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Simple Model of Superconducting Vortex Avalanches
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We introduce a simple lattice model of superconducting vortices driven by repulsive interac
through a random pinning potential. The model describes the behavior at the scale of the Lo
lengthl or larger. It self-organizes to a critical state, characterized by a constant flux density grad
where the activity takes place in terms of avalanches spanning all length scales up to the system
We determine scaling relations as well as four universal critical exponents for avalanche momen
durations:t ­ 1.63 6 0.02, D ­ 2.7 6 0.1, z ­ 1.5 6 0.1, and tt ­ 2.13 6 0.14, for the system
driven at the boundary. [S0031-9007(98)07486-9]

PACS numbers: 74.60.Ge, 64.60.Ht, 64.60.Lx
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Flux penetrates hard superconductors in the form
quantized vortices that move via overdamped dynami
subject to repulsive interactions from other vortices an
to random pinning forces due to inhomogeneities in th
material. Vortex interactions, represented by a modifie
Bessel functionK1sryld, decay with the London length,
l, that is much larger than either the size of the vorte
cores or of the point pinning centers. By slowly increas
ing the external magnetic field on a thin superconductin
shell, vortex avalanches entering the interior have be
observed to have a broad distribution of sizes [1], indica
ing self-organized criticality [2]. Two dimensional mo-
lecular dynamics (MD) models [3] of these experimen
[4] indicate that vortex motion within the superconduc
tor also takes place in terms of avalanches over all leng
scales up to the system size. Systems of several thous
vortices corresponding up to abouts30ld2 have been nu-
merically studied with this technique [4].

In order to explore critical behavior in the thermody
namic limit much larger system sizes are required. F
this purpose, it would be desirable to study a simpl
model in the same universality class. Although it is no
known to what extent universality exists in self-organize
critical (SOC) phenomena, a broad universality class e
compassing one dimensional granular piles [5], interfa
depinning [6], and earthquake models has been discove
[7]. This lends plausibility to the concept, well known in
equilibrium critical phenomena, that simple models ca
describe the large scale behavior of real physical syste
where the microscopic interactions are much more com
plicated. In particular, a simple model may exist which i
in the same universality class as the actual vortex syst
with avalanches of all sizes. Beyond this point, a con
ceptual understanding of the interplay between repulsi
vortex interactions and random pinning would be aide
by a minimal model that captures the essential features
collective vortex dynamics.

With this view, we introduce a coarse-grained lattic
model to describe a vortex system at the scale ofl
0031-9007y98y81(17)y3761(4)$15.00
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that discards the identification of individual vortices
along with almost all of the microscopic degrees o
freedom at scales smaller thanl. Our model is minimal,
incorporating only what may be the essential feature
of collective vortex dynamics: overdamped motion o
vortices, repulsive interactions between vortices, attracti
pinning interactions at lattice defects, and to describ
the experiment in Ref. [1], boundary driving. One ca
imagine imposing a grid of cells on the system. In ou
model, vortices correspond to a vortex number in a
extended region (.l) of the actual physical system, and
the pinning corresponds to a number of point pins in a
extended cell. Each lattice site in our model can ho
many vortices and can have a different, albeit quenche
pinning potential, due to the underlying randomness in th
positions and strengths of the microscopic pinning cente
Studying our lattice model numerically, we can readil
simulate much larger systems than with MD simulation
giving us a tool to explore scaling and phase transition
in the thermodynamic limit, where the system size,L, is
large compared to the range of vortex interactions,l. A
previous lattice model has been proposed by Jensen [
Our model differs from his in a number of significan
ways. The most important difference is that we allow
multiple vortices to occupy each site, consistent with th
coarse-graining idea [9].

We find that our simple model exhibits self-organize
criticality. The observed critical exponents are univers
in the sense that they do not vary over a range
parameter values in the model. We drive our syste
in a manner that represents the experiments of Fie
et al. [1]. As vortices are slowly pumped in at the left end
of our system and allowed to leave at the right end, th
gradient of the vortex density builds up to a constant valu
throughout the system, in agreement with the picture
Bean [10]. The vortex model acts like a pile of sand.It
is important to note that the vortex pile is not minimally
stable (which is a local criterion first suggested by Bean
but it is marginally stable [2]. The minimally stable state
© 1998 The American Physical Society 3761
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is unstable to plastic deformations or avalanches. T
actual condition of criticality is a global one where n
length scale other than the system size plays any
whatsoever. We find a temporal pattern of intermitte
bursts of vortices leaving the system, as well as inter
avalanches. We apply finite size scaling methods to
histograms for the sizess and durationt of avalanches,
determining four critical exponents, which agree wi
known scaling relations for a boundary driven syste
The values of the critical exponents found are close
those of the two dimensional “linear” interface model [6
suggesting a common universality class.

