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We study the effect of nonlinear gradient terms on breathing localized solutions in the com
Ginzburg-Landau equation. It is found that even small nonlinear gradient terms—which appear
same order as the quintic term—can cause dramatic changes in the behavior of the solution, s
causing opposite sides of an otherwise monoperiodic symmetrically breathing solution to breat
different frequencies, thus causing the solution to breathe periodically or chaotically on only one
or the solution to rapidly spread. [S0031-9007(98)07488-2]
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For over thirty years now it has been known that stab
localized solutions can exist for certain nonlinear parti
differential equations. The best-known example of suc
solutions is the soliton [1,2], a localized solution which
occurs in purely dispersive systems such as the nonl
ear Schrödinger equation. More recently stable localiz
solutions have been found to occur in quintic comple
Ginzburg-Landau (CGL) equations [3–7]—generic equ
tions with both dissipationand dispersion and which de-
scribe systems near a subcritical bifurcation to travelin
waves. These dissipative-dispersive localized (DDL) s
lutions can be considered to be the analog of the solito
that occur in purely dispersive systems. Although the
DDL solutions share some properties with solitons, su
as a fixed shape for the modulus and interaction behav
in which shape and size are preserved during collisio
[4,5], there are fundamental differences. For examp
these DDL solutions also exhibit mutual annihilation dur
ing collisions [4,5], a property which does not occur fo
solitons. Also, in contrast to solitons which require no en
ergy input for their existence, the DDL solutions depen
on a constant influx of energy in order to overcome the di
sipation. Stable DDL solutions have also been studied
a two-dimensional (2D) quintic CGL equation [3,8], in a
2D equation for systems with broken rotational symmet
[9], and in equations describing systems in nonlinear o
tics—a dye laser with saturable absorber [10] and a syst
exhibiting optical bistability [11]. Experimentally, stable
DDL solutions have been found in binary fluid convectio
[12,13] and in a dye laser with saturable absorber [14].

Until recently the behavior of localized solutions o
prototype equations has been limited to solutions wi
fixed modulus such as the solitons and DDL solutions di
cussed above, or to solutions which oscillate periodica
about zero (for real equations) such as the “breathers”
the sine Gordon equation. Therefore, an interesting d
covery was that of stable localized solutions for which th
modulus breathes periodically, quasiperiodically, or eve
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chaotically [15]. By stable is meant that the solution lie
on an attractor. These breathing DDL solutions, whi
were found for the quintic CGL equation, bare no rel
tion to the “breathers” of the sine-Gordon equation. Als
they are very different from the slowly spreading chaot
localized solutions of the quintic CGL equation [16,17
The breathing DDL solutions exhibit interesting intera
tion behavior such as dependence on initial conditions
the outcome of collisions and evensensitivedependence
on initial conditions for the outcome of collisions involv
ing chaoticbreathing DDL solutions [18].

For the breathing DDL solutions of the quintic CGL
equation, nonlinear gradient terms have thus far be
neglected for simplicity. However, for an actual physic
system nonlinear gradient terms will always be prese
since they occur at the same order as the quintic term [1
Therefore, an important question is whether there are a
qualitative changes in the behavior as a result of the n
linear gradient terms.

In this Letter we study the effect of nonlinear gradie
terms on the breathing DDL solutions of the quintic CG
equation. We find that even small nonlinear gradie
terms can dramatically alter the behavior of solutions, su
as causing opposite sides of an otherwise monoperio
symmetrically breathing solution to breathe at differe
frequencies, causing the solution to breathe periodica
or chaotically on only one side, or causing the solution
rapidly spread. We find that it is also possible for nonline
gradient terms to cause an otherwise fixed-shape solu
to breathe periodically or even chaotically.

The quintic CGL equation with nonlinear gradient term
reads

At 1 yAx ­ xA 1 gAxx 2 bjAj2A 2 djAj4A

2 ljAj2Ax 2 mA2Ap
x , (1)

whereA is a slowly varying complex amplitude and th
coefficients (except for the group velocityy) are in general
complex, i.e., of the formz ­ zr 1 izi. Since we take
© 1998 The American Physical Society
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periodic boundary conditions, the convective termyAx

may be transformed away by going into a moving fram
of reference. Also, the parameterx, which is proportional
to the distance from criticality, can be taken as rea
since the imaginary part can be transformed away by
simple transformation. We takex , 0 and br , 0 so
that the system is subcritical and takedr . 0 to guarantee
saturation. The last two terms are the nonlinear gradie
terms. For fixed-shape solutions, these terms cause
solution to become asymmetric and to move at a veloci
other than the group velocity [5]. We note that Eq. (1) i
the most general equation to the lowest consistent ord
in an envelope expansion near onset (as discussed firs
the appendix of Ref. [19(b)]) and is thus generic in natur
We also stress that there are no other terms that occu
this order. For slightly negative values ofbr , the scaling
of the amplitude is determined by the quintic saturatio
term. The scaling for the spatial derivatives is unchange
thus ruling out higher order derivative terms linear in th
amplitudeA.

