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Ab Initio Calculation of the Hall Conductivity: Positive Hall Coefficient of Liquid Fe
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A first-principle calculation of the Hall coefficient of liquid Fe is performed by using the formula
found by Itoh and the tight-binding, linear muffin-tin orbital, particle source method. The calculated co-
efficient is positive and agrees well with the experiment. Only ordinary potential scattering is involved
in the calculation, and the positive Hall coefficient is thus explained without recourse to any special
mechanism. It is also shown that the hybridization betwpeand d states plays an important role.
[S0031-9007(98)07480-8]

PACS numbers: 72.15.Cz, 71.15.—m, 71.22.+i

Since its first discovery on liquid Fe and Co [1], the successfully to calculate the dc conductivity of liquid
occurrence of the positive Hall coefficient in disorderedtransition metals [6], and its extension to the Hall conduc-
metals has been an outstanding problem for many yeartvity is also possible as explained below.

There have been found by now a variety of materials Itoh’s expression [5] for the Hall conductivity repre-
which show the positive sign of the Hall coefficient in sents the exact field-linear part of the off-diagonal element
their liqguid and amorphous states [2], and a commorof the conductivity tensor. It is given in the form

feature of these systems is that they all include the re3h2 dE( of

transition or the rare-earth metals as constituent elements&xy/B = — f g(—£>

In a recent article, the present authors investigated a
single s-band tight-binding model [3], and claimed that X Am(Trlv,G(E + in)v,6(E — H)
the positive Hall coefficient can result from ordinary X v,G(E + in)v,8(E — H))), (1)

potential scattering, if we properly take into account the o
diamagnetic current. As a continuation of the Work'whereH andv are the one-electron Hamiltonian and the

we present in this Letter our preliminary calculations onV€l0City operator. It has been derived directly from the
liquid 3d transition metals, and report that a quantitatively’<uP0 formula for noninteracting electrons, and is there-
correct value of the coefficient is obtained for liquid Fe. ore valid for any one-electron Hamiltonian. The above
For the case of dc conductivities, it is already Shownfo_rmula has two stnkmg feat_ures of practlcal_lmportance.
that the d states have a dominant contribution to theFirst: the Hall conductivity is solely determined by the
conduction [4]. These states hybridize wjihstates, and states on the Fermi surface. Second, the Green functions
modify their electronic structure, particularly around the@nd the velocity operators involved in the preceding ex-
Fermi level. In the present calculation, we found that thigPreSsion are those for the systemthe absence of a mag-

change in the electronic structure due to the hybridizatiofi€tic field. Therefore, by using the above formula, the

is essential to the sign reversal of the Hall coefficient intchnical difficulty in the numerical evaluation of the Hall
conductivity can be reduced to the level of the dc con-

the liquid Fe. The conclusion is derived from a realistic - i -
ab initio calculation, and we hope to terminate the longductivity calculation, for which TB-LMTO PSM has been
found very useful [6].

controversy on this problem. > )
Our calculation is based on two elements. The first is L€t us outline the procedure of the calculation. In the

the expression for the Hall conductivity derived by Itoh | B-LMTO method, we first transform the Hamiltonian
[5], which has been used in our earlier work [3] anginto a tight-binding representation in terms of localized

which includes full contributions from the diamagnetic 21d mutually orthogonal muffin-tin orbitals [7,8]. To be
current. The formula is exact and tractable, particularlyore precise, the transformed Hamiltonian is described,
suitable for calculations using the Green functions. The/ithin atomic sphere approximation, as [7]

second element is a scheme developed recently by Tanaka H=E,+h—hoh+ ..., (2)

to calculate electronic transport properties from first prin- o ~1/2= ~1/2

ciples [6]. It is a combination of the tight-binding linear hrere = ORi(=)8rr81rr + Api” Srepi g, (3)
muffin-tin orbital (TB LMTO) method [7,8] with the par- where R denotes the atomic site anfl the set of
ticle source method (PSM) [9], which, in fact, allows for azimuth and magnetic quantum numbérand m. The

