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Standing and Moving Gap Solitons in Resonantly Absorbing Gratings
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We present hitherto unknown forms of soliton dynamics in the forbidden frequency gap of a Bragg
reflector, modified by periodic layers of near-resonant two-level systems (TLS). Remarkably, even
extremely low TLS densities create an allowed band within the forbidden gap. This spectrum gives
rise, forany Bragg reflectivity, to a vast family of stable gap solitons, both standing and moving, having
a unique analytic form, armrbitrary pulse area, and inelastic collision properties. These findings
suggest new possibilities of transmission control, noise filtering, or “dynamical cavities” (self-traps) for
both weak and strong signal pulses. [S0031-9007(98)07472-9]

PACS numbers: 42.65.Tg, 03.40.Kf, 42.50.Md, 78.66.—w

The study of light-matter interactions in periodic dielec- hardly serve as efficient filters that block pulses other than
tric structures has developed into a vast research area. &S. (ii) Are GS admitted in a RABR for weak pulses
the heart of this area is the interplay between the resonhose area ifessthan2#? (iii) Is there a quiescent coun-
nant reflections induced by the Bragg reflector, givingterpart to the moving GS, which would implsomplete
rise to photonic band gaps, and their dynamical modificadynamic confinemendf light in the RABR? (iv) What is
tions due to nonlinear light-matter interactions. The pulsedhe result of collisions between moving GS in this system?
mode of propagation in such structures exhibits a variety In this Letter, we present answers to the above questions:
of unique fundamentally and technologically interesting(a) The RABR supports a vast family of GS character-
regimes: nonlinear filtering, switching, and distributed-ized bytwo parameters, the soliton amplitude and velocity
feedback amplification [1]. Of particular interest @y@p  (analogously to GS in Kerr-nonlinear gratings [2]), which
solitons (GS), i.e., moving or standing (quiescent) self-exists forany ratio of reflection to cooperative lengths.
localized pulses, whose spectra are centered in a gdp) It includes a subfamily of quiescent or zero-velocity
induced by the grating. GS in Kerr-nonlinear Bragg re-(ZV) solitons with anarbitrary pulse areawhoseexact
flectors have been extensively analyzed [2] and experimeranalytical form represents an essentially novel type of soli-
tally observed [3]. Recently, GS have also been predictetbn solutions in nonlinear optics. (c) Moving GS are found
in Bragg-reflecting second-harmonic generating media [4]analytically in the small-amplitude limit, where they re-

This Letter is dedicated to a different mechanism supduce to the nonlinear-Schrédinger (NLS) solitons, and also
porting GS in periodic media, which is based pear- numerically, as deviations from the exact subfamily found
resonantfield-atom interactions. The first step in this in [5] or from the exact ZV solitons. Our simulations indi-
direction has been made in Ref. [5], whereesactmov-  cate that both ZV and moving GS astable (d) We simu-
ing GS solution has been found in a periodic structure comlate collisions between moving GS, demonstrating that
posed of thin layers of resonant two-level systems (TLSthey may be either weakly or strongly inelastic. These
separated by half-wavelength nonabsorbing dielectric layfindings reveal a basically new phenomenon: the multiple
ers, i.e., aesonantly absorbing Bragg reflectRABR).  reflections in a grating can effectively change the pulse
In the soliton solution obtained in Ref. [5], the combinedcoupling to the TLS, so that soliton transmission is not re-
area of the forward- and backward-propagating pulses istricted to pulses df7 area, as in ordinary SIT, and occurs
247, characteristic of self-induced transparency (SIT) soli{at an appropriate frequency) fany ratio of reflection to
tons in uniform media [6]. The existence of this soliton cooperative lengths.
stems from the cooperative resonant atomic polarizabil- Our starting point is the equations for the stin of
ity, which compensates for the periodic modulation of thethe amplitudes of the forward- and backward-propagating
linear polarizability in the Bragg reflector [5,7]. The analy- electromagnetic waves, polarizatiah, and population
sis presented in Ref. [5] leaves several open questions d@iversion w, derived in Ref. [5] from the coupled
fundamental and applied importance: (i) Can one overMaxwell-Bloch equations for the bidirectional propaga-
come the basic restriction implicit in this solution, namely, tion in RABR:
that the cooperative lengthover which a SIT pulse is
formed, must beshorterthan the Bragg reflection length? ) )

