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Simple Model of Superconducting Vortex Avalanches
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We introduce a simple lattice model of superconducting vortices driven by repulsive interactions
through a random pinning potential. The model describes the behavior at the scale of the London
length A or larger. It self-organizes to a critical state, characterized by a constant flux density gradient,
where the activity takes place in terms of avalanches spanning all length scales up to the system size.
We determine scaling relations as well as four universal critical exponents for avalanche moments and
durations:7 = 1.63 * 0.02, D =27 = 0.1, z = 1.5 = 0.1, and 7, = 2.13 = 0.14, for the system
driven at the boundary. [S0031-9007(98)07486-9]

PACS numbers: 74.60.Ge, 64.60.Ht, 64.60.Lx

Flux penetrates hard superconductors in the form ofhat discards the identification of individual vortices,
guantized vortices that move via overdamped dynamicalong with almost all of the microscopic degrees of
subject to repulsive interactions from other vortices andreedom at scales smaller than Our model is minimal,
to random pinning forces due to inhomogeneities in thencorporating only what may be the essential features
material. Vortex interactions, represented by a modifiedf collective vortex dynamics: overdamped motion of
Bessel functionk(r/A), decay with the London length, vortices, repulsive interactions between vortices, attractive
A, that is much larger than either the size of the vortexpinning interactions at lattice defects, and to describe
cores or of the point pinning centers. By slowly increas-the experiment in Ref. [1], boundary driving. One can
ing the external magnetic field on a thin superconductingmagine imposing a grid of cells on the system. In our
shell, vortex avalanches entering the interior have beemodel, vortices correspond to a vortex number in an
observed to have a broad distribution of sizes [1], indicatextended region>A) of the actual physical system, and
ing self-organized criticality [2]. Two dimensional mo- the pinning corresponds to a number of point pins in an
lecular dynamics (MD) models [3] of these experimentsextended cell. Each lattice site in our model can hold
[4] indicate that vortex motion within the superconduc-many vortices and can have a different, albeit quenched,
tor also takes place in terms of avalanches over all lengtpinning potential, due to the underlying randomness in the
scales up to the system size. Systems of several thousapdsitions and strengths of the microscopic pinning centers.
vortices corresponding up to abo@@0A)? have been nu- Studying our lattice model numerically, we can readily
merically studied with this technique [4]. simulate much larger systems than with MD simulations,

In order to explore critical behavior in the thermody- giving us a tool to explore scaling and phase transitions
namic limit much larger system sizes are required. Foin the thermodynamic limit, where the system size,is
this purpose, it would be desirable to study a simpledarge compared to the range of vortex interactions,A
model in the same universality class. Although it is notprevious lattice model has been proposed by Jensen [8].
known to what extent universality exists in self-organizedOur model differs from his in a number of significant
critical (SOC) phenomena, a broad universality class enways. The most important difference is that we allow
compassing one dimensional granular piles [5], interfacenultiple vortices to occupy each site, consistent with the
depinning [6], and earthquake models has been discoveradarse-graining idea [9].

[7]. This lends plausibility to the concept, well known in ~ We find that our simple model exhibits self-organized
equilibrium critical phenomena, that simple models carcriticality. The observed critical exponents are universal
describe the large scale behavior of real physical systerma the sense that they do not vary over a range of
where the microscopic interactions are much more comparameter values in the model. We drive our system
plicated. In particular, a simple model may exist which isin a manner that represents the experiments of Field
in the same universality class as the actual vortex systert al. [1]. As vortices are slowly pumped in at the left end
with avalanches of all sizes. Beyond this point, a con-of our system and allowed to leave at the right end, the
ceptual understanding of the interplay between repulsivgradient of the vortex density builds up to a constant value
vortex interactions and random pinning would be aidedhroughout the system, in agreement with the picture of
by a minimal model that captures the essential features @ean [10]. The vortex model acts like a pile of sand.
collective vortex dynamics. is important to note that the vortex pile is not minimally