the evaluation of any physical quantity described in termgparametero defines a set of basis functions within
of a product between the Green functions and other quareach atomic sphere. The matrix elemépt z; is the
tum operators. The formalism has already been appliedcreened structure constant, which depends only on the
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atomic structure. The function&g;(—) and A}e/f are set{#,}. In practice, we can even avoid this procedure
the potential parameters that should be determined selff the amplitudes of the off-diagonal elements are densely
consistently. The former gives the relative position of theand rather uniformly distributed, and if the number of ba-
band center, while the latter determines the bandwidth. Sis vectorsV is sufficiently large (the statistical error esti-
Once the Hamiltonian is given in the tight-binding form, Mated to be proportional to/+/N ).
we can immediately apply the PSM to evaluate the matrix The second is on the form of the current operator,
elements of the Green functions [9]. This is performed byfor which some ambiguity exists in the tight-binding
solving the time-dependent Schrédinger equation calculation. In our calculation we have employed the

d -~ - , v following form:
iy = HI 0 + 1/)0()e (B (4)

for the state vectofj; ¢), on the initial condition] j;¢ =
0) = 0. Here| ) is an arbitrary state vector is a
finite small value, andi(r) is the step function. After
a sufficiently long timeT, the solution can be approxi-
mated as

- Haplxp = x0). (©)
wherea and B are orbital indices and, denotes ther
coordinate of the atomic site, on which the orbitalis
centered. The preceding expression is most commonly
used in the tight-binding calculations. It neglects the off-
diagonal elements of the position operator with respect
to the basis orbitals, but they are usually small when the
. N ~ W(E+in)T orbitals are localized. In the present calculation, we em-
GE +im)|Jj) = }'Elzlj’ﬂe e, ployed a model atomic structure consisting of 938 atoms,
If we take a basis vector fotj), then the preceding which was constructed by Satoh [10] by employing a
state vector consists of the matrix elements of the Greesemiempirical molecular dynamics method [11]. For the
function operator. The relative accuracy of the precedingalculation of electronic structure, we have neglected the
evaluation is determined by the evolution tifieasé =  |ast term of the Hamiltonian (2), although it is not difficult
e T, to include it. This approximation is consistent with the as-
Since the preceding argument applies to any statgéumption that the basis orbitals are mutually orthogonal.
vector | j) chosen initially, we can extend the procedureThe self-consistency of the calculation has been achieved
to evaluate the matrix elements of a product including ano keep up with the accuracy of the potential parameters
arbitrary number of Green functions and/or other quantungveraged over constituent atoms.
operators. For example, the matrix elementsGet + Figure 1 shows the calculated dc and Hall conductivi-
in)AG(E + in) can be evaluated by first obtaining the ties, as functions of energy resolutiap, which is in-
state vectoiG(E + in)| j) as mentioned previously, and cluded in the Schrodinger equation (4). As is seen from
then by replacing| j) by AG(E + in)|j) in Eq. (4), the figure, both conductivities have stable values for all
namely, by repeating the same procedure twice. values of 5, and the Hall conductivity always shows a
We have calculated the Hall conductivity of liquid positive sign. A value ofp represents the width of the
Fe, together with its electronic density of states and thﬂnaginary part of the Green function, which turns into a
dc conductivity, as outlined above. Before describingreal delta function in the limit of) — 0. As 7 decreases
the results, we make a few comments on our actuafrom » = 0.20, both quantities increase monotonically at
calculations. The first is on the trace operation required iffirst, but the dc conductivity starts to decrease abruptly

the calculation of each quantity. This is most convenientlypelow » = 0.01. The Hall conductivity also follows a
done by introducing a random linear combination of the

basis vectors

(vx)ozﬁ =

17:T) = G(E + in)|jre =T, (5)
so that we can derive a state vect®(E + in)| j) from
the solution by

(6)

N
D) = > In)e'®, 7 120

n=1 —— -6
with {0,} being a set of independent random variables .~ |§ '\-\_\ Q
ranging fromo to 2z By making use of a trivial property 3 80 E e SR =
(eife~ 10 = §,,, where( ) implies statistical average, £ e e s RS
the diagonal element of an arbitrary operatGr with c e T
respect td®) can be substituted for its trace, § 40 - —a— dc conductivity: o,, 12 %
@|cldy = SmiClny + 3 =00 Cln’)y & [ e o Maloondutviyio, /B 2

n n#n' 0 1 1 1 0

0.00 0.05 0.10 0.15 0.20

= ;<H|C|n>. 8) n (Ry)

The second term can be made very small by taking a statigzg. 1.

