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Spinodal Decomposition of Binary Mixtures in Uniform Shear Flow
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The spinodal decomposition of binary mixtures in uniform shear flow is studied in the context of the
time-dependent Ginzburg-Landau equation, approximated at one-loop order. We show that the structure
factor obeys a generalized dynamical scaling with different growth expoagnts 5/4 anda, = 1/4
in the flow and in the shear directions, respectively. The excess visdositgfter reaching a maximum
relaxes to zero ag 2t %2, y being the shear rateAn and other observables exhibit log-time periodic
oscillations which can be interpreted as due to a growth mechanism where stretching and breakup of
domains cyclically occur. [S0031-9007(98)07467-5]

PACS numbers: 47.20.Hw, 05.70.Ln, 83.50.Ax

The kinetics of the growth of ordered phases as a disomility; a < 0 in the ordered phase. The Langevin equa-
dered system is quenched into a multiphase coexistend®n for the evolution of the system is
region has been extensively studied in the past years b - 5F
[1]. The main features of the process of phase separa- — + V(pd) =TV — + g, (2
tion are well understood. Typically, domains of the or- ot O
dered phases grow with the laR(r) ~ ¢, whereR(r)  where n is a Gaussian stochastic field representing the
is a measure of the average size of domains. The pagffects of the temperature in the fluid. The fluctuation-
correlation functionC(r, r) verifies asymptotically a dy- dissipation theorem requires that
namical scaling law according to which it can be writ- > =1 26(2 _ 2/ o
ten asC(r,t) = f(r/R), wheref(x) is a scaling function. (7, ), 1)) 2ITVZS(F = 78t = 1), (3)

In particular, in binary liquids, the existence of variouswhere I is a mobility coefficient,T is the temperature
regimes characterized by different growth exponenis  of the fluid, and the symba{---) denotes the ensemble
well established [2]. In this Letter we study the processaverage. We consider the simplest shear flow with
of phase separation in a binary mixture subject to a univelocity profile given by

form shear flow. When a shear flow is applied to the sys- 5= yye 4)
tem, the growing domains are affected by the flow and the o
time evolution is substantially different from that of ordi- wherey is the spatially homogeneous shear rate [3] and
nary spinodal decomposition [3]. The scaling behavior ofe, is a unit vector in the flow direction.

such a system is not clear. Here we show the existence In the process of phase separation the initial configu-
of a scaling theory with different growth exponents for ration of ¢ is a high temperature disordered state and
the flow and the other directions. For long times, in thethe evolution of the system is studied in model (2) with
scaling regime, the observables are modulatetbgytime a < 0. It is well known that in this case, also without
periodic oscillations which can be related to a mechanisnthe velocity term, the model (2) cannot be solved exactly
of storing and dissipation of elastic energy. The behaviof2]. In this Letter we deal with the nonlinear term
of the excess viscosity and other rheological indicators reof Eq. (2) in the one-loop approximation [4,5]. In this
flects this mechanism and is also calculated. approximation the termp? appearing in the derivative

The problem is addressed in the context of the timed F /8¢ is linearized agp?)¢. Itis also called the large-
dependent Ginzburg-Landau equation for a diffusive field: limit. Indeed, in the case of a vector field with
coupled with an external velocity field [3]. The binary n-components the termig?)¢ reduces to{¢?)¢ in the
mixture is described by the equilibrium free-energy n — o limit [6]. The validity and the limitations of this

b approximation, due to the acquired vectorial character of

Flo} = f ddx{i o+ — oty K |V¢|2}, (1) the order parameter, are discussed in literature [7].

2 4 2 Before presenting our results it is useful to summarize
where ¢ is the order parameter describing the concenthe known behavior of a phase separating mixture un-
tration difference between the two components. Thealer shear flow. The shear induces strong deformations
parameter$, « are strictly positive in order to ensure sta- of the bicontinuous pattern appearing after the quench
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[3,8,9]. When the shear is strong enough stringlike do- ~t=0.05 yt=1
mains have been observed to extend macroscopically in
the direction of the flow [10]. In experiments a value
Aa = a, — a, in the ranged.8-1 for the difference of
the growth exponents in the flow and in the shear direc-
tions is measured [11,12]. Two dimensional molecular
dynamic simulations find a slightly smaller value [13].
We are not aware of any existing theory for the value
of a,,@,. The shear also induces a peculiar rheological
behavior. The breakup of the stretched domains liber-
ates an energy which gives rise to an increased viscos- .,
ity An [14,15]. Experiments and simulations show that 3000
the excess viscosithn reaches a maximum at= 1, 2000
and then relaxes to smaller values. The maximum of the 1000
excess viscosity is expected to occur at a fixedand ©
to scale asAn(r,) ~ y~” [8,11]. Simple scaling argu-

ments predicv = 2/3 [8], but different values have been £ 1. The structure factor at consecutive times for=
reported [11]. 0.001. Thek, coordinate is on the horizontal axis and assumes

We study the time evolution of the structure factor ~ positive values on the right of the pictures, while the is
positive towards the upper part of the coordinate plane. The

Ck,1) = (o (k, o (—k, 1)), (5)  support of the functiorC (k, r) shrinks towards the origin. For a

