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Populations of phase oscillators interacting globally through a general coupling functionfsxd have
been considered. We analyze the conditions required to ensure the existence of a Lyapunov functional
giving close expressions for it in terms of a generating function. We have also proposed a family of
exactly solvable models with singular couplings showing that it is possible to map the synchronization
phenomenon into other physical problems. In particular, the stationary solutions of the least singular
coupling considered,fsxd ­ sgnsxd, have been found analytically in terms of elliptic functions. This
last case is one of the few nontrivial models for synchronization dynamics which can be analytically
solved. [S0031-9007(98)07451-1]
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The dynamics of systems consisting of large sets of m
tual interacting units is a very interesting problem in stati
tical physics. In some cases, these units can be though
as subsystems characterized by hidden internal degree
freedom obeying their own dynamics. This is the ca
of large populations of individuals forming complex sys
tems of interest in interdisciplinary fields such as biolog
economy, neurophysiology, and ecology [1,2]. On th
other hand, the subsystems can be seen as entities inte
ing with each other in the presence of quenched disorde
external fields. The effect of the external forces is to pum
energy into the system thereby leading to nonlinear osc
latory behavior. This last case describes charged wave
stabilities in plasmas [3], dynamical response of Josephs
junction arrays in the presence of an external ac field [4]
nonlinear oscillations, and coherent motion of magnetiz
domains in strongly coupled magnetic systems [5]. It w
realized by Kuramoto [6] that this rich dynamical behavio
can appear in mean-field models of phase oscillators w
randomly quenched natural frequencies. The crucial fe
ture of the Kuramoto model is that the random precessi
frequencies play the role of external forces which pum
energy into the system. This leads to dynamical instab
ties and synchronization in low dissipation regimes. Mor
over, the mean-field character of the model captures
essential mechanism which leads to synchronized dyna
ics while retaining mathematical simplicity.

The purpose of this Letter is twofold: (i) to find Lya-
punov functionals, and (ii) to show exact results for th
synchronization dynamics of simple oscillator model
Exact results are very difficult to obtain in models wit
general smooth oscillator coupling functions. Here w
follow a different strategy and analyze singular couplin
models which can be mapped into well-known physic
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problems. Later we will go further and consider mode
with smoother couplings such as Daido’s [7] which we a
alytically solve. This last case describes the dynamics o
charged plasma in the mean-field approximation. Thus t
model is related to Lennard’s for one-dimensional pla
mas with global charge neutrality. The stationary soluti
thereof was found exactly in Ref. [8] using techniques d
ferent from ours. While our analysis is restricted to mode
without disorder, the techniques developed here could
extended to disordered cases [9].

We consider a system of nonlinearly globally couple
phase oscillators with random frequenciesvi taken from
a distributiongsvd and subject to external independe
white noise sourceshi (of strength

p
2T ):

≠fi

≠t
­ vi 2

K0

N

NX
j­1

fsfi 2 fjd 1 histd , (1)

where i ­ 1, . . . , N . Here fistd, K0 . 0, and f denote
the ith oscillator phase, coupling strength, and a2p-
periodic real function, respectively. In Fourier space, t
latter can be decomposed asfsxd ­

P
`
n­2` aneinx , with

an ­ ap
2n.

Important work on the Kuramoto model with a gen
eralized coupling function was carried out by Daido [
who introduced the concept of order function and Cra
ford [10] who proposed scaling behavior of bifurcatin
branches from the incoherent solution. These works
troduced rather general theories and methods which, h
ever, had inherent limitations (zero temperature for t
order function theory and vicinity to bifurcation points i
Crawford’s work). Thus it seems desirable to have ex
results for solvable models where such theories could
checked and extended.
© 1998 The American Physical Society 3643



VOLUME 81, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 26 OCTOBER1998

tion
n-

ck

al
re

ble
is
al
re-
l

r-
ary
for

-
ed

ble
rm
The moment approach and general equations.—A
simple way to study the dynamics of the Kuramoto mod
with general coupling functions (1) is to use the re
cently introduced moment approach [11] and defineHm

k ­
1
N

PN
j­1 keikfj lvm

j , where the bracketsk· · ·l denote av-
erage with respect to the external noise and the over
denotes average with respect to the random oscillator f
quency. The equations of motion for the moments read

