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Smallest Focal Spot

Tasso R. M. Sales

Rochester Photonics Corporation, 330 Clay Road, Rochester, New York 14623
(Received 19 March 1998

According to diffraction theory the size of a focused spot is determined by wavelength, numerical
aperture, and aperture shape. But even when these parameters are fixed it is possible to achieve
super-resolution and reduce the spot size even further. It is shown, however, that the three-
dimensional spot size cannot be arbitrarily reduced. The minimum focal spot able to probe high-
resolution volumetric information in an optical system is about half of the diffraction-limited spot size.
[S0031-9007(98)07535-8]

PACS numbers: 42.25.Fx, 03.50.-z, 41.85.Ct

It is a well-known result that, because of diffraction, theresolution of volumetric image reconstruction is limited
image of a point object is no longer a point but spreads oveby the axial depth response [5].
a certain spatial volume whose exact shape depends on theAn unexplored form of super-resolution involves the
geometry of the aperture. Inthe case of a circular apertureimultaneous increase of resolution over all cross sections
the focal distribution has been well characterized [1]. Inof the focal spot, or three-dimensional super-resolution,
particular, on a transverse plane of the focal point one findsuch that the focal spot is confined within a spatial volume
the famous Airy disk pattern [1] described by a central sposmaller than the diffraction limit. This situation presents
surrounded by low-intensity diffraction rings or sidelobes.interest for confocal microscopy allowing higher lateral
Within the bounds of classical optics and disregardingesolution together with better depth discrimination. The
material or source limitations, the size of a focused beanguestion then becomes whether it is possible to reduce
can be continuously decreased by reducing the wavelengthe size of the focal spot indefinitely and thus increase
or increasing the numerical aperture of the objectiveresolution arbitrarily. We may think of a focused spot as
The remarkable fact, however, is that even when thesthe unit capable of extracting information from the sys-
parameters are fixed, the size of the focused spot can tem, much like the photon is the minimal unit of optical
further reduced by means of super-resolution techniquesadiation in quantum mechanics. Accordingly, we may
[2]. What happens is that the resolution improvementephrase our problem by asking what is the minimal unit
is typically limited to a single direction followed by a of classical information able to provide useful information
resolution loss in a complementary direction, together witthy means of a focused beam. We show that there is a
some reduction of brightness and increase of sidelobkwer bound to the focal confinement beyond the diffrac-
intensity. tion limit. This result implies a fundamental limitation on

There is an interest in super-resolution for both theoretithe ability of an optical system to detect high-resolution
cal and practical reasons. From a fundamental point ofolumetric information exceeding the diffraction-limited
view, super-resolution offers a strategy to overcome th@erformance. It should be noted that there are alternative
limits of diffraction and increase resolution without the approaches to increase resolution, such as near-field mi-
need to modify significantly the optical apparatus. From acroscopy [6]. But in this paper we consider only what
practical perspective, there are numerous applications thate call optical super-resolution, or when a focused beam
benefit from super-resolution including astronomy, imageconstitutes the probing stylus.
processing, confocal scanning microscopy, optical data For simplicity, we assume diffraction within Fresnel
storage, and laser printing. Depending on the particulaapproximation to describe the focusing by an aberration-
problem, it may be more interesting to obtain a superfree objective. In this case, the normalized complex field
resolved diffraction pattern in a specific direction. Foramplitudeys due to a point source located at infinity can
example, in optical data storage and laser printing it ide written in adimensional coordinates as [1]
desirable that the focal point possess a small transverse 1
dimension (leads to larger data density) but a larger axial ¥ (7, 6u) = 2[ T(r)Jo(nr)exp(—i2md ur?)r dr
response or focal depth (leads to better tolerances in 0
beam focusing). An example of such a focal spot can be (1)
generated by an annular aperture [3], which retains a largehere n is a normalized transverse coordinate defined
depth of focus over considerable distances and presendgs n = 2wNAp /A, with NA the numerical aperture of
a Bessel amplitude pattern on a transverse plane. It ihe systemp the wavelength, ang the actual transverse
also possible to obtain axial resolution improvement [4],coordinate. 6 . corresponds to the axial coordinate given
particularly for confocal scanning microscopy, where theby s = AzNA2?/2\, whereAz = z — f measures the
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axial displacement along the opticabxis from the focal 10.00
location f in actual units. The aperture coordinate 750 o1
is normalized to one. The functioff(r) defines the - gggz
complex transmission of the pupil, or pupil function, —
which assumes the valde = 1 in the diffraction limit.
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Super-resolution is achieved by controlling the phase# 000 0.005
and/or amplitude off'. In practice, the pupil function -2.50 0.004
is modified by means of filters [5] that can absorb part g gggg
of the incident beam energy or alter the phase of the "
wave front. Most super-resolution techniques are basel 0
on either amplitude- or phase-only filters. Examples %% " L " 0 1o 000 192 383 575 767
of amplitude-only filters include obscurations or sets of 1
annuli that block light propagation in selected regions of @

the pupil. A Bessel beam [3], for instance, is obtained  '®®
with an infinitely thin annulus. In this limit, the transverse 7.50 o5
spot size measured as the distance between the minim 500 08
on either side of the focal spot assumes a value eque
to 0.62 of the diffraction-limited spot size. L&ty and