> . . N better view ofC(lz, 1), in the last two pictures, we have enlarged
where(k, 1) is the Fourier transform of the field(x,7) gifferently the scales on the, and k, axes. The actual angle

solution of Eg. (2). The excess viscosity is defined iNyepyeen the direction of the foils @f(k,7) and thek, axes is
terms ofC(k, t) by 0 = 21° andé = 13° in the last two pictures.
_ dk .
an =" [ T kcdn. © ﬁ
Ikl<q in the edge of the volcano develop with time urgilk, )
where g is a phenomenological cutoff. In the one-loop becomes separated into two distinct foilspyas= 1. This
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approximation the dynamical equation fﬁ(fc, 1) is explains the disappearance of the peak corresponding to
aC (i 0C(i the major axis of the ellipse observed in experiments
Cn) _ vy 1) _ —K[k> + S(r) — 1] [12]. During this evolution the support @ (k, r) shrinks
of dky towards the origin with different scales for the shear and

X C(k,t) + k*°T, (7) the flow directions. At later times in each foil 61(7(, 1)
two peaks can be distinguished and the relative heights
of these peaks change in time. In Fig. 1yat= 6 the
dk - peak characterized bjk,| > |k,| dominates, while the
§@) = f|];|< 2m)P Clk,1). (8)  other peak with|k,| = [k,| prevails successively. The
7 o oscillations between the two peaks have been observed to
The parameter$’, a, b, and« have been eliminated by continue in time and characterize the steady state.
a redefinition of the time, space, and field scales. We A quantitative measure of the size of do-
solve Eq. (7) numerically in two dimensions. A first- mains is given by R,(f) = 1//{k2), where (k2) =
order Euler scheme is implemented with an gdaptive dlszC(lz,t)/fdlzc(lz, 1), and the same for the other
mesh, due to the peaked character of the solution. Th irectfons. The evolution oR,, R, is plotted in Fig. 2.

initial condition chosen for the functiorC(k,0) is @  The growth exponents in the shear and in the flow direc-
cqnstant value, WhICh' correspoqu to the dlgordered stajiyn area, = 1/4 anda, = 5/4. The valuea, = 1/4
with 7 = . The typical evolution ofC(k,?) is shown s the same as in models with a vectorial conserved
in Fig. 1 for the particular cas& = 0 andy = 0.001.  order parameter without shear; this corresponds to the
At the beginning the functiorC(k,r) evolves forming a Lifshitz-Slyozov exponentr = 1/3 for scalar fields. A
circular volcano structure, as usual in the case withougrowth exponentr, unaffected by the presence of shear
shear. This is the early-time regime when well-defineds also measured in experiments [11]. We see in Fig. 2
domains are forming. Then shear-induced anjsotropmat the amplitudes oR.,R, oscillate periodically in
effects become evident in the elliptical shapecdk,z)  logarithmic time. This behavior can be related to the
and in the profile of the edge of the volcano, as can bescillations of the peaks of (k,¢) previously observed
seen in Fig. 1 atyr = 0.05. Similar elliptical patterns and will be discussed later in relation to the behavior of
of C(k,t) are usually observed in experiments. The dipghe excess viscosity.

where
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In order to study analytically the behavior of the modelthe space directions with= 1 along the flow. We also
for arbitrary space dimensionality we resort to a scaling allow an explicit time dependence of the structure factor
ansatz [16]. For the structure factor we then assume  through 7(y¢); notice that, sinceC(k,t) scales as the

R d R domains volume below the critical temperature must
Clk,t) = ]_[R,-(t)F[X,T(yt)] (9) not introduce any further algebraic time dependence in
i=1 C(k,r). We then argue thak is a periodic function of

for long times, where¥ is a vector of components; = 7 as suggested by the oscillations observed numerically

k:R:(1), F is a scaling function and the subscriplabels in the physical observables. Inserting this formagk, ¢)
| into Eq. (7) we obtain

yX\Fy = RiR;! , (10)

d d
FOF /T + Z|:R,.1Ri(F + X;F;) + R,.fo(z R2X2 — 1 + S)F:|
i=1 k=1

whereF; = dF/dX; and a dot means a time derivative. other if rescaled adn — y'/2Axn. A similar analysis
Since the left-hand side of Eq. (10) scales :ds one can be done for the normal stress which is defined as
has the solutionR;(r) ~ y®*, 7(yt) ~ logyt, S(t) = AN, = f%[k% — k2]C(k, 1) and scales as !/2,

L=t with §; =1, & =0 (i =2.d), a) =5/4, The behavior ofAn at all times, calculated by the
aj =1/4 (i =2,d), and g =1/2. In this way we pymerical expression af(k, 1), is shown in Fig. 3 for the
recover the growth exponents previously found. Actuallycasey — 0.001. An reaches a maximum att = 3.5,

the exponents found numerically are slightly smaller therhen it decreases with the power law?/2 modulated by
the predicted powers due to logarithmic corrections [16]. 5 periodic oscillation in logarithmic time. A comparison