Figure 1 shows space-time plots of the modulus ofA
for various values of the nonlinear gradient terms, keepin
the other parameter values fixed. The numerical meth
used was a time-splitting method [20]. The linear term
are integrated exactly in time using Fourier transform
and the nonlinear terms are integrated using second-or
Runge-Kutta, fourth-order spatial differencing being use
for the nonlinear gradient terms. The time step is 0.0
and the number of Fourier modes and grid points is 102
The state was prepared by first starting with a Gaussi
centered aboutx ­ 50 and integrating in time (without
the nonlinear gradient terms present) until the solutio
had settled onto its attractor. The nonlinear gradient term
were then applied and the code was run for an addition
105 iterations, giving the system plenty of time to settle
onto its attractor. The end of this time period correspond
to t ­ 0 in the plots. The code was then run for an
additional 4800 iterations to provide the data for the plot

For comparison purposes, Fig. 1(a) shows the soluti
with coefficients of the nonlinear gradient terms equa
to zero, i.e.,l ­ m ­ 0 1 0i. This solution lies on
a periodic attractor with period 1. The waves trave
symmetrically down the left and right sides of the solution

FIG. 1. Space-time plots of breathing DDL solutions fo
various values of the coefficients of the nonlinear gradie
terms. For all the plots in this Letter, the parameter value
other than those for the nonlinear gradient terms, arex ­
20.1, y ­ 0, g ­ 1.0 2 1.1i, b ­ 23.0 2 1.0i, and d ­
2.75 2 1.0i. (a) l ­ m ­ 0 1 0i (symmetric monoperiodic
solution). (b) l ­ m ­ 0.01 1 0.01i (“beating solution.”
The right side breathes at a slightly larger frequency tha
the left). (c) l ­ m ­ 0.03 1 0.03i [beating solution. The
“beating” frequency is larger, causing opposite sides to be mo
out of phase with one another as compared with Fig. 1(b)
(d) l ­ m ­ 0.05 1 0.05i (period-2 solution). (e)l ­ m ­
0.07 1 0.07i (chaotic solution).
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The solution remains localized because the system
subcritical and the waves that are shed from the sides
of sufficiently small amplitude that they quickly decay
Figure 1(b) shows the solution withl ­ m ­ 0.01 1

0.01i. As can be seen, the solution is no longer symmetr
The reason for this asymmetry is that, as a result of t
nonlinear gradient terms, the wave traveling down the rig
of the solution is traveling slightly faster than the wav
traveling down the left of the solution. Therefore, ther
are now two distinct frequencies—the frequency of th
wave traveling down the right side of the solution an
the frequency of the wave traveling down the left. Th
difference between these two frequencies corresponds
the waves on opposite sides of the solution oscillatin
in and out of phase with one another. We note that t
solution is also traveling slowly to the right.

For larger values ofl and m, the difference between
the frequencies of the right and left waves will becom
larger. This can be seen by comparing Fig. 1(c), whe
l ­ m ­ 0.03 1 0.03i, with Fig. 1(b), noting that the
right and left waves are more out of phase in Fig. 1(
as compared to Fig. 1(b) and recalling that the code w
run for 105 iterations with the nonlinear gradient term
present prior to plotting.

In addition to the frequency difference, referring t
Fig. 1(c) it is also seen that the wave traveling dow
the right of the solution is larger in amplitude than tha
traveling down the left. For larger nonlinear gradien
terms, as seen in Fig. 1(d) (l ­ m ­ 0.05 1 0.05i) and
Fig. 1(e) (l ­ m ­ 0.07 1 0.07i), waves are seen to
travel only down the right side of the solution. Not
also that the solutions travel at a larger velocity to th
right for larger nonlinear gradient terms, recalling that th
solutions were centered aboutx ­ 50, 105 iterations prior
to plotting.

