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Simulation Evidence of Critical Behavior of Isotropic-Nematic Phase Transition
in a Porous Medium
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We investigate the phase transition from an isotropic to a nematic liquid crystal embedded in a
porous network. We model this situation by a simple lattice spin model with a field of finite strength
D, but random orientation at a fractign of randomly selected lattice sites. Monte Carlo simulations
show the existence of a nematic phase wjthasi-long-range ordefor a largeD. The isotropic—
quasi-long-range nematic transition line hasieritical point. [S0031-9007(98)06536-3]

PACS numbers: 64.70.Md

Liquid crystalline substances, consisting of anisotropid7] predicts a first order I-N transition at a nonzero
molecules, in randomly interconnected networks of poresemperature for alp # 1, but the transition temperature
[1], have drawn growing interest recently because of theidecreases with increasing. Maritan et al.[7] have
importance in technological applications and from the fun-also carried out Monte Carlo simulations for the three-
damental point of view. Such systems raise fundamenstate Potts model with random orienting field of infinite
tal issues, such as the effect of finite size and quenchestrength. They observe in general that the specific-heat
disorder on phase transitions. The simplest liquid cryspeak broadens and decreases in magnitugeiasreases,
talline state is the nematic phase where the molecules feature also found in experiment [4]. Their simulations
exhibit only orientational long-range order and no transseem to indicate that I-N transition is possible so far
lational long-range order. The isotropic (with neither ori-as p = 0.5, which is somewhat below the percolation
entational nor translational long-range order) to nemati¢hreshold,p.. However, we note that the existence of an
(I-N) transition of thermotropic liquid crystals embedded I-N transition for lowp is not clear unless the simulations
in porous networks has been characterized using variousme carried out systematically for larger system sizes.
experimental techniques [2,3]. The liquid crystal formingMoreover, the simulations are carried out for the discrete
compound8CB undergoes a weakly first order I-N transi- three-state Potts model with an infinitely strong orienting
tion at313 Kin the bulk. A detailed heat capacity study of field. These considerations give an obvious impetus to
Wu et al. [4] on 8CB in silica aerogel indicates first order carry out detailed studies of the continuous orientation
I-N coexistence for low aerogel density, but for higher denLL model for a finite strength random orienting field.
sities the specific-heat peak becomes rounder suggestitig a recent study in this direction, Cleavet al.[9]
no I-N transition at all. On the other hartlD.8, another have carried out a Landau—de Gennes type of mean field
liquid crystalline compound that shows a weakly first orderanalysis, incorporating the effect of a random orienting
bulk I-N transition, does not exhibit any I-N phase coex-field, which shows that the I-N transition remains first
istence in silica aerogel even for very low aerogel densityorder for low strength of the random orienting field
[5]. Furthermore, the lowering of the peak position of the[10]. They compare their results with their Monte Carlo
specific heat is more pronounced than 8&B case [4]. simulation studies on the LL model with the random

