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Standing and Moving Gap Solitons in Resonantly Absorbing Gratings
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We present hitherto unknown forms of soliton dynamics in the forbidden frequency gap of a Brag
reflector, modified by periodic layers of near-resonant two-level systems (TLS). Remarkably, eve
extremely low TLS densities create an allowed band within the forbidden gap. This spectrum giv
rise, foranyBragg reflectivity, to a vast family of stable gap solitons, both standing and moving, having
a unique analytic form, anarbitrary pulse area, and inelastic collision properties. These findings
suggest new possibilities of transmission control, noise filtering, or “dynamical cavities” (self-traps) fo
both weak and strong signal pulses. [S0031-9007(98)07472-9]
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The study of light-matter interactions in periodic dielec
tric structures has developed into a vast research area.
the heart of this area is the interplay between the res
nant reflections induced by the Bragg reflector, givin
rise to photonic band gaps, and their dynamical modific
tions due to nonlinear light-matter interactions. The pulse
mode of propagation in such structures exhibits a varie
of unique fundamentally and technologically interestin
regimes: nonlinear filtering, switching, and distributed
feedback amplification [1]. Of particular interest aregap
solitons (GS), i.e., moving or standing (quiescent) self
localized pulses, whose spectra are centered in a g
induced by the grating. GS in Kerr-nonlinear Bragg re
flectors have been extensively analyzed [2] and experime
tally observed [3]. Recently, GS have also been predict
in Bragg-reflecting second-harmonic generating media [4

This Letter is dedicated to a different mechanism su
porting GS in periodic media, which is based onnear-
resonantfield-atom interactions. The first step in this
direction has been made in Ref. [5], where anexactmov-
ing GS solution has been found in a periodic structure com
posed of thin layers of resonant two-level systems (TLS
separated by half-wavelength nonabsorbing dielectric la
ers, i.e., aresonantly absorbing Bragg reflector(RABR).
In the soliton solution obtained in Ref. [5], the combine
area of the forward- and backward-propagating pulses
2p, characteristic of self-induced transparency (SIT) so
tons in uniform media [6]. The existence of this solito
stems from the cooperative resonant atomic polarizab
ity, which compensates for the periodic modulation of th
linear polarizability in the Bragg reflector [5,7]. The analy
sis presented in Ref. [5] leaves several open questions
fundamental and applied importance: (i) Can one ove
come the basic restriction implicit in this solution, namely
that the cooperative lengthover which a SIT pulse is
formed, must beshorterthan the Bragg reflection length?
If this restriction is essential, then the soliton would onl
exist in weakly reflecting Bragg structures, which ca
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hardly serve as efficient filters that block pulses other th
GS. (ii) Are GS admitted in a RABR for weak pulse
whose area islessthan2p? (iii) Is there a quiescent coun-
terpart to the moving GS, which would implycomplete
dynamic confinementof light in the RABR? (iv) What is
the result of collisions between moving GS in this system

In this Letter, we present answers to the above questio
(a) The RABR supports a vast family of GS characte
ized bytwo parameters, the soliton amplitude and veloci
(analogously to GS in Kerr-nonlinear gratings [2]), whic
exists for any ratio of reflection to cooperative lengths
(b) It includes a subfamily of quiescent or zero-velocit
(ZV) solitons with anarbitrary pulse area,whoseexact
analytical form represents an essentially novel type of so
ton solutions in nonlinear optics. (c) Moving GS are foun
analytically in the small-amplitude limit, where they re
duce to the nonlinear-Schrödinger (NLS) solitons, and a
numerically, as deviations from the exact subfamily foun
in [5] or from the exact ZV solitons. Our simulations indi
cate that both ZV and moving GS arestable. (d) We simu-
late collisions between moving GS, demonstrating th
they may be either weakly or strongly inelastic. Thes
findings reveal a basically new phenomenon: the multip
reflections in a grating can effectively change the pul
coupling to the TLS, so that soliton transmission is not r
stricted to pulses of2p area, as in ordinary SIT, and occur
(at an appropriate frequency) forany ratio of reflection to
cooperative lengths.

