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Exactly Solvable Phase Oscillator Models with Synchronization Dynamics
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Populations of phase oscillators interacting globally through a general coupling furf@iigrnave
been considered. We analyze the conditions required to ensure the existence of a Lyapunov functional
giving close expressions for it in terms of a generating function. We have also proposed a family of
exactly solvable models with singular couplings showing that it is possible to map the synchronization
phenomenon into other physical problems. In particular, the stationary solutions of the least singular
coupling consideredf(x) = sgnx), have been found analytically in terms of elliptic functions. This
last case is one of the few nontrivial models for synchronization dynamics which can be analytically
solved. [S0031-9007(98)07451-1]

PACS numbers: 05.45.+b, 87.10.+e

The dynamics of systems consisting of large sets of muproblems. Later we will go further and consider models
tual interacting units is a very interesting problem in statis-with smoother couplings such as Daido’s [7] which we an-
tical physics. In some cases, these units can be thought afytically solve. This last case describes the dynamics of a
as subsystems characterized by hidden internal degreesdiarged plasma in the mean-field approximation. Thus this
freedom obeying their own dynamics. This is the casemodel is related to Lennard’'s for one-dimensional plas-
of large populations of individuals forming complex sys- mas with global charge neutrality. The stationary solution
tems of interest in interdisciplinary fields such as biology,thereof was found exactly in Ref. [8] using techniques dif-
economy, neurophysiology, and ecology [1,2]. On theferent from ours. While our analysis is restricted to models
other hand, the subsystems can be seen as entities interagfthout disorder, the techniques developed here could be
ing with each other in the presence of quenched disorderesktended to disordered cases [9].
external fields. The effect of the external forces is to pump We consider a system of nonlinearly globally coupled
energy into the system thereby leading to nonlinear oscilphase oscillators with random frequenciestaken from
latory behavior. This last case describes charged wave i distributiong(w) and subject to external independent
stabilities in plasmas [3], dynamical response of Josephsanhite noise sources; (of strengthy/27):
junction arrays in the presence of an external ac field [4] or N
gonllnlear. oscillations, and coherent motion of magnetized 9di _ w; — Ko Zf(dh’ —$) + n), Q)

omains in strongly coupled magnetic systems [5]. It was ot N 5
realized by Kuramoto [6] that this rich dynamical behavior
can appear in mean-field models of phase oscillators witkvherei = 1,...,N. Here ¢,(¢), Ko > 0, and f denote
randomly quenched natural frequencies. The crucial feahe ith oscillator phase, coupling strength, and2a-
ture of the Kuramoto model is that the random precessioperiodic real function, respectively. In Fourier space, the
frequencies play the role of external forces which pumgatter can be decomposed fér) = > a,e™, with
energy into the system. This leads to dynamical instabilia, = aZ,.
ties and synchronization in low dissipation regimes. More- Important work on the Kuramoto model with a gen-
over, the mean-field character of the model captures theralized coupling function was carried out by Daido [7]
essential mechanism which leads to synchronized dynanwho introduced the concept of order function and Craw-
ics while retaining mathematical simplicity. ford [10] who proposed scaling behavior of bifurcating

The purpose of this Letter is twofold: (i) to find Lya- branches from the incoherent solution. These works in-
punov functionals, and (ii) to show exact results for thetroduced rather general theories and methods which, how-
synchronization dynamics of simple oscillator models.ever, had inherent limitations (zero temperature for the
Exact results are very difficult to obtain in models with order function theory and vicinity to bifurcation points in
general smooth oscillator coupling functions. Here weCrawford’s work). Thus it seems desirable to have exact
follow a different strategy and analyze singular couplingresults for solvable models where such theories could be
models which can be mapped into well-known physicalchecked and extended.
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The moment approach and general equatieng  respectively. On the other hand, the generating function
simple way to study the dynamics of the Kuramoto modelg(x, y, ¢) is related to the one-oscillator probability den-
with general coupling functions (1) is to use the re-sity p(x,w,?) by g(x,y,1) = [~ e’ p(x, w,1)g(w)dw.
cently introduced moment approach [11] and defife=  We derive from (3) the usual nonlinear Fokker-Planck
%Zﬁ;l (e @, where the bracketé --) denote av- equation forp(x, w, ) whereverg(w) # 0:
erage with respect to the external noise and the overbar ap 3 92p
denotes average with respect to the random oscillator fre- — 4+ — (0 +v)p]l=T— (5)

> -

quency. The equations of motion for the moments read ) ot dx ) 0x )
Py Existence of a Lyapunov functionakThe solution
Ok