With this view, we introduce a coarse-grained latticestable (which is a local criterion first suggested by Bean),
model to describe a vortex system at the scaleAof butitis marginally stable [2]. The minimally stable state
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is unstable to plastic deformations or avalanches. Thef the lattice. We use approximately square systems so
actual condition of criticality is a global one where no that the avalanches do not wrap around on themselves.
length scale other than the system size plays any role An avalanche is initiated by adding a vortex to a stable
whatsoever. We find a temporal pattern of intermittentconfiguration at a randomly chosen site on the left, or
bursts of vortices leaving the system, as well as interndbading, edge of the lattice. The avalanche continues by
avalanches. We apply finite size scaling methods to theepeatedly updating the lattice until there are no longer
histograms for the sizes and durations of avalanches, any unstable directions for a vortex at any lattice site,
determining four critical exponents, which agree withand the configuration is again stable. The limit of slow
known scaling relations for a boundary driven systemdriving is achieved by adding a vortex to the loading edge
The values of the critical exponents found are close tmnly after the previous avalanche has ended.
those of the two dimensional “linear” interface model [6], Initially, the vortex pile is empty. As it fills up with
suggesting a common universality class. vortices, eventually a chain reaction of sliding events
Our model is a coarse-grained representation of théeads to one or more vortices leaving the system at the
microscopic vortex dynamics in which the force onoutput edge. The global cascade of events (topplings) is
a vortex i is given by the overdamped equation of due to the local repulsive interactions of vortices. An
motionf; = fi, + fyin < v;, wheref;, is the sum of the avalanche constitutes a type of generalized branching
repulsive forces from other vortice$,;, is the sum of process because a toppling at one site can affect only its
the attractive forces from the pinning centers, ands  nearest and next nearest neighbors at the next time step.
the velocity of vortexi [3,4]. We consider a two This fact allows an efficient list algorithm to be used to
dimensional honeycomb lattice. Each lattice sitels  simulate the system, checking only sites on the list of
occupied by an integen(x) vortices and has three nearest possibly active sites for instability. Eventually for every
neighbors. Vortices repel others occupying the sameortex added, one on the average leaves the system. In
lattice site and, more weakly, those on nearest neighbdhis stationary state, the average vortex density acquires
sites. There is also an attractive pinning force at randona constant gradient throughout the system. The vortices
sites. As in the microscopic case, both of these coarsderm a vortex pile, with fluctuations about an average
grained forces are the gradient of a potential. The forcaslope much like a sand pile.
on a vortex at siter in the direction of a nearest neighbor In Fig. 1, we show a time series of the activity in the
sitey is calculated by taking a discrete gradient of the sunstationary state for a system with= 200. The activity

of those two potentials, takes place intermittently with bursts over all temporal
scales up to a cutoff that grows with system size. When
Fimy = =Vpin(x) + Vpin(y) + [m(x) — m(y) — 1] a given burst ends, at a time the activity n(¢) reaches

+ r[m(x1) + m(x2) — m(y1) — m(y2)], (1) Zero and another vortex is added at the loading edge.
Figure 1(a) shows the number of vortices that fall off
wherey, x1, andx2 are the nearest neighborsxafandx,  the right edge as a function of time. It has a similar
y1, andy?2 are the nearest neighborsyof The scale of the qualitative appearance to that seen in experiments [1].
problem is set so that the strength of the on-site force is
unity, and the strength of the nearest neighbor foree<s
1. The strength of the quenched random pinning potential 19
at x, Vyin(x), is chosen to be with probability ¢, and @ ]
0 with probability 1 — ¢g. Thus, the density of pinning 5[ ]
centers isg, and there are three parameters in the model: [ ]
r, p, andg. In the figures shown here we use the parame- “ | h MM ' "l } M H m ” M
ters (r, p,g) = (0.1,5.0,0.1). We have also simulated " (b) 1
systems with(r, p,¢) = (0.2,5.0,0.1), (0.1,5.0,0.4), and
(0.1,1.0,0.1). In all four cases, the critical exponents
remained unchanged within numerical errors. I
A vortex moves one lattice site in a direction when the 07

force in that direction is greater than zero. Thus, even 290 (©

sites with V,,;, = 0 can pin vortices. If there is more 100 | M |
than one unstable direction for a vortex to move in, one | |
direction is picked at random. All lattice sites are updated 0 b tf‘h M

in parallel, and only one vortex can move from each site

; ; ; IG. 1. Time series of the vortex dynamics. Frame (a) shows
on a particular update. As in experiments, any vortex that e number of vortices falling off the system. Frame (b) shows