≠Hm
k

≠t
­ 2K0ik

X̀
n­2`

anHm
k1nH0

2n

2 k2THm
k 1 ikHm11

k . (2)

The following differential equation for the generating func
tion, gsx, y, td ­

P
`
k­2`

P
`
m­0 e2ikx ym

2pm! Hm
k std, is easy

to derive from (2):

≠g
≠t

­ 2
≠

≠x
fysx, tdgg 1 T

≠2g
≠x2 2

≠2g
≠x≠y

. (3)

Hereysx, td is the drift velocity, defined by

ysx, td ­ 2K0

X̀
n­2`

anH0
2neinx

­ 2K0

Z p

2p

fsx0dgsx 2 x0, 0, td dx0. (4)

It is easy to check thatysx, td ­ 2K0Hsx 2 Vet, td,
whereVe and Hsx, td are the synchronization frequency
(zero for stationary states) and Daido’s order function [7
3644
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respectively. On the other hand, the generating func
gsx, y, td is related to the one-oscillator probability de
sity rsx, v, td by gsx, y, td ­

R`

2` eyvrsx, v, tdgsvd dv.
We derive from (3) the usual nonlinear Fokker-Plan
equation forrsx, v, td wherevergsvd fi 0:

≠r

≠t
1

≠

≠x
fsv 1 ydrg ­ T

≠2r

≠x2 . (5)

Existence of a Lyapunov functional.—The solution
of (5) is generally quite complicated: only in speci
cases is it possible to work out explicit results. He
we want to analyze under which conditions it is possi
to find a Lyapunov functional for the dynamics. This
an important result since it explicitly yields a function
equation for the stationary states as well as stability
sults. In particular, we will find a Lyapunov functiona
when the couplingfsxd is an odd function (i.e., if de-
tailed balance is satisfied) which is symmetric aboutx ­
py2, and there is no frequency disorder [i.e.,gsvd ­
dsvd]. Then there exists a partition function which cha
acterizes the thermodynamic properties of the station
states. Previous work in this direction [12] was done
fsxd ­ sinx.

Let us define the potential functionV sx, td ­Rx
2p yss, td ds and restrict ourselves to finding sta

tionary solutions; rotating wave solutions may be reduc
to this case after moving to a rotating frame. It is possi
to show that the stationary solutions should have the fo
rsx, vd ­ Z21 efsp1xdv1V sxdgyT 2
J
T

Z x

2p

exp

∑
sx 2 sdv 1 V sxd 2 V ssd

T

∏
ds , (6)
hat

r-
s to

It
pe
in

is
bal
,

whereZ andJ are independent ofx. We now impose the
condition thatr be a2p-periodic function ofx, use the
symmetry properties of the drift, and find the probabilit
flux J as a function ofZ: JyT ­ 2Z21 sinhs2pT21vdyR

p

2p e2fsp1xdv1V sxdgyT dx. Z can be found from the nor-
malization condition

Rp

2p rdx ­ 1. An interesting case
corresponds to the case without disorder,gsvd ­ dsvd,
for whichJ ­ 0, rsx, 0, td ­ gsx, y, td ; gsx, td. We can
obtain the stationary solutions (subscript zero below) b
solving the system of equations:

g0sxd ­ Z21efV0sxdgyT , Z ­
Z p

2p

efV0ssdgyT ds , (7)

y0sxd ­ 2K0

Z p

2p

fsx 2 x0dg0sx0d dx0. (8)

It is possible to show that, for this type of potentia
solutions, there is a Lyapunov functional [13] defined b
the relative entropy,

hstd ­
Z p

2p

gsx, td ln

√
gsx, td
gsx, td

!
dx , (9)

gsx, td ­ efV sx,td2mstdgyT , (10)
y

y

l
y

dm

dt
­

Z p

2p

gsx, td
≠V sx, td

≠t
dx . (11)

Direct calculation (to be presented elsewhere) shows t
hstd is bounded from below,h0std # 0, and thatg tends to
a stationary solution proportional tog. We then conclude
that, for odd coupling functions and in absence of diso
dered frequencies, the stationary state (7) correspond
the thermodynamic equilibrium state of a system ofN os-
cillators interacting through the Hamiltonian