= —Kyik Z a HY. ,H, of (5) is generally quite complicated: only in special
at n=—cw cases is it possible to work out explicit results. Here
— K’TH!" + ikH"". (2) we want to analyze under which conditions it is possible

] ] ] ) ] to find a Lyapunov functional for the dynamics. This is
The following differential equation for the generating func- 5, important result since it explicitly yields a functional

m

tion, g(x,y,1) = 3j_ = 3,—ge ™ 57 H{'(1), is easy equation for the stationary states as well as stability re-

to derive from (2): sults. In particular, we will find a Lyapunov functional
ag F) 02g a2g when the couplingf(x) is an odd function (i.e., if de-
9 ox [v(x,0gl + T a2 axay (3)  tailed balance is satisfied) which is symmetric ahout

7/2, and there is no frequency disorder [i.g(w) =
d(w)]. Then there exists a partition function which char-
acterizes the thermodynamic properties of the stationary
states. Previous work in this direction [12] was done for

Herew(x, 1) is the drift velocity, defined by

vix, 1) = —Kp Z a,H® ™

n=-—o

” f(x) = sinx.
= —Ko[ F(Nglx — x,0,0)dx".  (4) Let us define the potential functionV(x,r) =
- X _wv(s,t)ds and restrict ourselves to finding sta-
It is easy to check thawv(x,7) = —KoH(x — Q.t,t), tionary solutions; rotating wave solutions may be reduced

where(), and H(x, t) are the synchronization frequency to this case after moving to a rotating frame. It is possible
(zero for stationary states) and Daido’s order function [y]to show that the stationary solutions should have the form

Pt ) = 2! LT Re VT _ ifx exp[ (x = 9o + V) - V(S)}ds ©)
b T e T 9
| . | d T V()
wherg_Z andJ are mdependgnt 'oa‘. We. now impose the ar _ f (x,1) ovix, 1) dx . (11)
condition thatp be a2#-periodic function ofx, use the dr -7 at

symmetry properties of the drift, and find the probability Direct calculation (to be presented elsewhere) shows that
flux J as a function ofZ: J/T = 2Z7'sinh27T'w)/  y(¢)is bounded from belowy’(r) = 0, and thatg tends to

J7 e UmtxetVOUT gy 7 can be found from the nor- a stationary solution proportional @ We then conclude
malization condition/” _ pdx = 1. An interesting case that, for odd coupling functions and in absence of disor-
corresponds to the case without disordeliw) = 6(w),  dered frequencies, the stationary state (7) corresponds to
forwhichJ = 0, p(x,0,7) = g(x,y,1) = g(x,7). Wecan the thermodynamic equilibrium state of a systeniobs-
obtain the stationary solutions (subscript zero below) btillators interacting through the Hamiltonian

solving the system of equations: K

m j‘[ =2 i i)s 12
o) = Z VT 7 j VT 4o (7) N %dd’ ¢1) (12)

wheree(x) is a pair interaction energ¥-periodic func-
. tion defined bys(x) = [Z_ f(s)ds. Note thatV(x) =
volx) = —Ko f_wf(x — x)go(x") dx’. ® _k, J7_g(x)e(x)dx + const. Thus acomputation of the

It is possible to show that, for this type of potential partition function for (12) yields the stationary states. It

solutions, there is a Lyapunov functional [13] defined byIS important to stress_that potential solutions of the. type
the relati\,/e entropy (7) are no longer stationary solutions of the dynamics in

the presence of disordered frequencies[11] or when
_ (7 g(x, 1) detailed balance is violated [i.ef(x) is not an odd func-
(1) f_ﬂg(x’ 0 In(g(x, t)) ax, ) tion]. The physical meaning of these two conditions is
quite clear: suppose a single oscillator performs a global
g2(x, 1) = eV =rOVT (10)  rotation of angle2zr. The global energy of the system,
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given by (12), does not change because) is 27 pe- The drift velocityv(x, r) is given bydv /dx = —p. All
riodic. Thus the coupling strength does not exert workfunctions are7 periodic and it is easy to check that both
into the system of oscillators when a rotation path —  p and v are antiperiodic ifx — x + 7, while o is 7
¢; + 2) is performed. Indeed, the amount of work periodic. The stationary solutions of (17) and (18) satisfy

isW = fii-””[‘”i - & jyzlf(x — ¢;)]dx which van- o2
ishes only ifw; = 0 andf(x) = —f(—x). To+—=1L, (19)

Singular coupling models-For general coupling func- 2

tions, with infinitely many nonvanishing Fourier modss d’v v2

it is difficult to find explicit analytical expressions for the T2 e + (L - ?> v=0, (20)
stationary states. But calculations turn out to be much sim- .