~ We now turn to the analysis of the rheological behavyith Fig. 2 shows that the asymptotic scaling regime starts
ior of the mixture and, in particular, of the excess viscosityyhen the excess viscosity reaches its maximum-atz,,,

The previous theoretical arguments can be used to establigl found also in experiments [11]. The occurrence of the
the scaling properties ai 7. Inislertlngit]he fo[rP (9) Into predicted scaling ok 7 with y is verified numerically with

Eq. (6), we obtainAn(r) ~ y "Ri(t)”_Rx(1) é’(’f_) ~  great accuracy for long times. However, singés a time

y 232g(r), where g(1) = [X\X,F[X,7(1)]dX is @ at the onset of scaling, an effective exponent somewhat
periodic function of 7(yt). Therefore, in the scaling larger thenl /2, (v = 0.6) is measured foA7(t,,), due to
regime, for each value ofyz, the functionsAn cor-  preasymptotic corrections.

responding to different values of collapse on each  The periodic oscillations ofA7 are due to the com-

petition between the different peaks 6fk,t). A local
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FIG. 2. The average size of domains in thandy directions
as a function of the straiytz. The two straight lines have FIG. 3. The excess viscosity as a function of the strain
slopes5/4 and 1/4. The slope of the straight line is3/2.
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maximum of An occurs for a situation similar to that of
Fig. 1 atyr = 6, when the peak withk,| > |k.| domi-

edited by C. Domb and J.L. Lebowitz (Academic, New
York, 1983), Vol. 8.

nates and the difference between the height of the twol2] A. J. Bray, Adv. Phys43, 357 (1994).

peaks is maximal. The minima d» correspond to the
opposite situation, as in Fig. 1 at = 10. The oscilla-
tions can be explained in the following way: The elon-
gation of the domains in the flow direction produces an
increase ofAn. Stretched domains are characterized by
R, < R, and, therefore, are represented by the peak of

C(l;,t) with |k, | > |k,|, which dominates in this time
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New York, 1976), Vol. 6.

domain. As time passes, however, domains are deformed?] C. Castellano, F. Corberi, and M. Zannetti, Phys. Rev. E

to such an extent that they start to burst, dissipating the
stored energy. As a consequende; decreases and more

isotropic domains are formed. These are characterized b)fg]

similar values ofR, and R, and correspond to the other

peak ofC(lz, t). This peak starts growing faster than the
other until it prevails. Later on, a minimum a7 is

56, 4973 (1997).

[8] T. Ohta, H. Nozaki, and M. Doi, Phys. Lett. 45 304

(1990); J. Chem. Phy®3, 2664 (1990).
D. H. Rothman, Europhys. Leti4, 337 (1991).

[10] T. Hashimoto, K. Matsuzaka, E. Moses, and A. Onuki,

Phys. Rev. Lett74, 126 (1995).

' ' _ [11] J. Lauger, C. Laubner, and W. Gronski, Phys. Rev. Lett.
observed. Then elongation occurs again and this mecha-

75, 3576 (1995).

nism reproduces periodically in time with a characteristic{12] C.K. Chan, F. Perrot, and D. Beysens, Phys. Rev3A

frequency. To our knowledge, the existence of this peri-
odic behavior has never been discussed before [17].

In conclusion, we have studied the phase separation of )
[14] A. Onuki, Phys. Rev. A35, 5149 (1987).

e[15] A.H. Krall, J.V. Sengers, and K. Hamano, Phys. Rev.

[16]

a binary mixture in a uniform shear flow. Dynamical
scaling holds for this system. Domains grow along th
flow as R,(r) ~ >/* while in the other directions the
exponent of the diffusive growth is the same as withou
shear. The differencAa between the growth exponents
is 1, a result which is consistent with real experiments.
The excess viscosity after the maximum relaxes to zero
asy 2732, The amplitudes of physical quantities are
decorated by oscillation periodic in logarithmic time. It
would be interesting to study these phenomena in direct
simulation of the Langevin equation and also to see the
effects of hydrodynamics on this system.
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It is well known [A. Coniglio, P. Ruggiero, and
M. Zannetti, Phys. Rev. 50, 1046 (1994)] that in the
present approximation simple scaling is not obeyed for
v =0, and C(k, 1), instead of scaling with the domain
volume as in Eq. (9), shows a continuum spectrum of
k-dependent exponents (multiscaling). However, standard
scaling is the leading order approximation in the region
surrounding the peak of the structure factor. With a
simple scaling ansatz, therefore, one obtains the correct
value of the growth exponents (apart from logarithmic
corrections) because the peak contribution dominates the
momentum integrals that define the physical observables.
Since presently we do not have an exact solution for
v # 0, multiscaling cannot be, in principle, ruled out
but the same consideration applies in the peak regions.
Furthermore, simple scaling is expected when the present
approximation is released [A.J. Bray and K. Humayun,
Phys. Rev. Lett68, 1559 (1992)].

A logarithmic time periodic release of elastic energy
has also been observed in models for the propagation
of fractures in materials subject to an external strain
[M. Sahimi and S. Arbabi, Phys. Rev. Letf7, 3689
(1996)]. See also D. Sornette, Phys. R29y7, 239 (1998).
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