Our starting point is the equations for the sumS1 of
the amplitudes of the forward- and backward-propagati
electromagnetic waves, polarizationP, and population
inversion w, derived in Ref. [5] from the coupled
Maxwell-Bloch equations for the bidirectional propaga
tion in RABR:

√
≠2

≠t2 2
≠2

≠z 2

!
S1 ­ 2

≠

≠t
P 1 2ihP 2 h2S1 , (1)
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P ­ wS1 2 idP , (2)

≠

≠t
w ­ 2

1
2

sPpS1 1 PSp
1d , (3)

wheret and z are the normalized time and propagatio
distance, andd is the effective detuning of the field
from the atomic resonance. The key parameterh ­ lcylr

is the ratio of the Arrechi-Courtens cooperativity lengt
(lc ­ 2cyvp, wherevp is an effective plasma frequency
[6]) to the reflection length (lr ­ 4de0ypDe, whered is
the period andDe the variation of the dielectric index
of the periodic structure with average dielectric inde
e0) [5]. The crucial assumption in the derivation o
Eqs. (1)–(3) is that theresonant absorbers are confined
to thin layers,periodically inserted between passive thic
dielectric layers. The system (1)–(3) can be simplifie
substituting into Eq. (3) the expression forS1 following
from (2), one obtains an equation that can be explicit
integrated to yield a simple algebraic relation

w ­ 6

q
1 2 jPj2 , (4)

that should be further inserted into Eq. (1).
First, we linearize Eqs. (1)–(3) in order to obtai

a crucially important characteristic of the model, it
dispersion relation, by fixingw ­ 21 and substituting
into the linearized equationsS1, P , expsikz 2 ivtd.
The resulting dispersion relation,

sv 2 dd fv2 2 k2 2 s2 1 h2dg 1 2sh 2 dd ­ 0 ,

(5)
is displayed in Fig. 1. The frequencies correspon
ing to k ­ 0 are v ­ h and v ­ 2

1
2 sh 2 dd 6q

2 1
1
4 sh 1 dd2 , while at k2 ! ` the asymptotic ex-

pressions for different branches of the dispersion relati
are v ­ 6k and v ­ d 1 2sh 2 ddk22. Thus, the
3648
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FIG. 1. The spectrum of the linearized RABR model (1)–(3)
The parts of the upper and lower gaps filled with the soliton
are shaded: (a) The weak-reflectivity case when the conditio
(10) holds (h ­ 0.6, d ­ 0); (b) the opposite case (h ­ 2,
d ­ 0).

linearized spectrum always splits intotwo gaps, sepa-
rated by an allowed band, except for the special cas

h ­ h0 ; 1
2 d 1

q
1 1

1
4 d2 , when the upper gap closes

down. The upper and lower band edges are those of t
periodic structure, shifted by the induced TLS polariza
tion in the limit of a strong reflection. They approach the
SIT spectral gap for forward- and backward-propagatin
waves [7] in the limit of weak reflection. The allowed
middle band corresponds to a collective atomic polariza
tion excitation.

Inside these gaps, ZV solitons are sought in the form

S1sz , td ­ e2ixtssz d, Psz , td ­ ie2ixtqsz d ,

(6)
with real functionsssz d andqsz d, x being the frequency
detuning from the gap center. Using Eqs. (2) and (4), w
can express the variablesw andq in terms ofs:

w ­ 6sx 2 dd fs2 1 sx 2 dd2g21y2,

q ­ 6sfs2 1 sx 2 dd2g21y2.
(7)

The remaining equation forssz d is
d2s

dß2 ­ 2
dF
ds

, Fssd ; 2

∑
1
2

sh2 2 x2ds2 6 2sh 2 xd s
q

sx 2 dd2 1 s2 2 jx 2 djd
∏

, (8)
wn
is
is
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n
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an
where the6 signs correspond to those in Eqs. (7).
Equation (8) is the Newton equation of motion for a

particle with the coordinates in the potentialFssd. It
gives rise to a solitonlike solution [8], provided that the
upper sign is chosen in Eqs. (7), and the frequencyx

satisfies the conditionsjxj . h, jsx 1 hd sx 2 ddj ,

2. These inequalities can be solved to yield, in an explic
form, two frequency intervals in which one has the ZV
gap solitons: atx . 0, it is

h , x ,

s
1
4

sh 1 dd2 1 2 2
1
2

sh 2 dd , (9)

which exists only for small and moderateh (the weak
Bragg-reflectivity limit)

h ,
1
2

d 1

s
1 1

1
4

d2 , (10)
it

and another interval atx , 0, which exists for any
reflectivity

h , 2x ,

s
1
4

sh 1 dd2 1 2 1
1
2

sh 2 dd . (11)

On comparing these expressions with the spectrum sho
in Fig. 1, we conclude that part of the lower gap
always empty from solitons, while the upper gap
completely filled with ZV solitons in the weak-reflectivity
case (10) [Fig. 1(a)] and completely empty in the stron
reflectivity case (11) [Fig. 1(b)]. It is relevant to mentio
that a partly empty gap has recently been found in t
model combining Bragg reflection and second harmon
generation [4].