tical average over several different choices of the randorfunctions of energy resolution.
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similar process of decrease, which starts at larger values 40
of i, aroundn = 0.06. .
The decrease of the calculated conductivities with :w s0 L o000 —o
decreasingn comes from the discreet nature of the o< /'/
energy levels of a finite system. According to the Kubo f 0L al
formula, successive transitions must take place in the = ?
vicinity of the Fermi level. The transition is possible 35I |
only between those states in the width sfaround the o or /
Fermi level. Therefore, in a finite system with discreet T
levels, the energy resolution should not be taken too % 00 Py 510 e 520

small. In the present case, the critical valuerpffor a
reliable calculation of the macroscopic dc conductivity is n (RY)

estimated to be aroung = 0.01, for which the number FIG. 2. Hall coefficient of liquid Fe as a function of energy
of the pairs of statesvithin the energy resolution becomes resolution.

comparable to the number of atoms. Practically the same

order of resolution is adopted in earlier conductivity

: . . .7 sign reversal. This is shown in Fig. 3. As is clearly seen
calculations for a similar system size [4]. The condmo_nfrom the figure, thep-d hybridization not only turns the

IS more Ze\_/ere for tgg Haél cono][uctly|ty, b?caus‘é It f'SHaII conductivity positive, but also reduces its magnitude
prr?Siﬁ In termfs i u(; reeg l:_ng:tt|onft, '|ns;thea fO approximately by the factor of 3. The-d hybridization

Wo In the case ot the dc conductivity. IS tNEreloré s thus the greatest influence on the nature of the Hall
a nontrivial task to find the most reliable values of bothConduction

colnductivities. lculation by Tanaka [61. it has b ; The effect ofp-d hybridization on the electronic struc-

n a recent calculation by Tanaka [6], it has been found,,; o hag also been examined in the same manner. Figure 4
that the diffusion constant (the ratio of the dc Cond”Ct'V'compares two projected densities of states (DOS), with
ity to the density of states) is remarkably insensitive to theand withoutp-d hybridization. Withoutp-d hybridizé—
valge of 7 for ¢ 2.0'01’ although the cond'uct|V|ty |t_se|f tion, the projected density gf states resembles a simple-
varies gra'dually withy. It has mad'e possible a reliable metal DOS. A drastic change is seen to occur in the
extre_lp_olatlon to smal, and_ the obtained value of th? con- rojected density op states when the-d hybridization
ductivity of amorphous Fe is very close to the experimentals introduced. The states tend to separate into bonding

value. Here we have attempted a similar plot of the weakz antihonding states, and a shallow dip is created in be-
field Hall coefficient tween. The Fermi level lies near the bottom of the dip.
In our earlier study of a model disordered metal with a
singles-band [3], we have shown that the sign reversal oc-
curs for higher filling fractions of the band, and therefore
claimed that the concept of a hole is not limited to Bloch
electrons. If we apply the same scenario to the present
Ease, a possible interpretation will be that “holes” created
in the bondingp band dominate the Hall conduction, and
Become responsible for the positive contributions. From
this viewpoint, there should be little difference between

Ry = 728 (10)
o-xx
againstn in Fig. 2. It has turned out that the Hall con-
stant is also insensitive t. As is seen from the figure,
it stays almost constant throughout the resolution rang
of n > 0.1. We therefore identify this constant value to
be the macroscopic Hall constant, which is evaluated t
be Ry =32.0 X 107" (m*A~!'s™!). The value agrees
quantitatively with the experiment [1]. The positive Hall
coefficient can thus be obtained from a one-electron Hamil-

tonian with only ordinary potential scattering, without re- 200

course to other mechanisms such as skew scattering or :

scattering due to magnetic disorder. Compared to the . 100 - o o o

previous calculations, however, a new ingredient is in- 5 o Tt e

cluded. This is the diamagnetic current, as emphasized § 0

earlier [3,5], and we conclude that the diamagnetic current ", |~ —®— with p-dhybridization

accounts for the positive Hall coefficient of liquid Fe. £ = without p-dhybridization g —1
We have also repeated the same calculations, with Q Lok /./'/

s-p, p-d, and s-d transfer integrals set equal to zero, o | "

in order to investigate the effect of hybridizations. Then -300 PR R S E——

the respective contribution from each orbital to the Hall 0.0 005 049 045 020

conductivity was found to have a negative sign. By n (Ry)

introducing three different hybridizations one by one, wer|G. 3. Calculated Hall conductivities with and withoptd
found that thep-d hybridization is responsible for the hybridization.
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due only to structural disorder, and that the sign reversal
originates from the diamagnetic current, through the in-
terference betweep andd waves in the course of their
propagations, and the associated changes in the electronic
structure.
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