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Ab Initio Calculation of the Hall Conductivity: Positive Hall Coefficient of Liquid Fe
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A first-principle calculation of the Hall coefficient of liquid Fe is performed by using the formula
found by Itoh and the tight-binding, linear muffin-tin orbital, particle source method. The calculated co-
efficient is positive and agrees well with the experiment. Only ordinary potential scattering is involved
in the calculation, and the positive Hall coefficient is thus explained without recourse to any special
mechanism. It is also shown that the hybridization betweenp and d states plays an important role.
[S0031-9007(98)07480-8]
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Since its first discovery on liquid Fe and Co [1], the
occurrence of the positive Hall coefficient in disordere
metals has been an outstanding problem for many yea
There have been found by now a variety of materia
which show the positive sign of the Hall coefficient in
their liquid and amorphous states [2], and a commo
feature of these systems is that they all include th
transition or the rare-earth metals as constituent elemen

In a recent article, the present authors investigated
single s-band tight-binding model [3], and claimed tha
the positive Hall coefficient can result from ordinary
potential scattering, if we properly take into account th
diamagnetic current. As a continuation of the work
we present in this Letter our preliminary calculations o
liquid 3d transition metals, and report that a quantitative
correct value of the coefficient is obtained for liquid Fe.

For the case of dc conductivities, it is already show
that the d states have a dominant contribution to th
conduction [4]. These states hybridize withp states, and
modify their electronic structure, particularly around th
Fermi level. In the present calculation, we found that th
change in the electronic structure due to the hybridizatio
is essential to the sign reversal of the Hall coefficient
the liquid Fe. The conclusion is derived from a realisti
ab initio calculation, and we hope to terminate the lon
controversy on this problem.

Our calculation is based on two elements. The first
the expression for the Hall conductivity derived by Itoh
[5], which has been used in our earlier work [3] an
which includes full contributions from the diamagnetic
current. The formula is exact and tractable, particular
suitable for calculations using the Green functions. Th
second element is a scheme developed recently by Tan
to calculate electronic transport properties from first prin
ciples [6]. It is a combination of the tight-binding linear
muffin-tin orbital (TB LMTO) method [7,8] with the par-
ticle source method (PSM) [9], which, in fact, allows fo
the evaluation of any physical quantity described in term
of a product between the Green functions and other qua
tum operators. The formalism has already been appli
0031-9007y98y81(17)y3727(4)$15.00
d
rs.
ls

n
e
ts.
a

t

e
,
n
ly

n
e

e
is
n

in
c
g

is

d

ly
e

aka
-

r
s
n-

ed

successfully to calculate the dc conductivity of liquid3d
transition metals [6], and its extension to the Hall conduc
tivity is also possible as explained below.

Itoh’s expression [5] for the Hall conductivity repre-
sents the exact field-linear part of the off-diagonal eleme
of the conductivity tensor. It is given in the form

sxyyB ­ 2
pe3h̄2

c

Z dE
2p

√
2

≠f
≠E

!
3 ImkTrfyxGsE 1 ihdyydsE 2 Hd

3 yxGsE 1 ihdyydsE 2 Hdgl , (1)

whereH andy are the one-electron Hamiltonian and the
velocity operator. It has been derived directly from th
Kubo formula for noninteracting electrons, and is there
fore valid for any one-electron Hamiltonian. The above
formula has two striking features of practical importance
First, the Hall conductivity is solely determined by the
states on the Fermi surface. Second, the Green functio
and the velocity operators involved in the preceding ex
pression are those for the systemin the absence of a mag-
netic field. Therefore, by using the above formula, the
technical difficulty in the numerical evaluation of the Hall
conductivity can be reduced to the level of the dc con
ductivity calculation, for which TB-LMTO PSM has been
found very useful [6].

Let us outline the procedure of the calculation. In th
TB-LMTO method, we first transform the Hamiltonian
into a tight-binding representation in terms of localized
and mutually orthogonal muffin-tin orbitals [7,8]. To be
more precise, the transformed Hamiltonian is describe
within atomic sphere approximation, as [7]

H ­ En 1 h̄ 2 h̄ōh̄ 1 . . . , (2)

h̄RL,R0L ­ v̄Rls2ddRR0dLL0 1 D̄
1y2
Rl S̄RL,R0L0D̄

1y2
R0l0 , (3)

where R denotes the atomic site andL the set of
azimuth and magnetic quantum numbersl and m. The
parameter ō defines a set of basis functions within
each atomic sphere. The matrix elementS̄RL,R0L0 is the
screened structure constant, which depends only on t
© 1998 The American Physical Society 3727
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atomic structure. The functions̄vRls2d and D̄
1y2
Rl are

the potential parameters that should be determined se
consistently. The former gives the relative position of th
band center, while the latter determines the bandwidth.