Inside the frequency intervals (9) and (11), Eq. (8) c
be integrated by means of the substitution

ssz d ; 2jx 2 djrsz d f1 2 r2sz dg21. (12)
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This yields the soliton shape in an implicit form, i.e.,z

vs r:

jz j ­

s
2

Ç
x 2 d

x 2 h

Ç
3 hs1 2 r2

0d21y2 tan21f
q

sr2
0 2 r2dys1 2 r

2
0d g

1 s2r0d21 lnfsr0 1

q
r

2
0 2 r2 dyrgj , (13)

where r
2
0 ; 1 2

1
2 jsx 1 hd sx 2 ddj [note that r

2
0 is

positive under the above conditions (9)–(11)]. It can b
checked that this ZV gap soliton is alwayssinglehumped.
Its amplitude can be found from Eq. (13),

smax ­ 4r0y
q

jx 1 hj . (14)

The most drastic difference of these new solitons fro
the well-known SIT pulses [6] is that the area of th
ZV soliton is not restricted to2p, but, instead, may take
an arbitrary value. As mentioned above, this basic new
result shows that the Bragg reflector can enhance (
multiple reflections) the field coupling to the TLS, so
as to make the pulse areaeffectively2p. In the limit
of the small-amplitude and small-area solitons,r

2
0 ø 1,

Eq. (13) can be easily inverted, the ZV soliton becomin
a broad sechlike pulse:

s ø 2jx 2 djr0 sech

√s
2

Ç
x 2 h

x 2 d

Ç
r0z

!
. (15)

In the opposite limit,1 2 r
2
0 ! 0, i.e., for vanishingly

small jx 1 hj, the soliton’s amplitude (14) becomes ver
large, and further analysis reveals that, in this case, t
soliton is characterized by abroad central partwith a
width ,s1 2 r

2
0d21y2 [Fig. 2(a)]. Another special limit

is x 2 h ! 0. It can be checked that in this limit,
the amplitude (14) remains finite, but thesoliton width
divergesas jx 2 hj21y2 [Fig. 2(b)]. Thus, although the
ZV soliton has a single hump, its shape is, in genera
strongly different from that of the traditional nonlinear
Schrödinger sech pulse.

The stability of the ZV gap solitons was tested numer
cally by means of direct simulations of the full system
(1)–(3), the initial condition taken as the exact solito
with a small perturbation added to it. Running the simu
lations at randomly chosen values of the parameters,
e
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FIG. 2. Zero-velocity solitonsjS1sz dj2 (a) d ­ 0, h ­ 0.9,
x ­ 20.901 (divergent width and amplitude); (b) the same a
(a), but for x ­ 0.901 (divergent width and finite amplitude).
(c) Pulse(s) obtained as a result of “pushing” of zero-veloc
solitons (dashed lines) by the initial multiplier exps2ipz d after
a sufficiently long evolution (t ­ 400) (solid lines). d ­ 0,
h ­ 4, x ­ 24.4, and p ­ 0.1; (d) the same as (c), but for
p ­ 0.5.

have always found the ZV GS to be apparentlystable.
However, the possibility of their dynamical and structur
instability needs to be further investigated as has be
done in the case of GS in a Kerr-nonlinear fiber with
grating [9,10].

Although the system of Eqs. (1)–(3) is not explic
itly Galilean or Lorentz invariant, translational invari
ance is expected on physical grounds. Hence, a
family of soliton solutions should have velocity as on
of its parameters. This can be explicitly demonstrat
in the limit of the small-amplitude large-width soliton
[cf. Eq. (15)]. We search for the corresponding solutio
in the form S1sz , td ­ ssz , td exps2iv0td, Psz , td ­
iqsz , td exps2iv0td [cf. Eqs. (6)], wherev0 is the fre-
quency corresponding tok ­ 0 on any of the three
branches of the dispersion relation (5) (see Fig. 1), a
the functionsssz , td andqsz , td are assumed to be slowly
varying in comparison with exps2iv0td. Under these as-
sumptions we arrive at the following asymptotic equatio
for ssz , td:
"
2i

v0sv0 2 dd2 2 h 1 d

sv0 2 dd2

≠

≠t
1

≠2

≠z 2 1
v0 2 h

sv0 2 dd3 jsj2

#
s ­

√
h2 2 v2

0 1 2
v0 2 h

v0 2 d

!
s . (16)
at,
g

Since this equation is of the NLS form, it has the fu
two-parameter family of soliton solutions, including th
moving ones [8].