Theoretical modeling of such phenomena is difficult.orienting field at all lattice sites for different system sizes
The silica aerogels considered in the experiments of9]. Their simulations, however, seem to suggest no I-N
Ref. [4,5] consist of a random network of silica backbonedransition at a point where their mean field analysis
in a multiply connected void space. The effect of such gredicts a first order I-N transition. Their results raise
medium has been described by a random orienting fieltmportant questions. For instance, is the bulk first order
following the ideas of de Gennes [6]. Maritagt al. transition retained for a low strength of the random field
[7] have carried out mean field analysis of both theand destroyed beyond a critical strength, thus leading to
discrete three-state Potts model and the Lebwohl-Lashex nontrivial critical behavior, or is it destroyed for all
(LL) model [8], the simplest lattice spin model used to strength of the random field?
describe the weakly first order bulk I-N transition, where With this backdrop we carry out Monte Carlo simula-
the spins can have arbitrary orientations and interact onljion studies for the LL model systematically for different
with nearest neighbors. In both cases they consider ap in a finite random orienting field. Our studies differ
infinitely strong field oriented randomly on a fractipnof ~ from other recent simulation studies by Bellwti al. [11]
the lattice sites, wherg may be interpreted as the fraction where the authors consider the effect of confinement and
of liquid crystalline molecules directly affected by the different anchoring conditions in the LL model. In particu-
randomness of the pore geometry [4]. Their analysidar, we analyze the system size dependence of different
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thermodynamic quantities at the temperature where the ne- For the bulk casel§ = 0), ¢y and y show a peak
matic ordering sets in. Our analysis brings out that venat kzT/J = 1.12, and ¢y and y™* scale asL’®,
low strength of the random orienting field cannot destroyshown in Fig. 1(a), confirming a first order transition in
nematic order, resulting in a first order I-N transition for agreement with previous works [14]. Next we turn on
all values ofp, includingp = 1. For large strength, how- the random orienting field of low field strengtl (J =
ever, the nematic order is replaced bguasi-long-range 0.1). The scaling exponents=(3) of cy™* and y™m*
nematic (QLRN) order. The transition from isotropic to [Fig. 1(b)] show a first order transition fgr = 1.0, and
QLRN (I-QLRN) is first order for lowp and continuous for lower p as well. Such is the case fgr = 0.05
for large p indicating the presence of taicritical point ~ with D/J = 1.0 [Fig. 1(c)]. For p =1 at the same
(TCP) on the transition line. D/J, however,cy (and y), generated by the histogram
In our simulations the Hamiltonian is given W =  reweighting technique, shown in Fig. 2(a), reveals much
—J Xy P2(cosy;j) — DY Py(n; - 5;). Thefirsttermin broader and reduced peaks without any sensible scaling.
the Hamiltonian is the usual LL coupling of strengtibe-  Neverthelessy; shows a clear minimum [Fig. 2(b)] in
tween the nearest neighbor spins. Heggis the angle this case and§ — VMM scales with an exponent.g)
between two nearest neighbor spingnds; of unit mag-  |ess thand = 3, typical of a continuous transition. The
nitude, andP, is the second Legendre polynomial. The same quantity scales with an exponentd = 3 for
second term in the Hamiltonian describes the effect of thﬂ]e first order cases. Fina”y, we consider the case of
Igcgl random orienting fieldD is the strength of the field, p/7 = 10. The ¢, and y peaks are featureless here
n; is its direction WhICh is a random vector over a unity,q But% — V" sill scales with exponents (ranging
sphere, a_nd the prime over the second summation indicat m 2.8-2.9) systematically less thad = 3, implying
that the field is distributed over a randomly selected fracyqniinyous transition fop up t00.2. For p = 0.25 we
tion p of lattice points. We take a simple cubic lattice with ¢ 4, get any sizable even down tckgT/J = 0.5 [15].
periodic boundary conditions in all three directions. The
spins are updated by means of standard Metropolis algo-
rithm. For agiverD/J andp, we start from a random ini-

tial configuration at a higltgT/J. The final equilibrium —~ 100

configuration is used as the initial configuration for the next &

lower temperature. Typically 100 000 steps are discarded E 80 /
before any quantity of interest is calculated. The equili- X 60 |

bration is monitored by the enerdy and nematic scalar > 4

order parametef [defined by the largest eigenvalue of § 0 (a)
the nematic tensa@ = Y; 3(3x, x5 — 84.5), wherefx’} o 20 L
are the spin components at thih lattice site]. We cal-

culate the equilibrium fluctuation in energy and nematic

scalar order parameter which are related to the specific —~ 100 L

heatcy = v((E — (E))?)and the order parameter suscep- > 80 <>/®/<>
tibility y = %((S — (S))?), respectively. Here the angu- E

lar brackets denote the configuration averaging over 10 000 R 60 -

configurations sampled every 10 MC steps during the pro- x?, 40 - b
duction runs. We compute, and y for differentkzT/J g | | | (b)
to locate approximately the peak position @f and y. g 20

We repeat the simulation at the approximate peak position

for five different realizations of the random orienting field.