If this restriction is essential, then the soliton would only (3_ d )2+ —9 ai P +2inP — 7°3., (1)
T

exist in weakly reflecting Bragg structures, which can ar 8—4’2
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wherer and { are the normalized time and propagation 3 gap “ gap “
distance, and§ is the effective detuning of the field /’\ -n
from the atomic resonance. The key parametet [./1,

is the ratio of the Arrechi-Courtens cooperativity length
(Ic = 2¢/w,, Wwherew, is an effective plasma frequency FIG. 1. The spectrum of the linearized RABR model (1)—(3).
[6]) to the reflection lengthl{ = 4dey/7 A€, whered is The parts of the upper and lower gaps filled with the solitons
the period andAe the variation of the dielectric index are shaded: (a) The weak-reflectivity case when the condition
L . . _ (20) holds ¢ = 0.6, 6 = 0); (b) the opposite casen(= 2,
of the periodic structure with average dielectric indexs
. VR i 5 =0).
€9) [5]. The crucial assumption in the derivation of
Egs. (1)-(3) is that theesonant absorbers are confined
to thin layers,periodically inserted between passive thick
dielectric layers. The system (1)—(3) can be simplified: : :
substituting into Eq. (3) the expression fBr. following 1 = mo = 58 + /1 + 382, when the upper gap closes
from (2), one obtains an equation that can be explicitydown. The upper and lower band edges are those of the
integrated to yield a simple algebraic relation periodic structure, shifted by the induced TLS polariza-
/ tion in the limit of a strong reflection. They approach the
— — 2
i _i ! !Pl ’ ) SIT spectral gap for forward- and backward-propagating
that should be further inserted into Eq. (1). waves [7] in the limit of weak reflection. The allowed

First, we linearize Egs. (1)—(3) in order to obtain middle band corresponds to a collective atomic polariza-
a crucially important characteristic of the model, itstion excitation.

linearized spectrum always splits intwvo gaps, sepa-
rated by an allowed band, except for the special case,

dispersion relation, by ﬁXirr:gV = -1 ag(d substituting  Inside these gaps, ZV solitons are sought in the form
into the linearized equationy ,, P ~ exp(ik{ — iwT). _ —iyr _ . o—iyr
The resulting dispersion relation, 24(¢7) = e Na()), P, 7) = ie*7q({),

(0 — 8)[w> = k> = @+ 7)) + 2 — 8) = 0, ©)

with real functionso(¢) andg(¢), y being the frequency
_ . _ _ ) () detuning from the gap center. Using Egs. (2) and (4), we
is displayed in Fig. 1. The frequencies correspondran express the variablesandg in terms ofo:

ing to k=0 are w=7n and w = —%(77 - §8) = W=ty = 8)[o? + (y — 672

1 . .
V2 + z(n + 8)2, while at k> — « the asymptotic ex- _ 5 21-1/2 (7)
pressions for different branches of the dispersion relation q = xolo” + (x = &1
are w = *k and w = 8 + 2(n — §)k 2. Thus, the | The remaining equation far(¢) is
d*o dF 1
2= F(U)E—[—(nz—xz)frziZ(n—X)( (X_5)2+02—|)(_5|)} (8)
ds do 2
where the* signs correspond to those in Egs. (7). | and another interval aly < 0, which exists for any

Equation (8) is the Newton equation of motion for a reflectivity
particle with the coordinater in the potentialF (o). It 1 1
gives rise to a solitonlike solution [8], provided that the 7 < —x < \/Z (n +62+2+ 3 (n —98). (11)
upper sign is chosen in Egs. (7), and the frequegcy _ . _
satisfies the conditionsy| > 7, [(x + 1) (x — 8)| < Qn comparing these expressions with the spectrum shqwn
2. These inequalities can be solved to yield, in an explicitn Fig. 1, we conclude that part of the lower gap is

form, two frequency intervals in which one has the zv always empty from solitons, while the upper gap is
gap solitons: ay > 0, it is completely filled with ZV solitons in the weak-reflectivity

X . case (10) [Fig. 1(a)] and completely empty in the strong-
1 2 L reflectivity case (11) [Fig. 1(b)]. It is relevant to mention
XS \/4 (n +0)" +2 2 =29, O that a partly empty gap has recently been found in the
model combining Bragg reflection and second harmonic
generation [4].