In order to check the existence and stability of th
moving solitons numerically, we simulated Eqs. (1)–(3
for an initial configuration in the form of the ZV soliton
multiplied by expsipz d with some wave numberp, in
ll
e

e
)

order to “push” the soliton. The results demonstrate th
at sufficiently smallp, the push indeed produces a movin
stable soliton [Fig. 2(c)]. However, ifp is large enough,
the multiplication by expsipz d turns out to be a more
violent perturbation, splitting the initial pulse into two
solitons, one quiescent and one moving [Fig. 2(d)].
3649
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A one-parameter subfamily of moving GS was found
an exact form in Ref. [5]:

S1 ­ A0 expfisaz 2 Dtdg sech

∑
1
2

A0usz 2 utd
∏

,

(17)
where D is the detuning from the gap center, an
the squared amplitudeA2

0 ­ s1 2 u2d22f8u2s1 2 u2d 2

h2s1 1 u2d2g is expressed in terms of the velocityu
(normalized toc). The values ofu are restricted by
the conditionA2

0 . 0, which, in particular, forbidsu ­
0. The present analysis strongly suggests, but does
rigorously prove, that the subfamily (17) belongs t
a far more general two-parameter family, whose oth
particular representatives are the exact ZV solitons (1
and the approximate small-amplitude solitons determin
by Eq. (16).

An issue of obvious interest is collisions betwee
GS moving at different velocities. In the asymptoti
small-amplitude limit reducing to the NLS equation (16
the collision must be elastic. To get a more gene
insight, we simulated collisions between two soliton
given by (17). The conclusion is that the collision i
always inelastic,directly attesting to the nonintegrability
of the model. Typical results are displayed in Fig.
which demonstrates that the inelasticity may be stron
depending on the parameters.

The present findings can be demonstrated in perio
cally etched dielectric structures containing either strain
quantum wells or gas as the active TLS. For examp
we can use HF gas whose active dipole transition at
wavelengthl ­ 84 mm is resonant with a photonic band
edge. A 4.5 mTorr gas pressure corresponds to coop
tive length lc ­ 114 cm and inhomogeneous dephasin
length cTp

2 , 104 cm. In a structure with Bragg reflec-
tion length lr ­ 100l ø lc, we then haveh ­ 2d ­
2135.7, which allow for GS detuned by2 3 103 cm21

from both band edges with,2 ns width and4 3 109 s21

Rabi frequency. The suggested structures can be use
realize any kind of GS: standing (ZV) GS require initia
localizedexcitation of the near-resonant medium by cou

FIG. 3. Typical example of inelastic collisions between th
solitons (17) at d ­ 0 and h ­ 0.5, with the velocities
(normalized toc) u1 ­ 0.6, u2 ­ 20.75.
3650
in

d

not
o
er
3)
ed

n
c
),
ral
s
s

3,
g,

di-
ed
le,
the

era-
g

d to
l
n-

e

terpropagating laser beams, whereas moving GS can
launched by a single near-resonant laser beam propag
ing along the structure.

In conclusion, we have demonstrated that a period
array of near-resonant two-level systems combined wi
a Bragg grating gives rise, forany Bragg reflectivity, to
a vast family of stable gap solitons, both standing an
moving, having a unique analytic form, anarbitrary pulse
area (Fig. 2), and inelastic collision properties (Fig. 3)
Remarkably, even extremely low TLS densities create a
allowed band within the forbidden gap (Fig. 1). Thes
findings reveal hitherto unknown forms of soliton dynam
ics in a nonintegrable, strongly nonlinear system. The
origin is the surprisingly rich interplay between mul-
tiple reflections and cooperative, near-resonant fiel
matter interaction, which removes the pulse-are
restrictions of ordinary self-induced transparency. Thes
findings can lead to the realization of novel, highly advan
tageous filters, which can stably transmit selected sign
frequencies through their spectral gaps, while effective
blocking others, with no restriction on the signal pulse
area. Alternatively, they can be used to spatially confin
(self-trap) light in certain frequency bands, thus creatin
“dynamical cavities.”
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