Our model is a coarse-grained representation of
microscopic vortex dynamics in which the force o
a vortex i is given by the overdamped equation
motionfi ­ fint 1 fpin ~ vi, wherefint is the sum of the
repulsive forces from other vortices,fpin is the sum of
the attractive forces from the pinning centers, andvi is
the velocity of vortex i [3,4]. We consider a two
dimensional honeycomb lattice. Each lattice sitex is
occupied by an integermsxd vortices and has three neare
neighbors. Vortices repel others occupying the sa
lattice site and, more weakly, those on nearest neigh
sites. There is also an attractive pinning force at rand
sites. As in the microscopic case, both of these coa
grained forces are the gradient of a potential. The fo
on a vortex at sitex in the direction of a nearest neighbo
sitey is calculated by taking a discrete gradient of the su
of those two potentials,

Fx!y ­ 2Vpinsxd 1 Vpinsyd 1 fmsxd 2 msyd 2 1g

1 rfmsx1d 1 msx2d 2 msy1d 2 msy2dg , (1)

wherey, x1, andx2 are the nearest neighbors ofx, andx,
y1, andy2 are the nearest neighbors ofy. The scale of the
problem is set so that the strength of the on-site force
unity, and the strength of the nearest neighbor force isr ,

1. The strength of the quenched random pinning poten
at x, Vpinsxd, is chosen to bep with probability q, and
0 with probability 1 2 q. Thus, the density of pinning
centers isq, and there are three parameters in the mod
r, p, andq. In the figures shown here we use the param
ters sr , p, qd ­ s0.1, 5.0, 0.1d. We have also simulated
systems withsr , p, qd ­ s0.2, 5.0, 0.1d, s0.1, 5.0, 0.4d, and
s0.1, 1.0, 0.1d. In all four cases, the critical exponen
remained unchanged within numerical errors.

A vortex moves one lattice site in a direction when t
force in that direction is greater than zero. Thus, ev
sites with Vpin ­ 0 can pin vortices. If there is more
than one unstable direction for a vortex to move in, o
direction is picked at random. All lattice sites are updat
in parallel, and only one vortex can move from each s
on a particular update. As in experiments, any vortex t
reaches the right edge of the system is removed. Vort
are forbidden to move off the left edge of the system [1
Periodic boundary conditions apply at the top and bott
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of the lattice. We use approximately square systems
that the avalanches do not wrap around on themselves.

An avalanche is initiated by adding a vortex to a stabl
configuration at a randomly chosen site on the left, o
loading, edge of the lattice. The avalanche continues b
repeatedly updating the lattice until there are no longe
any unstable directions for a vortex at any lattice site
and the configuration is again stable. The limit of slow
driving is achieved by adding a vortex to the loading edg
only after the previous avalanche has ended.

Initially, the vortex pile is empty. As it fills up with
vortices, eventually a chain reaction of sliding event
leads to one or more vortices leaving the system at th
output edge. The global cascade of events (topplings)
due to the local repulsive interactions of vortices. An
avalanche constitutes a type of generalized branchi
process because a toppling at one site can affect only
nearest and next nearest neighbors at the next time st
This fact allows an efficient list algorithm to be used to
simulate the system, checking only sites on the list o
possibly active sites for instability. Eventually for every
vortex added, one on the average leaves the system.
this stationary state, the average vortex density acquir
a constant gradient throughout the system. The vortic
form a vortex pile, with fluctuations about an averag
slope much like a sand pile.

In Fig. 1, we show a time series of the activity in the
stationary state for a system withL ­ 200. The activity
takes place intermittently with bursts over all tempora
scales up to a cutoff that grows with system size. Whe
a given burst ends, at a timet, the activity nstd reaches
zero and another vortex is added at the loading edg
Figure 1(a) shows the number of vortices that fall of
the right edge as a function of time. It has a simila
qualitative appearance to that seen in experiments [1

0

100

200 (c)
0

200

(b)
0

5

10
(a)

FIG. 1. Time series of the vortex dynamics. Frame (a) show
the number of vortices falling off the system. Frame (b) show
the number of moving vortices, i.e., the activity. Frame (c
shows a magnification of the boxed region of (b). Both (a) an
(b) show105 time steps.
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Figures 1(b) and 1(c) show the number of moving vortice
as a function of time. These signals are qualitative
similar to what is seen in MD simulations [4]. Within
each avalanche there are “bursts within bursts.”

The spatial behavior of an avalanche in the stationa
state is shown in Fig. 2. The number of topplings at
given site is represented by a grey scale. Qualitative
the avalanche has an inhomogeneous behavior with ho
where there is no activity inside a region of activity. On
can characterize an avalanche by the maximum exte
of its penetration in the direction of flow,r, the total
number of topplings in the avalanche,s, its duration,
t, and nstd, among other quantities. Because the ma
of the avalanche represents the time integral over t
sequence of topplings,s , nt, as in other models of SOC.
The scaling dimensions of these variables are defined
avalanches ass , rD andt , rz [12].