Inside the frequency intervals (9) and (11), Eg. (8) can

. £ th N
< 1 s+ .01+ 1 52, (10) be mtegratei by mfans of the s_ubsztltutlf)ln
2 \ 4 o(§) =2lx = dlp(O[1 = p~(O]. 12)

which exists only for small and moderatg (the weak
Bragg-reflectivity limit)
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This yields the soliton shape in an implicit form, i.€., 1 (@) ' )
VS p: ¥ 08
- 6 ~ 1 o 0.6
171 = ,/2] X ‘ 5
X — 7 6 04
{1 — p) a0l - o2/ - pD]

+ (2p0)*1 |n[(p0 + [p(% _ p2 )/p]}’ (13) P50 100 50 3 50 100 150 f50 100 50 [3 50 100 150
where pZ = 1 — 1l(x + n)(x — 8)| [note that p? is " . © " @
positive under the above conditions (9)—(11)]. It can be i
checked that this ZV gap soliton is alwagimglehumped. . «

Its amplitude can be found from Eq. (13), =
Omax = 4P0/‘V |X + 77| . (14) P N
The most drastic difference of these new solitons fromr % SR o ST % a0

the well-known SIT pulses [6] is that the area of theFIG 2. Zerovelocity solitondS . () (@) 5 = 0 0.9
; ; ; ; 2. - + =0, n=09,

Zv SOI.'ton is not restricted t@ﬂ’ but, msteaq, may-take x = —0.901 (divergent width and amplitude); (b) the same as

an arbitrary value. As mentioned above, this basic NeW(q), but for y = 0.901 (divergent width and finite amplitude).

result shows that the Bragg reflector can enhance (bg) Pulse(s) obtained as a result of “pushing” of zero-velocity

multiple reflections) the field coupling to the TLS, so solitons (dashed lines) by the initial multiplier éxpip () after

as to make the pulse arefectively2s. In the limit @ sufficiently long evolution { = 400) (solid lines). & = 0,
of the small-amplitude and small-area solitopg, < 1, 7 — 3'5)( = —44, andp = 0.1; (d) the same as (c), but for
Eq. (13) can be easily inverted, the ZV soliton becomingp o

a broad sechlike pulse:
have always found the ZV GS to be apparergtpble

However, the possibility of their dynamical and structural
po§'>. (15) instability needs to be further investigated as has been

done in the case of GS in a Kerr-nonlinear fiber with a
In the opposite limit,] — p§ — 0, i.e., for vanishingly grating [9,10].
small|y + /[, the soliton’s amplitude (14) becomes very Although the system of Egs. (1)—(3) is not explic-
large, and further analysis reveals that, in this case, thiély Galilean or Lorentz invariant, translational invari-
soliton is characterized by broad central partwith a  ance is expected on physical grounds. Hence, a full
width ~(1 — p3)~1/2 [Fig. 2(a)]. Another special limit family of soliton solutions should have velocity as one
is y —n — 0. It can be checked that in this limit, of its parameters. This can be explicitly demonstrated
the amplitude (14) remains finite, but tleliton width in the limit of the small-amplitude large-width solitons
divergesas|y — n|~'/2 [Fig. 2(b)]. Thus, although the [cf. Eq. (15)]. We search for the corresponding solutions
ZV soliton has a single hump, its shape is, in generalin the form 24 ({,7) = o({, 7)exp(—iwoT), P({,7) =
strongly different from that of the traditional nonlinear- ig({, 7) exp(—iwo7) [cf. EQs. (6)], wherew, is the fre-
Schrédinger sech pulse. quency corresponding t& = 0 on any of the three