G4 represent the spot size relative to the diffraction
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limit on the transverse focal plane and along the optical — 2%° g:
axis, respectively. Thus, one sees that the Bessel bear  -5.00 02
generates transverse super-resolution since it presen .7so 0.1
Gr = 0.62 < 1. However, along the axis the spot size 0
increases considerably leading to an extended focal deptt -7.67 675 -3.83 -1.92 000 192 383 575 7.67

as illustrated in Fig. 1. Of course, amplitude-only filters m
lead to an unavoidable loss of brightness. To ameliorate -
this situation and significantly increase the focal energyFIG. 1. (a) Three-dimensional diffraction pattern of a beam
one can make use of phase-only filters [7] that absorb nfpcused through a thin annulus compared to the (b) diffraction
light and offer comparable or better resolution with higher'™®
focal intensities. Nevertheless, the general behavior of
both types of filters is qualitatively similar. Therefore, to is such thatT is identically zero. Phase-only elements
preserve mathematical simplicity, we focus on amplitudecan achieve similar results with nonzero brightness, and
only pupil functions for most of this work by assuming estimates indicate [8] that the minimum spot size could
that the pupil is modified by a strictly positive amplitude go as low asG4, = 4/7* (about 0.41). However, such
transmission?. However, our results are in accordanceperformance has never been observed, and it seems likely
with those obtained with general forms of transmissionthat G4 = 0.5 is, indeed, the best that can be done in
including complex functions. terms of axial super-resolution with optical filters. Of
While it has been observed that there is no limit tocourse, we consider a well-defined focal spot with minima
the resolution improvement [2] along the transverse focabn either side assuming nearly zero value. If the focal
direction, it is still to be answered by how much the axialspot is blurred as a result of the pupil function one can
resolution can be increased. To address this questiofind the distance between minima to be less than 0.5. But
consider the axial field calculated at the first zero fromthen its effective size is much larger since the distance
the focal peak (in our adimensional units this value equal®etween minima no longer provides a meaningful measure

G). As aresult, Eq. (1) allows us to write of the spot size.
1 Considering that the lateral resolution can be continu-
fo T(J/u) cod27Gau) du — ously improved and that the axial resolution can at most

be doubled, the question becomes what results can be ob-

1 tained by increasing the axial and lateral resolution si-

i[ T(u) sin27Gau) du = 0, (2)  multaneously. Although typical resolution improvement

0 is limited to a single direction, there are also solutions [8]

where the simple transformation= r?> was used. Both for three-dimensional super-resolution. An example, ob-

the real and imaginary parts must vanish in order tdained with a simple binary phase-only filter, is shown in

satisfy Eq. (2). It can be seen that this condition carFig. 2. One might be tempted to infer that the focal spot
be obeyed only with nonzero ifG4 > 0.5. In other could be made as small as desired, with appropriate filter
words, the axial resolution as measured by the spot sizéesign. This reasoning, however, is not necessarily cor-
can at most be doubled. Fary = 0.5 the only solution rect because the resolution improvement on the transverse
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1.00 where the coefficient for the axial expansion is given by

0.756 ’ (2 )n

0.50 ch = 77' 7. (6)
n:

0.25
Combining Egs. (3) and (5) one obtains a general
relation between the transverse and axial spot sizes,
satisfied for a general functional dependence of the pupil
function T. There are, in fact, two conditions to be
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also tends to zero. Thus each term in the above series
expansions becomes increasingly small. In the limit when
G4 tends to 0.5, the summation in Eq. (7a) is arbitrarily
close to zero, and we can retain only the first terms in each
summation of Eq. (7b). Given a real > 0 such that

|G4 — 0.5] < 8, there exists an arbitrarily small real>

© 0 such thati! < &. SinceT is real valued fof = r = 1,

FIG. 2. (a) Three-dimensional confinement of a focal spotwe can define an effective transmissidf(é) # 0 such
compared to the (b) diffraction limit, in the confocal imaging that 7/° = ¢, < &, by taking T, = 4s;. The effective
mode (Ref. [5]). transmissiorT, satisfies the limiting condition o4 for

all n. In general, this approximation cannot be expected
to hold equally well for any two arbitrary values of but

this is not required here since we need only to retain the
Mirst two terms of Eq. (7b). With this result we calculate
17 /1T to be2/3, which is actually required only to be
a lower bound for three-dimensional super-resolution [9].
After some more calculations we find