In analogy with other models of SOC [12], as well a
other critical phenomena, we use the following scalin
ansatz for the probability distributionPss, Ld to have an
avalanche of sizes in a system of linear extentL:

Pss, Ld ­ s2tgssyLDd . (2)

This scaling ansatz is confirmed for our vortex model b
numerical simulations as shown in Fig. 3. The avalanch
dimension, D, and the distribution exponent,t, are
not independent for our boundary driven system. I
the stationary state, every row, on the average, mu
transfer one vortex to the right. In this case, the avera
avalanche sizeksl ­ cL wherec is some constant. We
find c ­ 1.1, slightly larger than 1 since some toppling
events occur counter to the average flow. (For the o
dimensional Oslo model [5]c ­ 1 exactly [7].) We have
checked to see that the actual moment of the sliding h
the same dimension as the total number of toppling

FIG. 2. Grey-scale plot showing an avalanche. The fille
circles indicate sites from which a vortex has moved durin
the avalanche, where the darkness indicates the number
topplings. The open circles represent strong pinning centers
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so that the back topplings are not significant. Th
requirementksl , L leads tot ­ 2 2 1yD. We align
the cutoff regime in the data collapse plot to determin
D ­ 2.7 6 0.1 and chooset ­ 1.63 6 0.02 to give a
flat plateau in the data collapse over 4 orders of magnitu
in syLD. These values agree perfectly with the abov
scaling relation.

A similar scaling ansatz is used for the probabilit
distributionPst, Ld to have an avalanche of durationt in a
system of linear extentL,

Pst, Ld ­ t2tt gstyLzd , (3)

where the dynamical exponentz determines the system
size cutoff in durationstco , Lz . Conservation of proba-
bility gives an additional scaling relationDst 2 1d ­
zstt 2 1d ­ tr 2 1, wheretr is the histogram exponent
for the spatial penetration of avalanches [12]. Heretr ­
D. Since for every avalanche, its size is greater than
equal to its duration,tt . t andD $ z. In Fig. 4, we use
the position of the cutoff region to findz ­ 1.5 6 0.1 and
choosett ­ 2.13 6 0.14 to give a flat plateau in the data
collapse. These values obey the scaling relation above

Note that the values forD and z are very close to
those measured for the linear interface depinning mod
in two dimensions, whereD ­ 2.75 6 0.05 and z ­
1.58 6 0.04 [6,12]. The histogram exponents differ whe
these models are driven uniformly, rather than at t
boundary. For uniform drivingDs2 2 td ­ 2.

The distribution of falloff events can be determined b
measuring the total number of vortices,f, that leave the
system in each avalanche. This distribution is broad
to a cutoff fosLd that diverges with the system size a
fo , LD21, but it does not appear to show power law
behavior forf , fo. However, since the system is driven

FIG. 3. Finite size scaling plot of the avalanche size hi
tograms. Each curve is calculated from107 avalanches on each
of five (two for theL ­ 600 system) different realizations of
the quenched disorder. The exponents used areD ­ 2.70 and
t ­ 1.63.
3763
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FIG. 4. Finite size scaling plot of the avalanche durati
histograms. The exponents used arez ­ 1.50 andtt ­ 2.13.

at the opposing boundary, only the few avalanches t
cross the system make any vortices fall off the output ed
Thus the statistics for the falloff data are not as good as
of the quantities characterizing internal avalanches. Al
to our knowledge, there is no reason to expect that
falloff distribution should be a power law, even thoug
the internal avalanche size distribution is itself a pow
law. Experiments have measured falloff distributions fro
a time series involving about104 avalanches in a system
with Lyl ø 103. Both the value of the cutoff and th
apparent power law appeared to depend on the magni
of the external magnetic field. This dependence could
consistent with our results. The problem of interpreti
falloff data exists in many other SOC systems as well [1

Ideally, experiments to measure internal avalanc
could be devised. For example, Yeh and Kao [1
attached a SQUID to a superconducting sample and w
able to measure fluctuations associated with the fl
flow. In order to compare with our results an array
SQUIDs could be used. Alternatively, it may eventua
be possible using Lorentz microscopy techniques [1
MD simulations do provide some points of comparis
for scaling behavior of internal avalanches. Those resu
however, have not been cast using collapse techniq
due, presumably, to the finite size limitations inLyl.
In any event, the exponentt in Ref. [4] varied for
different parameter values over a range of1.1 # t # 1.7.
We suspect that this variation is a finite size effe
Nevertheless our valuet ­ 1.63 falls within this range
[16]. We propose that the scaling relation for the avera
momentksl , L would also hold for the MD simulations
and for the real physical system, as well.

Although the SOC behavior we observe in the vort
lattice model is robust, having universal critical expone
over a range of parameters, it is possible that the
3764
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havior changes for parameters outside the range we ha
reported here. For example, for a sufficiently rugged pin
ning landscape, the vortex motion may be locked into
isolated channels, introducing a scale in the avalanche di
tribution [4,17], consistent with the experiments of Zieve
et al. [18]. Similarly, for a sufficiently flat pinning po-
tential the avalanches become very wide and may hav
a characteristic size as well. We are currently investi
gating both of these situations. It would be interesting
to study other properties of vortex dynamics using ou
model. These include magnetic relaxation [19], hystere
sis, aging, using a vortex weakened pinning potential t
take into account interstitial pinning, driving the system
at a finite rate, or in a different manner that would corre-
spond to applying an electrical current.

We thank G. Reiter, F. Nori, and P. Bak for helpful
discussions.
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