H ­
K0

N

X
i,j

´sfi 2 fjd , (12)

where´sxd is a pair interaction energy2p-periodic func-
tion defined by´sxd ­

Rx
2p fssdds. Note thatV sxd ­

2K0

Rp

2p gsxd´sxddx 1 const. Thus a computation of the
partition function for (12) yields the stationary states.
is important to stress that potential solutions of the ty
(7) are no longer stationary solutions of the dynamics
the presence of disordered frequenciesvi [11] or when
detailed balance is violated [i.e.,fsxd is not an odd func-
tion]. The physical meaning of these two conditions
quite clear: suppose a single oscillator performs a glo
rotation of angle2p. The global energy of the system
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given by (12), does not change because´sxd is 2p pe-
riodic. Thus the coupling strength does not exert wo
into the system of oscillators when a rotation pathsfi !
fi 1 2pd is performed. Indeed, the amount of wor
is W ­

Rfi12p

fi
fvi 2

K0

N

PN
j­1 fsx 2 fjdgdx which van-

ishes only ifvi ­ 0 andfsxd ­ 2fs2xd.
Singular coupling models.—For general coupling func-

tions, with infinitely many nonvanishing Fourier modesan,
it is difficult to find explicit analytical expressions for th
stationary states. But calculations turn out to be much s
pler for singular coupling functions. Here we analyze thr
different cases: (a)fsxd ­ d0sxd; (b) fsxd ­ dsxd, and (c)
fsxd ­ sgnsxd. In case (a), we haveysxd ­ 2K ≠gy≠x,

≠g
≠t

­ K0
≠

≠x

√
g

≠g
≠x

!
1 T

≠2g
≠x2 . (13)

This equation is related to porous media systems w
the additional 2p-periodicity condition for g. It is
easy to check thathstd ­ s1y2d

Rp

2p g2sx, tddx $ 0 is
a Lyapunov functional becauseh0std ­ 2

Rp

2p sT 1

K0gd s≠gy≠xd2dx # 0. Then the incoherent solution
gsxd ­ 1y2p is globally stable and model (a) does n
synchronize at anyT .

Case (b) is described by the Burgers equation,

≠g
≠t

­ 2K0g
≠g
≠x

1 T
≠2g
≠x2 , (14)

for a 2p-periodic g, and it can be solved by the Hopf
Cole transformation. hstd defined for case (a) is also
a Lyapunov functional for case (b), but nowh0std ­
2T

Rp

2p s≠gy≠xd2dx # 0. At finite T , incoherence is
again stable. But, at zero temperature, initially synch
nized oscillators remain forever synchronized.

Analytical solution of the model with Daido cou
pling.—Model (c) was originally proposed by Daido i
the general disordered case but we will solve it f
gsvd ­ dsvd. Sincefsxd is odd and symmetric abou
x ­ py2, it is in principle possible to find the stationar
states by solving the functional Eqs. (7) and (8). Su
a calculation is quite involved and here we follow a d
ferent and novel approach. The dynamical equations
model (c) are nonlocal because the drift velocity (4) is

ysx, td ­ 2K0

Z p

0
fgsx 2 j, td

2 gsx 2 j 1 p , tdg dj , (15)

but they become local after inserting the definitions

rsx, td ­ 2K0fgsx, td 2 gsx 1 p , tdg ,

ssx, td ­ 2K0fgsx, td 1 gsx 1 p , tdg . (16)

The new system is

≠r

≠t
­ 2

≠ssyd
≠x

1 T
≠2r

≠x2 , (17)

≠s

≠t
­

≠

≠x

√
y

≠y

≠x

!
1 T

≠2s

≠x2 . (18)
rk
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The drift velocityysx, td is given by≠yy≠x ­ 2r. All
functions are2p periodic and it is easy to check that both
r and y are antiperiodic ifx ! x 1 p, while s is p

periodic. The stationary solutions of (17) and (18) satisf

Ts 1
y2

2
­ L , (19)

T2 d2y

dx2 1

√
L 2

y2

2

!
y ­ 0 , (20)

where L is a positive constant. Equation (20) may be
integrated once yielding

1
2

√
dw
dj

!2

1
w2

2
2

w4

8
­ E , (21)

wherewsjd ­ ysxdy
p

L , x ­ Tjy
p

L, andE is a new
constant. Equation (21) can be easily solved by quadr
tures in terms of Jacobi elliptic functions [14]. The period
icity properties of the drifty yield finitely many solutions
(characterized by their value ofE and an odd integern)
for a fixed value ofK0yT . The relation amongE , n, and
K0yT is