The two-dimensional histogram @& and S is calculated ~ 100

by averaging over these realizations. Then we apply a his- x& 80 L /
togram reweighting technigue [12] to locate the a}nd g

x peaks more precisely and to calculdte = 1 — % ff 60 -

To investigate the thermodynamic transition between dif- XS 40 - (c)
ferent possible phases, we check the behavior of the peaks g | | |

of cy andy (cy™* and y™*, respectively) with increasing o 20 5 10 15 20 25
system sizeL. In case of true thermodynamic transitions, a3

they should scale witl.. V; shows a minimumy;"" at 10 L

the transition, which has a nice scaling property [13], for )
i g property [13] FIG. 1. ¢y™ and y™>*, shown by the open diamonds and

2 . min —d . ..

3 ,‘%, /sg:ales as . for a first order ”"?‘F‘S'“O”v and open triangles, respectively, for (a) bulk case, gby 1.0,
asL «/7) for a continuous phase transition, where D/J = 0.1, and (c)p = 0.05, D/J = 1.0 as functions ofL’.
andv are critical exponents antlis the dimensionality of The solid lines are the best fitted lines. These cases clearly
the system. correspond to first order phase transition.
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50 a slow (algebraic) decay of the nematic order [16],
0666 L ' i.e., a QLRN order. FoD/J =10,p = 0.25, g(r) is

BRRE TR short ranged [Fig. 3(a)] even for a very low temperature
s 1 I~ (ksT/J = 0.5).
30 | 0.665 The phase diagram, suggested by our findings on the
@) (b) possible phases and the scaling properties, is illustrated
in Fig. 4. We consider thé&zT/J, p) plane for a given
D/J for convenience. Fap/J = 0.1, there is a first order
I-N phase boundary [Fig. 4(a)]. Fdv»/J = 1.0, the or-
FIG. 2. (a)cy and (b)V, as functions okp7/J for p = 1.0 dered phase is nematic for very Igwbut is replaced by
and D/J = 1.0 for different system sizes (solid line fat =  QLRN order asp increases. The transition I-QLRN is
20, dashed line fod. = 24, and dotted line for. = 28). The ot grder for lowp and continuous for largg, implying
lack of scaling ofcy is evident. y shows similar behavior. The - .

. : min 2 e : the existence of a TCP [Fig. 4(b)] on the phase bound-
minimum of V, is noteworthy, and/; " — 3 with increasing . . .
L with a well-defined scaling. : ary. A possible boundary between nematic and QLRN is
shown by dots but has not been numerically tracked down
here. Forlargeb/J = 10, I-QLRN transition is continu-
ous over0.05 = p = 0.2. The transition temperature de-
creases linearly (slope —1.6) with p. We, however, do
not rule out the possibility of first order I-N and I-QLRN

20 ‘ : 0.664 * :
1.098 1.099 1.100 1.101 1.097 1.099 1.101
KT/ ke T/

Next we examine the orientational pair correlation
function, g(r) [defined by (& Py(s; - 5;)0(ri; —
r)/ >, ;8(ri; — r)), wherer;; is the minimum image
separation of two spins] as a function ef shown in
Fig. 3(a). Clearlyg(r) is short ranged for high tem-

