient terms present) until the solution
had settled onto its attractor. The nonlinear gradient terms
were then applied and the code was run for an additional
10° iterations, giving the system plenty of time to settle
onto its attractor. The end of this time period corresponds
to + = 0 in the plots. The code was then run for an
additional 4800 iterations to provide the data for the plots.

For comparison purposes, Fig. 1(a) shows the solution
with coefficients of the nonlinear gradient terms equal
to zero, i.e., A = u =0 + 0i. This solution lies on
a periodic attractor with period 1. The waves travel
symmetrically down the left and right sides of the solution.

FIG. 1. Space-time plots of breathing DDL solutions for
various values of the coefficients of the nonlinear gradient
terms. For all the plots in this Letter, the parameter values,
other than those for the nonlinear gradient terms, gre-
-0.1, v=0, y=10—-1.1i, B =-30-1.0i, and § =
275 — 1.0i. (@ A = u =0+ 0i (symmetric monoperiodic
solution). (b) A = u = 0.01 + 0.01; (“beating solution.”
The right side breathes at a slightly larger frequency than
the left). (c)A = u = 0.03 + 0.03 [beating solution. The
“beating” frequency is larger, causing opposite sides to be more
out of phase with one another as compared with Fig. 1(b).].
(d) A = u = 0.05 + 0.05i (period-2 solution). (eN = u =
0.07 + 0.07: (chaotic solution).

(a)

90.0

(b)

©

90.0

(d)

120.0

90.0

3857



VOLUME 81, NUMBER 18 PHYSICAL REVIEW LETTERS 2 MVEMBER 1998

g LI i

The solution remains localized because the system is
subcritical and the waves that are shed from the sides ar
of sufficiently small amplitude that they quickly decay.
Figure 1(b) shows the solution with = u = 0.01 + M J
tilH

26.0

0.01i. As can be seen, the solution is no longer symmetric.
The reason for this asymmetry is that, as a result of the’
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of the solution is traveling slightly faster than the wave ’ ' | l
traveling down the left of the solution. Therefore, there “
are now two distinct frequencies—the frequency of the s 000 000.0 ‘15600 0000
wave traveling down the right side of the solution and ' ’ ; ' ’ ‘
the frequency of the wave traveling down the left. The
difference between these two frequencies corresponds fdG. 2. Time series of the area under the modulus of the

; ; ; natindreathing DDL solution plotted in Fig. 1(c). Note the beating
the waves an opposite sides of the solution OSCIIIatmiaused by the left and right sides breathing in and out of phase

in an_d out of phase With one another._ We note that thgii one another.
solution is also traveling slowly to the right.
For larger values of and u, the difference between _ .
the frequencies of the right and left waves will becomelike it could be chaotic. Figure 4(a) shows a plotsf)
larger. This can be seen by comparing Fig. 1(c), wherdor these parameter values & n = 0.07 + 0.07:). To
A= p = 0.03 + 0.03i, with Fig. 1(b), noting that the estat_)llsh tha_t the solution is chaotic, we plotn as a
right and left waves are more out of phase in Fig. 1(c)function of time, where; = ([ dx|8A*)'/?, 54 being
as compared to Fig. 1(b) and recalling that the code waf€ linear perturbation about [16]. Figure 4(b) shows
run for 10° iterations with the nonlinear gradient terms @ plot of IfZ(s)]. Itis seen that nearby solutions separate
present prior to plotting. exponentially on the average and that, therefore, the
In addition to the frequency difference, referring to solution is indeed chaotic. For sufficiently large values
Fig. 1(c) it is also seen that the wave traveling downof A andu, e.g.,A = u = 0.08 + 0.08;, the waves that
the right of the solution is larger in amplitude than that@re shed from the right side of the solution become large
traveling down the left. For larger nonlinear gradient®nough so that they no longer decay, but instead grow,
terms, as seen in Fig. 1(d) & x = 0.05 + 0.05i) and and the solqun no longer remains localized but quickly
Fig. 1(e) & = u = 0.07 + 0.07i), waves are seen to SPreads to the right. . _
travel only down the right side of the solution. Note We have seen that small nonlinear gradient terms can
also that the solutions travel at a larger velocity to thedramatically alter a monoperiodic solution, causing op-
right for larger nonlinear gradient terms, recalling that thePOSite sides of the solution to breathe at different fre-
solutions were centered about= 50, 10° iterations prior ~quencies or causing the solution to become period
to plotting. or chaotic. An interesting question is whether nonlin-
To characterize the time evolution of the solutions, weear gradient terms can have similarly significant effects
p|otthe area under the modul$s= fdxlAl, asafunction ©On ﬁxed'Shape solutions. We indeed find this to be the
of time. We note that this quantity is independent ofcase; a fixed shape solution in the absence of nonlinear
the velocity at which the solution travels, i.e., Galileangradient terms can become monoperiodic, perigdor
invariant. Figure 2 shows a plot of(r) for A = u =  €ven chaotic in th_e presence _of nonlinear gradient terms.
0.03 + 0.03i. These are the same parameters as used for example, takingy, = 1.2 instead ofy, = 1.0, we
Fig. 1(c). The slow “beating” frequency is equal to the
difference between the breathing frequencies of the right o
and left sides of the solution and corresponds to opposite &7
sides of the solution breathing in and out of phase with one

another.
Plotting S(¢) for the parameter values of Fig. 1(d) o
(A= u =0.05 + 0.05{), we find that this solution is 1 g
period 2; i.e., it takes two oscillations for one complete
period. Figure 3 shows a plot af(¢z) for A = u =
0.06 + 0.06i. It is seen that this solution is period o
T

3.0

o~

4. Plotting S(r) for A = u = 0.064 + 0.064i, we find 9 { . ‘
a period-8 solution. As a function of the magnitude 0.0 50.0 100.0 150.0 2000
of the coefficients of the nonlinear gradient terms, the t

system appears to be undergoing a period-doubling routeG. 3. Time series of the area under the modulus Xor
to chaos. In fact, the space-time plot in Fig. 1(e) looksu = 0.06 + 0.06i. The solution is period 4.
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wise fixed-shape DDL solution to become monoperiodic,
periodn, or chaotic. We emphasize that the behavior ana-
lyzed here is generic and not restricted to a small parameter
regime. It will be interesting to check the predictions ex-
o perimentally. Candidates include binary fluid convection
v & w and electroconvection in nematic liquid crystals.
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