4n2Ksmd
p

"
Esmd 2

p
1 2 2E Ksmd

1 1
p

1 2 2E

#
­

K0

T
. (22)

Here Ksmd and Esmd are the complete elliptic integrals
of the first and second kind with parameterm ­ s1 2p

1 2 2E dys1 1
p

1 2 2E d, respectively. For every ad-
missible value ofE andn, with K0yT fixed, the drift veloc-
ity and the probability density can be found from (16), (19)
(20), (21), and the condition

Rp

0 ssxddx ­ 2K0. They are

ysxd ­
4nT

p
m Ksmd
p

snu , (23)

gsxd ­
Ksmd
2p

1
11

p
122E

2 m sn2u 2
p

m cnu dnu

Esmd 2

p
122E Ksmd
11

p
122E

.

(24)

Hereu ­ 2nKsmd sx 2 x0dyp, x0 ­ const, while sn, cn,
and dn are Jacobi elliptic functions defined in [14]. Th
details of these calculations will be presented elsewhere

As K0yT ! ` the number of possible stationary so-
lutions becomes infinite. Each different stationary stat
belongs to a different solution branch which bifurcate
from incoherence at a critical value of the coupling
K0 ­ n2Tpy2, where n ­ 2p 2 1 and p $ 1 is an
integer (see Fig. 1). The first branch bifurcates from
incoherence atK0yT ­ py2 and remains stable for
all larger K0yT . In the limit K0yT ! `, ysxdyK0 ­
sgnsx 2 x0d, gsxd ­ dsx 2 x0 2 pd, and full synchro-
nization is achieved. A convenient synchronization orde
parameterr is defined through the global magnetization
M ­ reia ­ s1yNd

PN
j­1 eifj .

The order parameter can be calculated from Mon
Carlo simulations of the Hamiltonian (12) with́sxd ­ jxj
andK0 ­ 1. The simulations use the heat-bath algorithm
3645
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FIG. 1. Bifurcation diagramE versus2K0ypT for stationary
synchronized solutions branching off from incoherenceE ­ 0
at the square of the odd integer numbers.

with a random sequential updating of the phases. T
transition temperature corresponding to the first bran
is easily obtained through standard finite-size scali
methods. Consider the kurtosis (or Binder parameter)
the synchronization parameterr, g ­

1
2 s3 2

kr4l
kr2l2 d, where

k· · ·l is the standard configurational average [weighte
with the usual Boltzmann-Gibbs factor, exps2bH d, and
H is given by (12)]. The curves forg are shown
in Fig. 2 for different sizes. Note that these curve
(especially forN ­ 50, 100, and 500; data forN ­ 1000
is more noisy) intersect at a common point characterizi
the bifurcation temperature.

In summary, we have considered models of oscillato
coupled through a general functionfsxd. Without pre-
cessing frequencies and for odd-coupling functions the
exists a Lyapunov functional. Then the probability den

0.40 0.50 0.60 0.70 0.80 0.90
T

0.40

0.50

0.60

0.70

0.80

0.90

g

FIG. 2. Binder parameterg as a function ofT for different
sizes (in the lowT region, from bottom to top)N ­ 50, 100,
500, and 1000. The curves become steeper for larger val
of N . The theoretical value of the bifurcation temperatur
T ­ 2yp is marked in the figure.
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sity evolves toward stable stationary states which can
described by an equilibrium measure. We have also p
posed a family of exactly solvable models with singul
couplings. The oscillators may synchronize more ea
ily for less singular couplings. In particular, case (a
(the porous medium oscillators),fsxd ­ d0sxd, never syn-
chronizes, case (b) (Burgers oscillators),fsxd ­ dsxd, re-
tains synchronization only at zero temperature, and c
(c) (charged plasma in the mean-field approximation
fsxd ­ sgnsxd, synchronizes at a finite temperature. Th
last case is one of the few nontrivial models for synchr
nization dynamics which can be analytically solved. St
tionary synchronized phases bifurcate from incoheren
at a finite temperature which corresponds to a thermo
namic second order phase transition. It would be ve
interesting to extend our considerations to the case of r
dom frequencies for models with a synchronization tra
sition at finite temperature, where we expect dynamic
instabilities as well as nonlinear behavior to appear.
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