perature (isotropic) phases. But the low temperature 14
(kgT/J = 1) phases forD/J = 0.1 and D/J = 1.0 12 L Isotropic
(with p = 1.0 for both cases) show remarkably different !
behavior. We fit our data with g(r) ~ a/r'~7 + b = 10 F Mo
dependence. Note that~ S? for larger in the thermo- F 0.8 B B
dynamic limit. This makes it worthwhile to chesk as a = QLRN N
function of L as well. Excluding very short-range contri- 0.6 ‘
butions tog(r) from the nearest neighbors, we gget= 1 0.4 I (&)
for D/J = 0.1, i.e., a flatg(r) with a finite nonzerob 0.00 0.10 0.20 0.30
and observe thai? = 0.16, independent of., consistent 1.15 :
with the finiteb. This indicates a true long-range nematic 112 & Isotropic
order. For lowD/J, the elastic cost of reorientation of ' f X g--4
randomly oriented nematic domains still wins over the =2 109 g |
disordering effects to set a true long-range nematic order. F 1.06 - g
In the second case, we obtain= 0.82, and S? agrees -~ - ) QLRN
well with a 1/L%18 decay as shown in Fig. 3(b), implying 103 r= (b)
1.00 i
1 -1.78 b
(@) d 1.14
Sos | . 180 113 | Isotropic
-1.82 o 2 i
0 = 112 b—o—6—0—9
A Y L
% 5 10 Y T Sy 1.11 Nematic
r 1L L a
FIG. 3. (a)g(r) vs r plot for different phases: isotropic 1.10 P ——
kgT/J = 1.15,p = 1.0,D/J = 1.0 (solid line), nematic 000204060810
kgT/J = 1.0,p = 1.0,D/J = 0.1 (dashed line), QLRN p

kgT/J = 1.0,p = 1.0,D/J = 1.0 (dotted line), andkpT/

J =05,p=025D/J =10 (dot-dashed line). The solid FIG. 4. Phase diagram ikz7/J — p plane for (a)D/J =
horizontal line corresponds té = 0.16 (obtained from the 0.1, (b) D/J = 1.0, and (c)D/J = 10. The circles joined by
order parameter estimation in the nematic phase). The steadylid line correspond to first order transition and squares joined
g(r) for large r in the nematic order and its slow decay in by dashed line show continuous transition [in (c), however, we
the QLRN order are clear when compared with respect to thishow the best fitted line]. The dotted line in (b) is a possible
line. The correlation length in the isotropic phase exceeds thboundary between nematic and QLRN phases. The cross is an
mean spacing of the random sites. (b) Log-Kfgvs 1/L plot  approximate location of the TCP. The vertical dot-dashed line
for D/J = 1.0,p = 1.0, andkgT /J = 1.0: the circles are the in (c) indicates the boundary where the low temperature phases
simulated points and the solid line show£ 2"!® dependence. are isotropic. Note the difference in the horizontal scale in (c).

387



VOLUME 81, NUMBER 2 PHYSICAL REVIEW LETTERS 13JLy 1998

transitions for very lowp (p < 0.05), not scanned in our experiments. We hope to report in a future publication
work. Forp = 0.25, the long-range order is completely on the interesting transition between nematic and QLRN
destroyed even at loizT/J. The general topology of order. Most importantly, our work calls for a thorough
the phase diagram kg7 /J — p — D/J space would be theoretical understanding of the phase diagram, more
as follows. The region itkgT/J, p) over which the low specifically the presence of QLRN order. We believe that
temperature nematic phase occurs shrinks with increasirgimilar scaling analysis would be pertinent to other classes
D/J, giving way to low temperature QLRN order. The of problems related to porous medium, for instance, in the
tricritical line that occurs on the I-QLRN phase boundarycontext of nematic to smectic transition and super-fluid
would shift to low ¢zT/J, p) with increasingD/J. It  transition of helium in silica aerogel.
could be interesting to compare our phase diagram to the The author thanks J. Polson and B. Mulder for helpful
magnetic cases. In spite of the celebrated Imri and Maliscussions; D. Frenkel, B. Mulder, B. Jérbme, and
argument [17], which says that below four dimensions the). Polson for critically reading the manuscript; P.I.C.
ordered state is unstable to an arbitrarily weak random fiel@eixeira and T.J. Sluckin for drawing attention to many
that couples linearly with order parameter of continuousof the contemporary works; and Srabani Chakrabarti for
symmetry, there is mounting evidence of quasi-long-rangéelpful suggestions while preparing the manuscript. This
order in magnetic models, namely, tki& model [18] and  work is part of the research program of the “Stichting voor
the Heisenberg model [19] in random field, presumablyFundamenteel Onderzoek der Materie (FOM),” which
due to nonperturbative effects [18] not taken care of in thés financially supported by the “Nederlandse organisatie
Imri and Ma argument. Low temperature quasi-long-rangeoor Wetenschappelijk Onderzoek (NWO).”
order and a TCP on the isotropie quasi-long-range or-
dered phase transition line, analogous to what we find here,
have been reported recently [19] on a discretized version of1] See inLiquid Crystals in Complex Geometriesglited by
the Heisenberg model in an infinitely strong random field. G.P. Crawford and SZumer (Taylor & Francis, London,
However, unlike Ref. [19], our work is a clear evidence 1996).
of the violation of the Imri and Ma argument, exhibiting [2] X. Wu, W.I. Goldburg, M. X. Liu, and J.Z. Xue, Phys.
quasi-long range, where the full rotational symmetry of  Rev. Lett.69, 470 (1992).
the Hamiltonian is retained. We find enhanced stability [3] T- Bellini et al., Phys. Rev. Lett69, 788 (1992).
of the quasi-long-range order compared to Ref. [19]. Es-[4] L. Wu etal., Phys. Rev. 51, 2157 (1995).
pecially for largeD/J we do not observe any true long- [°! Z: Kutnjak and C.W. Garland, Phys. Rev. &5, 488

