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Quantum Decay from Josephsonp States
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Quantum decay from Josephsonp states, which is inherent in the Josephson system with fixed
particle numbers, is investigated. Since thep states have two different decay paths, they can interfere
during the decay processes by quantum tunneling due to a topological phase originating from total
particle-number restriction and result in parity effect for tunneling. [S0031-9007(98)07457-2]

PACS numbers: 74.50.+r, 67.40.–w, 73.40.Gk
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The Josephson effect is one manifestation ofprimary
quantum aspects of macroscopic objects and was obser
in superconducting materials. Recently it has been test
in various macroscopic systems to confirm their quantum
mechanical nature. In some of the systems, the to
number of particles in the system is fixed. In such
restricted situation, it is somewhat difficult to observe th
Josephson effect because the Josephson current ca
directly be detected as usual since measurement cau
particle-number changes in the system. This is in contra
to the superconductors. Fortunately, one can obser
the Josephson effect through the Josephson accelera
relation such asdDwydt  Dm, whereDw  wR 2 wL

is the phase difference between two condensates andDm

is the chemical potential. We set̄h  1 hereafter. In
fact, this kind of experiment has been done in the3He sys-
tem [1,2].

In the past two decades, another conceptually distin
type of quantum effect for macroscopic objects has be
studied in order to discuss the applicability of quantum
mechanics on a macroscopic scale. These other effe
are sometimes calledsecondarymacroscopic quantum ef-
fects since they occur due to the Heisenberg’s uncertain
principle between noncommuting macroscopic variable
One such secondary effect is macroscopic quantum tu
neling (MQT), which has predominantly been studied i
superconducting tunnel junctions with small capacitanc
[3–5]. In the Josephson systems, the phase and num
differences between condensed states are noncommu
macroscopic variables. MQT studies require a metastab
state. In superconducting materials, it was not difficu
to realize this state by introducing an external bias cu
rent. However, there are both technical and conceptu
difficulties for MQT studies in the above-mentioned re
stricted situation. In this paper, we show the existenc
of metastable states inherent in such restricted syste
and discuss thesecondarymacroscopic quantum aspects
of the system through studying quantum decay from th
metastable states.

First, let us show the existence of metastable states
herent in the restricted system. Starting from the Feynm
two-state model [6] taking into account the fixed number o
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particles in the system, the Josephson relations are mo
fied as

dDN
dt

 2K
q

N2 2 sDNd2 sinDw , (1)

dDw

dt
 sEL 2 ERd 1

KDNp
N2 2 sDNd2

cosDw , (2)

whereN  NL 1 NR is the total number of particles in
the weakly coupled macroscopic quantum system. F
example, in superconductors,N is the total number of
Cooper pairs. DN  NL 2 NR is the particle-number
difference between two condensates.K is the coupling
amplitude of the two-state system and is assumed
be real. EL and ER are the ground state energies o
the two condensates. Since it is convenient to repla
EL 2 ER with DNyx in the usual manner wherex is the
capacitance, these coupled equations can be derived f
the following Hamiltonian:

H 
N2

2x
z2 2 KN

p
1 2 z2 cosDw , (3)

wherez  DNyN . The first term represents the capacitiv
energy that enhances the particle nature of the ph
particle, while the second term is the Josephson coupl
energy which stems from the wave nature of the pha
particle. Note that the Josephson coupling energy can
determined solely by its phase in the unrestricted ca
while now in the restricted case, it depends onz in
addition toDw. This difference produces the following
new dynamical behavior ofDw. The equation of motion
for Dw is now given by

d2Dw

dt2  2A sinDw 2 B sin2Dw 1 Osz2d , (4)

whereA  KN3yx andB  sKNd2. The coefficientA is
nothing but the square of the Josephson plasma frequen
The ratio r ; AyB  NyKx characterizes the system
either classically (KN . N2yx; r , 1) or quantum me-
chanically (KN , N2yx; r . 1) and can be changed by
controlling the junction parameters such asx andK within
0 , r , `. The second term on the right-hand side o
© 1998 The American Physical Society 3753



VOLUME 81, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 26 OCTOBER 1998

r-

es
re

At
ay
ce
t

an
is
ed

-
in
s-
n

te
if

n

n
es

hs

by
1]

f

Eq. (4) arises from the differential calculus ofz in the
Josephson coupling energy and exists even if a mean va
of z is zero. The replacement,EL 2 ER ! DNyx, that
we made for our convenience before, is not necessary
the derivation of Eq. (4). This equation of motion implie
that the potential term can effectively be rewritten as