reaches_ the right edge of the system is removed. Vorticel:ﬁe number of moving vortices, i.e., the activity. Frame (c)
are forbidden to move off the left edge of the system [11].shows a magnification of the boxed region of (b). Both (a) and
Periodic boundary conditions apply at the top and botton{b) show10° time steps.
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Figures 1(b) and 1(c) show the number of moving vorticesso that the back topplings are not significant. The
as a function of time. These signals are qualitativelyrequirement(s) ~ L leads tor =2 — 1/D. We align
similar to what is seen in MD simulations [4]. Within the cutoff regime in the data collapse plot to determine
each avalanche there are “bursts within bursts.” D =27 *= 0.1 and chooser = 1.63 £ 0.02 to give a
The spatial behavior of an avalanche in the stationarylat plateau in the data collapse over 4 orders of magnitude
state is shown in Fig. 2. The number of topplings at ain s/L?. These values agree perfectly with the above
given site is represented by a grey scale. Qualitativelyscaling relation.
the avalanche has an inhomogeneous behavior with holesA similar scaling ansatz is used for the probability
where there is no activity inside a region of activity. OnedistributionP(z, L) to have an avalanche of duratioin a
can characterize an avalanche by the maximum exterslystem of linear extent,
of its penetration in t_he direction of flov_\r,, the tptal P(t,L) = t "g(t/L7), 3)
number of topplings in the avalanche, its duration, . )
t, and n(t), among other quantities. Because the mas¥/here the dynamical exponentdetermines the system
of the avalanche represents the time integral over th&ize cutoffin durations., ~ L*. Conservation of proba-
sequence of topplings, ~ nt, as in other models of SOC. Dility gives an additional scaling relatio(r — 1) =
The scaling dimensions of these variables are defined fg{7: — 1) = 7, — 1, wherer, is the histogram exponent
avalanches as ~ r? andr ~ r* [12]. for thg spatial penetration of ava_lanc_hes_ [12]. Here=
In analogy with other models of SOC [12], as well asD- Smge for every avalanche, its size is greater than or
other critical phenomena, we use the following scalingedual to its durationz; > 7 andD = z. InFig. 4, we use
ansatz for the probability distributioR(s, L) to have an the position of the cutoff region to find= 1.5 = 0.1 and
avalanche of size in a system of linear extert: chooser, = 2.13 = 0.14 to give a flat plateau in the data
. D collapse. These values obey the scaling relation above.
P(s,L) = s 7g(s/L7). (2) Note that the values foD and z are very close to
This scaling ansatz is confirmed for our vortex model bythose measured for the linear interface depinning model
numerical simulations as shown in Fig. 3. The avalanchén two dimensions, whereD = 2.75 = 0.05 and z =
dimension, D, and the distribution exponent, are 1.58 = 0.04 [6,12]. The histogram exponents differ when
not independent for our boundary driven system. Inthese models are driven uniformly, rather than at the
the stationary state, every row, on the average, mugioundary. For uniform drivind(2 — 7) = 2.
transfer one vortex to the right. In this case, the average The distribution of falloff events can be determined by
avalanche sizés) = c¢L wherec is some constant. We measuring the total number of vortices, that leave the
find ¢ = 1.1, slightly larger than 1 since some toppling system in each avalanche. This distribution is broad up
events occur counter to the average flow. (For the onéo a cutoff f,(L) that diverges with the system size as
dimensional Oslo model [3] = 1 exactly [7].) We have f, ~ L', but it does not appear to show power law
checked to see that the actual moment of the sliding hasehavior forf < f,. However, since the system is driven
the same dimension as the total number of topplings,
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FIG. 3. Finite size scaling plot of the avalanche size his-
FIG. 2. Grey-scale plot showing an avalanche. The filledtograms. Each curve is calculated frd® avalanches on each
circles indicate sites from which a vortex has moved duringof five (two for the L = 600 system) different realizations of
the avalanche, where the darkness indicates the number dfe quenched disorder. The exponents useddare 2.70 and
topplings. The open circles represent strong pinning centers. r = 1.63.
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10" havior changes for parameters outside the range we have
reported here. For example, for a sufficiently rugged pin-
ning landscape, the vortex motion may be locked into
. isolated channels, introducing a scale in the avalanche dis-
tribution [4,17], consistent with the experiments of Zieve
et al.[18]. Similarly, for a sufficiently flat pinning po-
tential the avalanches become very wide and may have
a characteristic size as well. We are currently investi-
- gating both of these situations. It would be interesting
to study other properties of vortex dynamics using our
model. These include magnetic relaxation [19], hystere-
sis, aging, using a vortex weakened pinning potential to
take into account interstitial pinning, driving the system

! \ L ! at a finite rate, or in a different manner that would corre-
spond to applying an electrical current.

tL® We thank G. Reiter, F. Nori, and P. Bak for helpful

FIG. 4. Finite size scaling plot of the avalanche durationd'SCUSS'onS'

histograms. The exponents used are 1.50 andr, = 2.13.
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