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Smallest Focal Spot
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According to diffraction theory the size of a focused spot is determined by wavelength, nume
aperture, and aperture shape. But even when these parameters are fixed it is possible to a
super-resolution and reduce the spot size even further. It is shown, however, that the t
dimensional spot size cannot be arbitrarily reduced. The minimum focal spot able to probe h
resolution volumetric information in an optical system is about half of the diffraction-limited spot si
[S0031-9007(98)07535-8]

PACS numbers: 42.25.Fx, 03.50.–z, 41.85.Ct
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It is a well-known result that, because of diffraction, th
image of a point object is no longer a point but spreads o
a certain spatial volume whose exact shape depends on
geometry of the aperture. In the case of a circular apertu
the focal distribution has been well characterized [1].
particular, on a transverse plane of the focal point one fin
the famous Airy disk pattern [1] described by a central sp
surrounded by low-intensity diffraction rings or sidelobe
Within the bounds of classical optics and disregardi
material or source limitations, the size of a focused bea
can be continuously decreased by reducing the wavelen
or increasing the numerical aperture of the objectiv
The remarkable fact, however, is that even when the
parameters are fixed, the size of the focused spot can
further reduced by means of super-resolution techniqu
[2]. What happens is that the resolution improveme
is typically limited to a single direction followed by a
resolution loss in a complementary direction, together w
some reduction of brightness and increase of sidelo
intensity.

There is an interest in super-resolution for both theore
cal and practical reasons. From a fundamental point
view, super-resolution offers a strategy to overcome t
limits of diffraction and increase resolution without th
need to modify significantly the optical apparatus. From
practical perspective, there are numerous applications
benefit from super-resolution including astronomy, ima
processing, confocal scanning microscopy, optical d
storage, and laser printing. Depending on the particu
problem, it may be more interesting to obtain a supe
resolved diffraction pattern in a specific direction. Fo
example, in optical data storage and laser printing it
desirable that the focal point possess a small transve
dimension (leads to larger data density) but a larger ax
response or focal depth (leads to better tolerances
beam focusing). An example of such a focal spot can
generated by an annular aperture [3], which retains a la
depth of focus over considerable distances and prese
a Bessel amplitude pattern on a transverse plane. I
also possible to obtain axial resolution improvement [4
particularly for confocal scanning microscopy, where th
0031-9007y98y81(18)y3844(4)$15.00
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resolution of volumetric image reconstruction is limited
by the axial depth response [5].

An unexplored form of super-resolution involves the
simultaneous increase of resolution over all cross sectio
of the focal spot, or three-dimensional super-resolutio
such that the focal spot is confined within a spatial volum
smaller than the diffraction limit. This situation presents
interest for confocal microscopy allowing higher latera
resolution together with better depth discrimination. Th
question then becomes whether it is possible to redu
the size of the focal spot indefinitely and thus increas
resolution arbitrarily. We may think of a focused spot a
the unit capable of extracting information from the sys
tem, much like the photon is the minimal unit of optica
radiation in quantum mechanics. Accordingly, we ma
rephrase our problem by asking what is the minimal un
of classical information able to provide useful information
by means of a focused beam. We show that there is
lower bound to the focal confinement beyond the diffrac
tion limit. This result implies a fundamental limitation on
the ability of an optical system to detect high-resolutio
volumetric information exceeding the diffraction-limited
performance. It should be noted that there are alternati
approaches to increase resolution, such as near-field m
croscopy [6]. But in this paper we consider only wha
we call optical super-resolution, or when a focused bea
constitutes the probing stylus.

For simplicity, we assume diffraction within Fresnel
approximation to describe the focusing by an aberratio
free objective. In this case, the normalized complex fiel
amplitudec due to a point source located at infinity can
be written in adimensional coordinates as [1]

csh, dmd  2
Z 1

0
T srdJ0shrdexps2i2pdmr2dr dr ,

(1)

where h is a normalized transverse coordinate define
as h  2pNAryl, with NA the numerical aperture of
the system,l the wavelength, andr the actual transverse
coordinate. dm corresponds to the axial coordinate given
by dm  DzNA2y2l, whereDz  z 2 f measures the
© 1998 The American Physical Society
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axial displacement along the opticalz axis from the focal
location f in actual units. The aperture coordinater
is normalized to one. The functionT srd defines the
complex transmission of the pupil, or pupil function
which assumes the valueT  1 in the diffraction limit.