UsDwd . 2Ã cosDw 2
B̃
2

cos2Dw , (5)

whereÃ  KN andB̃  xK2y2. Therefore, Eq. (4) de-
scribes a phase particle moving in the potential as sho
in Fig. 1. This potential involves metastable states lo
cated ats2m 1 1dp whenr , 2. Hereafter we call these
“p states” [7]. To obtain the above results, we assum
only particle-number restriction to the Feynman two-sta
model. Therefore, we stress here thatthis is a general
feature of the particle-number conserved system.Cor-
responding to this, Smerziet al. [8] discussed in detail
similar states called “macroscopic quantum self-trapp
(MQST) states,” but only with regard to a pair of weakly
coupled Bose-Einstein condensed (BEC) alkali atom gas
They argued MQST states originated from the nonline
term in the Gross-Pitaevskii equation. MQST states a
not inherent only in BEC systems but essentially com
from the above-mentioned nature of restricted systems.
fact, they implicitly assume the restriction and are ther
fore equivalent top states. Thus, it is possible to ap
ply p states to other particle-number conserved system
One candidate is the superfluid helium system. Very r
cently metastablep states in a superfluid3He weak link
have been discovered by Backhauset al. [9]. This must
be explained by our model since their system is actually
closed system. Our model might be tested by compari
their measured frequencies atp and2p with the theoreti-
cal values determined by the curvature at the bottom

FIG. 1. A schematic diagram for Josephsonp states.
The arrows show two different decay paths: instanton a
anti-instanton.
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the potential, as well as the oscillation amplitudes. Fu
ther discussion will appear elsewhere.

Next, let us consider quantum decay of phase particl
from the metastable states. It is clear that there a
two ways to decay fromp states. This is apparently
different from previous studies in Josephson systems.
first, it seems that, since the final states of the dec
are essentially identical, one should expect interferen
between these two paths [10]. However, it is unlikely tha
tunneling paths interfere because the resulting Euclide
Lagrangian in an imaginary time path-integral scheme
real, not complex as usual. Next we see that the restrict
case can change this situation.

Before we consider the origin of the tunneling path in
terference, we clarify the properties of the state vector
the restricted situation. The state vector for a whole sy
tem in unrestricted situations is given by a superpositio
of left and right vectors as follows:

jcl 
p

NL eiwL jLl 1
p

NR eiwR jRl . (6)

Under the restrictionN  NL 1 NR , the state vector is
modified as

jcl 

s
N
2

eiay2s
p

1 1 z e2iDwy2jLl

1
p

1 2 z eiDwy2jRld , (7)

wherea  wR 1 wL, which is usually set toa  0 due
to the uniqueness for wave functions. Note that this sta
vector is equivalent to that of a spin one-half system
N  1 and z  cosu, where u is the colatitude in the
spherical polar coordinate. In this case, the Hamiltonia
(3) is expressed as

Ĥ 
s2

z

2x
2 KNsx , (8)

where s’s are Pauli matrices. Thus, our system ca
be mapped onto the spin one-half system. This forc
our state vector to move on 2-sphereS2 and enables us
to consider tunneling in spin space where tunnel pat
interfere.

Now let us consider the origin of the tunneling path
interference. Decay rate by tunneling can be estimated
the imaginary-time transition amplitude expressed as [1

ZsT d ;
ks2j 1 1dp:T je2ĤT js2i 1 1dp:0l
ks2j 1 1dp:T je2Ĥ0T js2i 1 1dp:0l


Z T

0
D Dw D ze2SE , (9)

where we have normalized the amplitude to that o
the harmonic HamiltonianĤ0. SE 

R
dt LE is the

Euclidean action, andi andj are integers. The Euclidean
Lagrangian is

LE  2k Ùc j cl 1 kcjĤ jcl

 2i
N
2

ÙDw 1 i
N
2

z ÙDw 1 H sz, Dwd , (10)



VOLUME 81, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 26 OCTOBER 1998

en
he

be
ll
n

ti-
the
d
at
and

H 
N2

2x
z2 1 UsDwd . (11)

The dot on Dw means ≠t . The first two terms in
Eq. (10) of the Euclidean action define the Wess-Zumin
term and is complex even though we are now workin
in imaginary time. These terms have a topologic
meaning and are equal to the total area bounded by
trajectory on the 2-sphereS2, forming the Berry phase.
The second term,iN ÙDwzy2, shows the noncommuting
relation betweenz and Dw and is incorporated into an
ordinary Lagrangian after the integration forz, which
can be exactly performed due to its bilinear form. Th
first term,iN ÙDwy2, is unique to our restricted Josephso
system and is essential for interference of tunneling pat
In the usual unrestricted Josephson systems, the ove
of the states concerning different times does not produ
this first kind of term. Since our system can be mappe
onto a spin system, the origin of this term is exactly th
same as in a spin system. Of course, this does not aff
the classical equations of motion which result fromdSE .
This Lagrangian is the same as those of previous work
spin tunneling [12,13] except for the potential forms.