To characterize the time evolution of the solutions, w
plot the area under the modulus,S ­

R
dxjAj, as a function

of time. We note that this quantity is independent o
the velocity at which the solution travels, i.e., Galilea
invariant. Figure 2 shows a plot ofSstd for l ­ m ­
0.03 1 0.03i. These are the same parameters as used
Fig. 1(c). The slow “beating” frequency is equal to th
difference between the breathing frequencies of the rig
and left sides of the solution and corresponds to oppos
sides of the solution breathing in and out of phase with o
another.

Plotting Sstd for the parameter values of Fig. 1(d
(l ­ m ­ 0.05 1 0.05i), we find that this solution is
period 2; i.e., it takes two oscillations for one comple
period. Figure 3 shows a plot ofSstd for l ­ m ­
0.06 1 0.06i. It is seen that this solution is period
4. Plotting Sstd for l ­ m ­ 0.064 1 0.064i, we find
a period-8 solution. As a function of the magnitud
of the coefficients of the nonlinear gradient terms, th
system appears to be undergoing a period-doubling ro
to chaos. In fact, the space-time plot in Fig. 1(e) look
3858
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FIG. 2. Time series of the area under the modulus of t
breathing DDL solution plotted in Fig. 1(c). Note the beatin
caused by the left and right sides breathing in and out of ph
with one another.

like it could be chaotic. Figure 4(a) shows a plot ofSstd
for these parameter values (l ­ m ­ 0.07 1 0.07i). To
establish that the solution is chaotic, we plot lnsz d as a
function of time, wherez ­ s

R
dxjdAj2d1y2, dA being

the linear perturbation aboutA [16]. Figure 4(b) shows
a plot of lnfz stdg. It is seen that nearby solutions separa
exponentially on the average and that, therefore,
solution is indeed chaotic. For sufficiently large value
of l andm, e.g.,l ­ m ­ 0.08 1 0.08i, the waves that
are shed from the right side of the solution become lar
enough so that they no longer decay, but instead gro
and the solution no longer remains localized but quick
spreads to the right.

We have seen that small nonlinear gradient terms c
dramatically alter a monoperiodic solution, causing o
posite sides of the solution to breathe at different fr
quencies or causing the solution to become periodn
or chaotic. An interesting question is whether nonlin
ear gradient terms can have similarly significant effec
on fixed-shape solutions. We indeed find this to be t
case; a fixed shape solution in the absence of nonlin
gradient terms can become monoperiodic, periodn, or
even chaotic in the presence of nonlinear gradient term
For example, takinggr ­ 1.2 instead ofgr ­ 1.0, we

FIG. 3. Time series of the area under the modulus forl ­
m ­ 0.06 1 0.06i. The solution is period 4.
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FIG. 4. Time series for the breathing DDL solution plotte
in Fig. 1(e). (a) Time series of the area under the modulu
(b) Time series of the logarithm of the separation betwe
nearby states. The solution is clearly seen to be chaotic.

find a fixed shape forl ­ m ­ 0 1 0i, period 1 for
l ­ m ­ 0.10 1 0.10i, period 2 for l ­ m ­ 0.15 1

0.15i, period 4 forl ­ m ­ 0.16 1 0.16i, and chaos for
l ­ m ­ 0.164 1 0.164i. We note that these breathing
solutions breathe only on the right side. Again we fin
that for sufficiently large nonlinear gradient terms, e.g
l ­ m ­ 0.167 1 0.167i, the solution no longer remains
localized but quickly spreads to the right. Thus it emerg
that the features of the fixed shape solutions, as well
those of the breathing localized solutions, are changed s
stantially with increasing magnitude of the nonlinear gr
dient contributions.

In conclusion, we have studied the effect of nonline
gradient terms on breathing DDL solutions for the quint
CGL equation. This is important since nonlinear gradie
terms appear at the same order as the quintic term. We fi
that even small nonlinear gradient terms can dramatica
alter the behavior of the solution, causing opposite sides
an otherwise monoperiodic DDL solution to breathe at d
ferent frequencies or causing the solution to become per
n or chaotic, causing an otherwise symmetrically breathi
solution to breathe on only one side, or causing an oth
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wise fixed-shape DDL solution to become monoperiod
periodn, or chaotic. We emphasize that the behavior an
lyzed here is generic and not restricted to a small parame
regime. It will be interesting to check the predictions e
perimentally. Candidates include binary fluid convectio
and electroconvection in nematic liquid crystals.
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