Super-resolution is achieved by controlling the phas
and/or amplitude ofT . In practice, the pupil function
is modified by means of filters [5] that can absorb pa
of the incident beam energy or alter the phase of th
wave front. Most super-resolution techniques are bas
on either amplitude- or phase-only filters. Example
of amplitude-only filters include obscurations or sets o
annuli that block light propagation in selected regions o
the pupil. A Bessel beam [3], for instance, is obtaine
with an infinitely thin annulus. In this limit, the transverse
spot size measured as the distance between the min
on either side of the focal spot assumes a value eq
to 0.62 of the diffraction-limited spot size. LetGT and
GA represent the spot size relative to the diffractio
limit on the transverse focal plane and along the optic
axis, respectively. Thus, one sees that the Bessel be
generates transverse super-resolution since it prese
GT  0.62 , 1. However, along the axis the spot size
increases considerably leading to an extended focal dep
as illustrated in Fig. 1. Of course, amplitude-only filter
lead to an unavoidable loss of brightness. To ameliora
this situation and significantly increase the focal energ
one can make use of phase-only filters [7] that absorb
light and offer comparable or better resolution with highe
focal intensities. Nevertheless, the general behavior
both types of filters is qualitatively similar. Therefore, to
preserve mathematical simplicity, we focus on amplitud
only pupil functions for most of this work by assuming
that the pupil is modified by a strictly positive amplitude
transmissionT . However, our results are in accordanc
with those obtained with general forms of transmissio
including complex functions.

While it has been observed that there is no limit t
the resolution improvement [2] along the transverse foc
direction, it is still to be answered by how much the axia
resolution can be increased. To address this questi
consider the axial field calculated at the first zero from
the focal peak (in our adimensional units this value equa
GA). As a result, Eq. (1) allows us to writeZ 1

0
T s

p
ud coss2pGAud du 2

i
Z 1

0
T s

p
ud sins2pGAud du  0 , (2)

where the simple transformationu  r2 was used. Both
the real and imaginary parts must vanish in order
satisfy Eq. (2). It can be seen that this condition ca
be obeyed only withT nonzero if GA . 0.5. In other
words, the axial resolution as measured by the spot s
can at most be doubled. ForGA  0.5 the only solution
,
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FIG. 1. (a) Three-dimensional diffraction pattern of a bea
focused through a thin annulus compared to the (b) diffracti
limit.

is such thatT is identically zero. Phase-only element
can achieve similar results with nonzero brightness, a
estimates indicate [8] that the minimum spot size cou
go as low asGA  4yp2 (about 0.41). However, such
performance has never been observed, and it seems lik
that GA  0.5 is, indeed, the best that can be done
terms of axial super-resolution with optical filters. O
course, we consider a well-defined focal spot with minim
on either side assuming nearly zero value. If the foc
spot is blurred as a result of the pupil function one ca
find the distance between minima to be less than 0.5. B
then its effective size is much larger since the distan
between minima no longer provides a meaningful measu
of the spot size.

Considering that the lateral resolution can be contin
ously improved and that the axial resolution can at mo
be doubled, the question becomes what results can be
tained by increasing the axial and lateral resolution s
multaneously. Although typical resolution improvemen
is limited to a single direction, there are also solutions [
for three-dimensional super-resolution. An example, o
tained with a simple binary phase-only filter, is shown
Fig. 2. One might be tempted to infer that the focal sp
could be made as small as desired, with appropriate fil
design. This reasoning, however, is not necessarily c
rect because the resolution improvement on the transve
3845
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FIG. 2. (a) Three-dimensional confinement of a focal sp
compared to the (b) diffraction limit, in the confocal imaging
mode (Ref. [5]).

plane is dependent on the improvement found along t
axial plane, and vice versa. In fact, there is a minimu
possible spot size, which we shall calculate next.

Consider initially the expression for the transverse fiel
dm  0 in Eq. (1), calculated at the first zero from
the focal peak. If the Bessel function of order zero
expanded in a power series around the origin we can wr

S1y2  22
X̀
n1

s21dncT
n G2n

T , (3)

where S is the focal peak intensity with respect to th
diffraction limit (Strehl ratio) and the coefficientcT

n for
the transverse expansion is given by

cT
n 

h
2n
1A

22nsn!d2

Z 1

0
T srdr2n11 dr 

h
2n
1A

22nsn!d2 IT
n , (4)

whereh1A denotes the first zero of the diffraction-limited
transverse pattern in adimensional units.