[1672
GT = 2 GA . (8)
3714

For a circular apertureGr = 1.89G,4 since in this case
where § is the focal peak intensity with respect to the nia = 1.2277. Consequently, ifG4 = 0.5 then Gy =
diffraction limit (Strehl ratio) and the coefficiemt,{ for 0.94. Although Eg. (8) assumes a strictly positive pupil
the transverse expansion is given by function, it is in excellent agreement [8] with results

. 7 1 - 2 , obtained for phase—on!y filters. Now, taking as a simple
= (e f T(r)rs"" dr = . I 4) measure of the spot size the rectangle determined by the
VI ) axial and lateral spot dimensions, a focal spot has to
wheren, denotes the first zero of the diffraction-limited satisfy the more general relation
transverse pattern in adimensional units.
The axial field,y = 0, can similarly be expanded, and
the result is

plane is dependent on the improvement found along th
axial plane, and vice versa. In fact, there is a minimu
possible spot size, which we shall calculate next.
Consider initially the expression for the transverse field
éu =0 in Eg. (1), calculated at the first zero from
the focal peak. If the Bessel function of order zero is
expanded in a power series around the origin we can write

SV2 =23 (~1)'er G, (3)
n=1

GAGT = g, (9)

where g is a geometric coefficient that depends on the
shape of the aperture and is defined gy= 72/37n74,

or g = 0.47 in the circular case. A quick estimate for a
square aperture assuming changes only in the transverse
(5) pattern yieldsg = 0.58. We can now use our definition

SVP = =2} (=15, G = 2 X (=1)"e5, GY
n=1 n=1
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of adimensional coordinates to express the size of théocal microscopy applications that spatial confinement of

smallest focal spotry in actual coordinates as the focal beam presents more interest. It is also interest-
1 A2 ing to notice that the general result, Eq. (9), represents an
70 =13 NAZ (10) analogous relation to the Heisenberg uncertainty principle

but now applied to classical fields. That is, it expresses

which interestingly is dependent only on the numericalnow the access to more information (higher resolution) in

aperture and wavelength while the diffraction-limited spot@ given direction leads to a loss of information in another.

size (and in general a spot modified by a pupil function) The author is grateful to Professor Colin Sheppard

also depends on the aperture geometry. for valuqble discussions and a critical reading of the
For a more direct comparison, if the diffraction-limited manuscript.

size is written asopr, we can express the minimum

possible spot size in the following simple form:

o0 = gOoDL . (11)

Consequently, the minimum possible focal spot is about[1] M. Born and E. Wolf, Principles of Optics(Pergamon,
half of the diffraction-limited spot size, independent of the __ New York, 1975). ,
pupil function used to increase resolution. Equation (11) 4] Gl.gggraldo di Francia, Nuovo Cimento Supfl.426-438
d_efines_ a lower bQund for the rEd.UCtior.] of_th_e three- [3] g Dur)ﬁin, J.J. Miceli, and J.H. Eberly, Phys. Rev. Lett.
dimensional spot size beyond the diffraction limit. How 58, 1499—1501 (1987).
close one can approach the lower bound can be deteryy) ¢ j.R. Sheppard and Z.S. Hegedus, J. Opt. Soc. Am. A
mined only by actual filter optimization. Nevertheless, 5, 643—647 (1988).
the spoto can be regarded as the minimal focal spot [5] T. Wilson, Confocal Microscopy(Academic, London,
able to probe volumetric information. In this respect it 1990).
is interesting to again evoke the analogy with the photon,[6] E. Betzig and J.K. Trautman, Scien@b7, 189-195
which can be considered the optical unit of quantum in-  (1992).
formation. For the photon the energy is well defined but [7] T-R.M. Sales and G.M. Morris, Opt. Let22, 582-584
one cannot ascertain a definite spatial localization. For (1997). , , o
the focused beam, however, the spatial distribution is well [8] T-R-M. ~ Sales, Ph.D. ' Dissertation, —University —of
. . . . Rochester, Rochester, NY, 1997.
defined, but its energy content becomes indefinite. There-

f he bh h nimal focal | imil [9] This result can be verified explicitly for specific forms
ore, the photon and the minimal focal spot play similar of transmission function found in the literature. For an

roles in the appropriate quantum and classical limits. It jneresting example that satisfies, — 0.5 and where
should be noted that our results are also valid in the con- the ratio ]2T/[]T can be very S|mp|y calculated, see
focal imaging mode [5] since it preserves the zeros of the M. Martinez-Corral, P. Andrés, J. Ojeda-Castafieda, and
conventional imaging, as defined by Eq. (1). Itis for con- G. Saavedra, Opt. Commuh19, 491—498 (1995).
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