: - (1997).
range order forp as low as0.05. Another interesting

. - . . [6] P.G. de Gennes, J. Chem. Phg8, 6469 (1984).
difference is that in contrast to Ref. [19], we get first order [7] Amos Maritanet al., Phys. Rev. Lett72, 4113 (1994):

tr_ansmon for lowp, whlch is probably due to_ symmetry also inLiquid Crystals in Complex Geometriégef. [1]),
difference of the underlying pure models. Finally, a few p. 483.

words are worth regarding a possible mechanism behindg] pP. A. Lebwohl and G. Lasher, Phys. Rev.6A426 (1972).
QLRN order. We find that the correlation lengéh de- [9] D.J. Cleaveret al., in Liquid Crystals in Complex
fined viag(r) = e~"/¢, in the isotropic phase close to the GeometriedRef. [1]), p. 467.

transition [Fig. 3(a)] exceeds the mean spacing of the rarl10] The orQer of trarjsition for high field strength is not clear
dom sites. This observation, along with the presence of  from this analysis. Formally the authors get continuous
the quasi-long-range order itself [18,20], would mean that transition. .But they point out that this could .be an_amfact
the system is largely vortex-free. Hence, the Kosterlitz- of the choice of the variation parameters in their mean

Thouless mechanism which hinges on topological defectﬁll leeIgeamrz:\ilﬁlzl Phys. Rev. E54, 2647 (1996)

See”?S unlikely. Following the suggestion in Ref. [_19]’th,e[12] A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett.
quasi-long-range order found here could be a manifestation ~ g1 2635 (1988).

of replica symmetry breaking as in the context of the flux-[13] Murty S. S. Challeet al., Phys. Rev. B34, 1841 (1986).
lattice Hamiltonian in the presence of disorder [20] and thg14] z. zhang, M.J. Zuckermann, and O.G. Mouritsen, Mol.
Ising model in a random field [21]. Phys.80, 1195 (1993).

It is worthwhile to discuss the implications of our [15] We face an equilibration problem further dowpT'/J.
results to experimental situations. Our results strongly16] In the present study the system sizes used are too low to
suggest that the experimental phase coexistence observed estimate the decay exponent accurately. Similar decay is
on 8CB in silica aerogel [4] is essentially the one found in other works (see [9] and references therein).
between isotropic and QLRN phases. The absence (ﬁg] Y. Imri and S.K. Ma, Phys. Rev. Le85, 1399 (1975).

. L . ] Michel Gingras and David Huse, Phys. Rev5B, 15193
phase coexistence fafO.8 in silica aerogel [5] is not
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inconsistent with our strong field results. Although OUr[19] R. Fisch, Phys. Rev. B7, 269 (1998).

observations do not rule out the possibility of pure kineticoo] T. Giamarchi and P. Le Doussal, Phys. Rev5B 1242
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