The axial field,h  0, can similarly be expanded, and
the result is

S1y2  2i2
X̀
n1

s21dncA
2n21G2n21

A 2 2
X̀
n1

s21dncA
2nG2n

A ,

(5)
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where the coefficient for the axial expansion is given by

cA
n 

s2pdn

n!
IT

n . (6)

Combining Eqs. (3) and (5) one obtains a genera
relation between the transverse and axial spot size
satisfied for a general functional dependence of the pup
function T . There are, in fact, two conditions to be
satisfied: X̀

n1

s21dncA
2n21G2n21

A  0 , (7a)

X̀
n1

s21dncT
n G2n

T 
X̀
n1

s21dncA
2nG2n

A . (7b)

As the axial spot size decreases towards 0.5 the pu
function T tends to zero and consequently the integralIT

k
also tends to zero. Thus each term in the above ser
expansions becomes increasingly small. In the limit whe
GA tends to 0.5, the summation in Eq. (7a) is arbitrarily
close to zero, and we can retain only the first terms in ea
summation of Eq. (7b). Given a reald . 0 such that
jGA 2 0.5j , d, there exists an arbitrarily small real´ .

0 such thatIT
n , ´. SinceT is real valued for0 # r # 1,

we can define an effective transmissionT0sdd fi 0 such
that I

T0
1  ´1 , ´, by taking T0  4´1. The effective

transmissionT0 satisfies the limiting condition onGA for
all n. In general, this approximation cannot be expecte
to hold equally well for any two arbitrary values ofn, but
this is not required here since we need only to retain th
first two terms of Eq. (7b). With this result we calculate
IT

2 yIT
1 to be 2y3, which is actually required only to be

a lower bound for three-dimensional super-resolution [9
After some more calculations we find

GT 

s
16p2

3h
2
1A

GA . (8)

For a circular aperture,GT  1.89GA since in this case
h1A > 1.22p. Consequently, ifGA  0.5 then GT 
0.94. Although Eq. (8) assumes a strictly positive pupi
function, it is in excellent agreement [8] with results
obtained for phase-only filters. Now, taking as a simpl
measure of the spot size the rectangle determined by t
axial and lateral spot dimensions, a focal spot has
satisfy the more general relation

GAGT $ g , (9)

where g is a geometric coefficient that depends on th
shape of the aperture and is defined byg2  p2y3h

2
1A,

or g > 0.47 in the circular case. A quick estimate for a
square aperture assuming changes only in the transve
pattern yieldsg > 0.58. We can now use our definition
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of adimensional coordinates to express the size of t
smallest focal spots0 in actual coordinates as

s0 

s
1
3

l2

NA3 , (10)

which interestingly is dependent only on the numerica
aperture and wavelength while the diffraction-limited spo
size (and in general a spot modified by a pupil function
also depends on the aperture geometry.

For a more direct comparison, if the diffraction-limited
size is written assDL, we can express the minimum
possible spot size in the following simple form:

s0  gsDL . (11)

Consequently, the minimum possible focal spot is abo
half of the diffraction-limited spot size, independent of th
pupil function used to increase resolution. Equation (11
defines a lower bound for the reduction of the three
dimensional spot size beyond the diffraction limit. How
close one can approach the lower bound can be det
mined only by actual filter optimization. Nevertheless
the spots0 can be regarded as the minimal focal spo
able to probe volumetric information. In this respect i
is interesting to again evoke the analogy with the photo
which can be considered the optical unit of quantum in
formation. For the photon the energy is well defined bu
one cannot ascertain a definite spatial localization. F
the focused beam, however, the spatial distribution is we
defined, but its energy content becomes indefinite. The
fore, the photon and the minimal focal spot play simila
roles in the appropriate quantum and classical limits.
should be noted that our results are also valid in the co
focal imaging mode [5] since it preserves the zeros of th
conventional imaging, as defined by Eq. (1). It is for con
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focal microscopy applications that spatial confinement
the focal beam presents more interest. It is also intere
ing to notice that the general result, Eq. (9), represents
analogous relation to the Heisenberg uncertainty princip
but now applied to classical fields. That is, it expresse
how the access to more information (higher resolution)
a given direction leads to a loss of information in anothe

The author is grateful to Professor Colin Sheppar
for valuable discussions and a critical reading of th
manuscript.
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