Once the Hamiltonian is given in the tight-binding form
we can immediately apply the PSM to evaluate the matr
elements of the Green functions [9]. This is performed b
solving the time-dependent Schrödinger equation

i
d
dt

j j̃; tl ­ Hj j̃; tl 1 j jlustde2isE1ihdt (4)

for the state vectorj j̃; tl, on the initial conditionj j̃; t ­
0l ­ 0. Here j jl is an arbitrary state vector,h is a
finite small value, andustd is the step function. After
a sufficiently long timeT , the solution can be approxi-
mated as

j j̃; T l . GsE 1 ihd j jle2isE1ihdT , (5)
so that we can derive a state vectorGsE 1 ihd j jl from
the solution by

GsE 1 ihd j jl ­ lim
T!`

j j̃; T leisE1ihdT . (6)

If we take a basis vector forj jl, then the preceding
state vector consists of the matrix elements of the Gre
function operator. The relative accuracy of the precedin
evaluation is determined by the evolution timeT asd ­
e2hT .

Since the preceding argument applies to any sta
vector j jl chosen initially, we can extend the procedur
to evaluate the matrix elements of a product including a
arbitrary number of Green functions and/or other quantu
operators. For example, the matrix elements ofGsE 1

ihdAGsE 1 ihd can be evaluated by first obtaining the
state vectorGsE 1 ihd j jl as mentioned previously, and
then by replacingj jl by AGsE 1 ihd j jl in Eq. (4),
namely, by repeating the same procedure twice.

We have calculated the Hall conductivity of liquid
Fe, together with its electronic density of states and t
dc conductivity, as outlined above. Before describin
the results, we make a few comments on our actu
calculations. The first is on the trace operation required
the calculation of each quantity. This is most convenient
done by introducing a random linear combination of th
basis vectors

jFl ­
NX

n­1

jnleiun , (7)

with hunj being a set of independent random variable
ranging from0 to 2p. By making use of a trivial property
keiun e2iun0 lst ­ dnn0, wherek lst implies statistical average,
the diagonal element of an arbitrary operatorC with
respect tojFl can be substituted for its trace,

kFjCjFl ­
X
n

knjCjnl 1
X

nfin0

eisun2un0 dknjCjn0l

.
X

n
knjCjnl . (8)

The second term can be made very small by taking a sta
tical average over several different choices of the rando
3728
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set hunj. In practice, we can even avoid this procedu
if the amplitudes of the off-diagonal elements are dens
and rather uniformly distributed, and if the number of b
sis vectorsN is sufficiently large (the statistical error esti
mated to be proportional to1y

p
N ).

The second is on the form of the current operato
for which some ambiguity exists in the tight-bindin
calculation. In our calculation we have employed th
following form:

syxdab ­
i
h̄

Habsxb 2 xad , (9)

wherea and b are orbital indices andxa denotes thex
coordinate of the atomic site, on which the orbitala is
centered. The preceding expression is most commo
used in the tight-binding calculations. It neglects the o
diagonal elements of the position operator with respe
to the basis orbitals, but they are usually small when t
orbitals are localized. In the present calculation, we e
ployed a model atomic structure consisting of 938 atom
which was constructed by Satoh [10] by employing
semiempirical molecular dynamics method [11]. For th
calculation of electronic structure, we have neglected t
last term of the Hamiltonian (2), although it is not difficul
to include it. This approximation is consistent with the a
sumption that the basis orbitals are mutually orthogon
The self-consistency of the calculation has been achie
to keep up with the accuracy of the potential paramet
averaged over constituent atoms.

Figure 1 shows the calculated dc and Hall conductiv
ties, as functions of energy resolutionh, which is in-
cluded in the Schrödinger equation (4). As is seen fro
the figure, both conductivities have stable values for
values ofh, and the Hall conductivity always shows
positive sign. A value ofh represents the width of the
imaginary part of the Green function, which turns into
real delta function in the limit ofh ! 0. As h decreases
from h ­ 0.20, both quantities increase monotonically a
first, but the dc conductivity starts to decrease abrup
below h ­ 0.01. The Hall conductivity also follows a
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FIG. 1. Calculated dc and Hall conductivities of liquid Fe a
functions of energy resolutionh.
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similar process of decrease, which starts at larger valu
of h, aroundh ­ 0.06.