Let us calculate the tunneling rate by the imaginar
time path-integral method. In contrast to spin tunnelin
t
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we must take into account the energy difference betwe
adjacent potential minima, the difference between t
upper minimumE1  v1y2 and the lower oneE2 
2ey2 1 v2y2, because the coefficientA cannot be zero.
We assume here that our potential in Eq. (5) can
approximated by an array of asymmetric double-we
potentials. Then, we can employ the valley instanto
technique developed by Aoyamaet al. [14]. The action
of the valley instanton is given by

SE  Ci
N
2

p 2
eT
2

1 Scl
0 , (12)

with

Scl
0  S0 1

e

2
, (13)

where C  61 defines instantons (C  1) and anti-
instantons (C  21). S0 is the action for a symmetric
double-well potential case (e  0). The instanton can
start one of thep states,Dw  mp, and go toDw 
2mp. Likewise, the anti-instanton can go fromDw 
mp to Dw  2sm 2 1dp. When doing the dilute-gas
sum, there is no constraint that instantons and an
instantons must alternate. The transition between
wells involvesk instanton transitions in one direction an
2m 2 k anti-instanton transitions in the other, such th
there areC2m

k configurations. Summing up all instanton
contributions we obtain
of
ZsT d 
X̀

m0

2mX
k0

C2m
k sDe2Scl

0 eiNpy2dksDe2Scl
0 e2iNpy2d2m2kImsTd 

X̀
m0

fDe2Scl
0 seiNpy2 1 e2iNpy2dg2mImsT d


X̀

m0

g2mImsT d , (14)

whereD is the fluctuation determinant without zero mode.ImsT d describes the actual integrations over the positions
the valley instantons with zero-energy contributions of the determinant described byẽ  e 2 sv2 2 v1dy2:

ImsT d ;

(
1, for m  0 ,RT

0 dt2m

Rt2m

0 dt2m21 · · ·
Rt2

0 dt1 eẽst2m2t2m211···1t22t1d, for m $ 0 .
(15)
of
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The finite series can be summed by the use of
generating function method [15] and yields

ZsT d 
l1e2l2T 2 l2e2l1T

l1 2 l2

, (16)

wherel6  2ẽy2 6
p

ẽ2y4 1 g2. Thus the energies o
the two lowest states are given by

E6 
v1

2
1 l6 

v1

2
2

ẽ

2
6

s
ẽ2

4
1 g2 . (17)

For e  0, ImsTd, ZsT d, andE6 are reduced to the zero
bias case. Since these energy eigenvalues and the a
tudes are identical to those obtained by diagonalizing
following matrix,

H 

µ v1

2 g

g 2e 1
v2

2

∂
, (18)
he

pli-
he

we can now read off the tunneling rateG:

G ; jgj  2Dj cossNpy2dje2Scl
0 . (19)

Evidently, the tunneling rate depends on the parity
the total number of particles in the system. IfN is
even, the total tunneling rate is of the same order
the single-instanton rate. But, ifN is odd, the tunneling
rate is zero. Since the cossNpy2d factor arises directly
from the topological phase, it represents an interferen
between the instanton and anti-instanton contributions
tunneling. Thus, the constructive interference betwe
the instanton and anti-instanton occurs whenN is even,
while the destructive interference occurs whenN is odd.
This parity effect is quite different from that found in th
supercondutor, which is based on the pair formation in t
condensates [16,17].
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In MQT, dissipation strongly affects the tunneling rat
by reducing it. Since the parity effect stems from it
topological origin, we expect that it will remain even in
the presence of dissipation. It can be treated in the sa
manner in the biased double-well potential [18,19]. Th
will be discussed elsewhere.

In summary, we have showed the existence of t
metastable states inherent in systems with fixed parti
numbers, which we callp states. Two different decay
paths from thep states interfere through the Wess
Zumino term resulting from restriction of the total numbe
of particles to the wave function. Consequently, quantu
decay rate depends on the parity of the total number
particles in the system.
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