The stability of the ZV gap solitons was tested numeri-branches of the dispersion relation (5) (see Fig. 1), and

cally by means of direct simulations of the full systemthe functionso(Z, 7) andg({, 7) are assumed to be slowly
(1)—(3), the initial condition taken as the exact solitonvarying in comparison with eXp-iwo7). Under these as-
with a small perturbation added to it. Running the simu-sumptions we arrive at the following asymptotic equation
lations at randomly chosen values of the parameters,|vvﬁar oL, )

X—n
X — 0

o =2y — 5|posech( 2‘

cwolwg — 8> —n + 8 9 9* wy) — 7 2 2 2 wo — 7
2 SR (T — (9% - w2 +2 . 16
|: l (wo — 6)? ar  9{r  (wo — 6)? ot | K @0 w — )" (16)

Since this equation is of the NLS form, it has the fulll
two-parameter family of soliton solutions, including the order to “push” the soliton. The results demonstrate that,
moving ones [8]. at sufficiently smallp, the push indeed produces a moving
In order to check the existence and stability of thestable soliton [Fig. 2(c)]. However, i is large enough,
moving solitons numerically, we simulated Egs. (1)—(3) the multiplication by exfip{) turns out to be a more
for an initial configuration in the form of the ZV soliton violent perturbation, splitting the initial pulse into two
multiplied by exgip¢) with some wave numbep, in  solitons, one quiescent and one moving [Fig. 2(d)].
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A one-parameter subfamily of moving GS was found interpropagating laser beams, whereas moving GS can be

an exact form in Ref. [5]: launched by a single near-resonant laser beam propagat-
1 ing along the structure.
S+ = Apexdi(al — A7)] sech[EAou(f - uT):|, In conclusion, we have demonstrated that a periodic

array of near-resonant two-level systems combined with
(17) @ Bragg grating gives rise, fany Bragg reflectivity, to
and? vast family of stable gap solitons, both standing and
moving, having a unique analytic form, arbitrary pulse
area (Fig. 2), and inelastic collision properties (Fig. 3).
Remarkably, even extremely low TLS densities create an
allowed band within the forbidden gap (Fig. 1). These

0. The present analysis strongly suggests, but does ngpd!ngs reve_al hitherto unknown fo”'?s of soliton dynamj
ICS in a nonintegrable, strongly nonlinear system. Their

rigorousl rove, that the subfamily (17) belongs to ™ . © - . .
agfar mgrepgeneral two-parameter érrgily) whosegotheg:'gln is the surprisingly rich interplay between mul-
' i

where A is the detuning from the gap center,
the squared amplituda3 = (1 — ) 2[8u2(1 — u?) —
n*(1 + u?)?] is expressed in terms of the velocity
(normalized toc). The values ofu are restricted by
the conditionAj > 0, which, in particular, forbids: =

particular representatives are the exact ZV solitons (13 ple reflections and cooperative, near-resonant field-

and the approximate small-amplitude solitons determine atter interaction, Wh'Ch. removes the pulse-area
by Eq. (16), restrictions of ordinary self-induced transparency. These

A issue of obvious inerest s colisions betueen{TCIT S 26 0 e Saaion of el gy s
GS moving at different velocities. In the asymptoticf 9 . th’ h thei tyl hile off t'gl
small-amplitude limit reducing to the NLS equation (16), requencies through their spectral gaps, while efiectively
the collision must be elastic. To get a more generaploCklng other_s, with no restriction on the s!gnal pul_se
insight, we simulated collisions between two solitons?'€2- Alter_natl\(ely, the_y can be used to spatially conf_lne
given by (17). The conclusion is that the collision is (self-trap) light in certain frequency bands, thus creating

: L : . ..~ “dynamical cavities.”

always inelasticdirectly attesting to the nonintegrability
of the model. Typical results are displayed in Fig. 3’the'36\ir|§/llsr;1det\(:;v.ofll<?Etr;ow'edge the support of ISF and of
which demonstrates that the inelasticity may be strong, :
depending on the parameters.
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