The decrease of the calculated conductivities wi
decreasingh comes from the discreet nature of th
energy levels of a finite system. According to the Kub
formula, successive transitions must take place in t
vicinity of the Fermi level. The transition is possible
only between those states in the width ofh around the
Fermi level. Therefore, in a finite system with discree
levels, the energy resolution should not be taken t
small. In the present case, the critical value ofh for a
reliable calculation of the macroscopic dc conductivity
estimated to be aroundh ­ 0.01, for which the number
of thepairs of stateswithin the energy resolution become
comparable to the number of atoms. Practically the sa
order of resolution is adopted in earlier conductivit
calculations for a similar system size [4]. The conditio
is more severe for the Hall conductivity, because it
expressed in terms offour Green functions, instead of
two in the case of the dc conductivity. It is therefor
a nontrivial task to find the most reliable values of bot
conductivities.

In a recent calculation by Tanaka [6], it has been foun
that the diffusion constant (the ratio of the dc conducti
ity to the density of states) is remarkably insensitive to th
value ofh for h $ 0.01, although the conductivity itself
varies gradually withh. It has made possible a reliable
extrapolation to smallh, and the obtained value of the con
ductivity of amorphous Fe is very close to the experimen
value. Here we have attempted a similar plot of the wea
field Hall coefficient

RH ­
sxyyB

s2
xx

(10)

againsth in Fig. 2. It has turned out that the Hall con
stant is also insensitive toh. As is seen from the figure,
it stays almost constant throughout the resolution ran
of h . 0.1. We therefore identify this constant value t
be the macroscopic Hall constant, which is evaluated
be RH ­ 32.0 3 10211 (m3 A21 s21). The value agrees
quantitatively with the experiment [1]. The positive Ha
coefficient can thus be obtained from a one-electron Ham
tonian with only ordinary potential scattering, without re
course to other mechanisms such as skew scattering
scattering due to magnetic disorder. Compared to t
previous calculations, however, a new ingredient is i
cluded. This is the diamagnetic current, as emphasiz
earlier [3,5], and we conclude that the diamagnetic curre
accounts for the positive Hall coefficient of liquid Fe.

We have also repeated the same calculations, w
s-p, p-d, and s-d transfer integrals set equal to zero
in order to investigate the effect of hybridizations. The
the respective contribution from each orbital to the Ha
conductivity was found to have a negative sign. B
introducing three different hybridizations one by one, w
found that thep-d hybridization is responsible for the
es
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FIG. 2. Hall coefficient of liquid Fe as a function of energy
resolutionh.

sign reversal. This is shown in Fig. 3. As is clearly see
from the figure, thep-d hybridization not only turns the
Hall conductivity positive, but also reduces its magnitud
approximately by the factor of 3. Thep-d hybridization
has thus the greatest influence on the nature of the H
conduction.

The effect ofp-d hybridization on the electronic struc-
ture has also been examined in the same manner. Figur
compares two projected densities of states (DOS), wi
and withoutp-d hybridization. Withoutp-d hybridiza-
tion, the projected density ofp states resembles a simple
metal DOS. A drastic change is seen to occur in th
projected density ofp states when thep-d hybridization
is introduced. Thep states tend to separate into bondin
and antibonding states, and a shallow dip is created in b
tween. The Fermi level lies near the bottom of the dip
In our earlier study of a model disordered metal with
singles-band [3], we have shown that the sign reversal o
curs for higher filling fractions of the band, and therefor
claimed that the concept of a hole is not limited to Bloc
electrons. If we apply the same scenario to the prese
case, a possible interpretation will be that “holes” create
in the bondingp band dominate the Hall conduction, and
become responsible for the positive contributions. Fro
this viewpoint, there should be little difference betwee
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FIG. 3. Calculated Hall conductivities with and withoutp-d
hybridization.
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FIG. 4. Comparison of the projected DOS of liquid Fe with
and withoutp-d hybridization.

the disordered and the crystalline states. Indeed, many3d
transition metals (V, Cr, Fe, and Co) show positive Ha
coefficients in their crystalline states, and we may app
the same interpretation to these cases.

In summary, we have calculated the Hall conductiv
ity of liquid Fe from first principles, including the dia-
magnetic current. The TB-LMTO PSM is employed, an
the calculated Hall coefficient is positive and agrees we
with the experimental value. It is shown that the positiv
Hall coefficient of liquid Fe can be explained by scatterin
3730
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due only to structural disorder, and that the sign rever
originates from the diamagnetic current, through the i
terference betweenp and d waves in the course of their
propagations, and the associated changes in the electr
structure.
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