pler for singular coupling functions. Here we analyze threevhere L is a positive constant. Equation (20) may be
different cases: (@)(x) = 6'(x); (b) f(x) = 8(x),and (c) integrated once yielding

f(x) = sgrlx). In case (a), we have(x) = —K dg/dx, ! (dW>2 P (21)
5 - B - = ——— = )
6_g=1<oi<ga_g>+ra—g. (13) P e 8
ot ax \” dx dx*

_ o _ _wherew(¢) = v(x)/VL, x = T¢/+/L, andE is a new
This equation is related to porous media systems withonstant. Equation (21) can be easily solved by quadra-
the additional 27-periodicity 00”79'“02” forg. It is  tyresinterms of Jacobi elliptic functions [14]. The period-
easy to check thaty(s) = (1/2) fﬂ; g (x,0)dx = 0'iS city properties of the drifty yield finitely many solutions
a Lyapunov functional because'(r) = — [T (T + (characterized by their value & and an odd integet)

Kog) (9g/ax)*dx = 0. Then the incoherent solution for 4 fixed value ofky/T. The relation amongF, n, and
g(x) = 1/2 is globally stable and model (a) does not Ko/T is

synchronize at an¥.

Case (b) is described by the Burgers equation, 4n’K (m) _ V1 -2FK(m) | _ Ko
E(m) . (22)
g g g T 1+ 1 —-2F T
ot 2Kog ax T T ax2’ 19 Here K(m) and E(m) are the complete elliptic integrals

for a 2ar-periodic g, and it can be solved by the Hopf- Of the first and second kind with parameter= (1 —
Cole transformation. () defined for case (a) is also V1 — 2E)/(1 + +/1 — 2E), respectively. For every ad-
a Lyapunov functional for case (b), but now/() = missible value off andn, with K, /T fixed, the drift veloc-
—Tf’_’w(ag/ax)zdx = 0. At finite T, incoherence is ity and the probability density can be found from (16), (19),
again stable. But, at zero temperature, initially synchro{20), (21), and the conditioff; o (x)dx = 2K,. They are

nized oscillators remain forever synchronized. 4nT J/m K (m)

Analytical solution of the model with Daido cou- v(x) = ————— shu, (23)
pling.—Model (c) was originally proposed by Daido in &
the general disordered case but we will solve it for K(m) ﬁ — mSru — /mcnudnu

g(w) = 8(w). Since f(x) is odd and symmetric about  g(x) = =T

x = /2, itis in principle possible to find the stationary 2m E(m) — %

states by solving the functional Egs. (7) and (8). Such (24)
a calculation is quite involved and here we follow a dif- yere, = 2nK(m) (x — xo)/ 7, xo = const, while sn, cn,

ferent and novel approach. The dynamical equations fognqg dn are Jacobi elliptic functions defined in [14]. The
model (c) are nonlocal because the drift velocity (4) is  detaijls of these calculations will be presented elsewhere.

a As K,/T — « the number of possible stationary so-
vlx, 1) = —Kofo [e(x — &,1) lutions becomes infinite. Each different stationary state
belongs to a different solution branch which bifurcates
— gl — & + 7 0)]dE, (15)  from incoherence at a critical value of the coupling
but they become local after inserting the definitions Ko = n*T7/2, wheren =2p —1 and p = 1 is an
integer (see Fig. 1). The first branch bifurcates from
plx,t) = 2Kolg(x,1) — glx + m,1)], incoherence atk,/T = 7/2 and remains stable for

o(x,t) = 2Ko[g(x,1) + glx + a,1)]. (16) all larger Ko/T. In the limit Ko/T — =, v(x)/Ko =
sgnx — xg), glx) = 8(x — xo — ), and full synchro-
nization is achieved. A convenient synchronization order
parameterr is defined through the global magnetization
M = rei® = (l/N)ijzl el?s,

The order parameter can be calculated from Monte
Jo J ( 3_v> n o (18) Carlo simulations of the Hamiltonian (12) wit{x) = |x|

ar  ax \' ax andK, = 1. The simulations use the heat-bath algorithm

The new system is
dp _ d(ov) 9%p

- + 1752, 17
ot ax dx2 (17)

ax2 "’
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' sity evolves toward stable stationary states which can be

0.60 T T T T T T T
described by an equilibrium measure. We have also pro-
050 | posed a family of exactly solvable models with singular
couplings. The oscillators may synchronize more eas-
040 - P ily for less singular couplings. In particular, case (a)
(the porous medium oscillatorsj(x) = 8’(x), never syn-
w 030 - | chronizes, case (b) (Burgers oscillatorg)y) = 6(x), re-
tains synchronization only at zero temperature, and case
! (c) (charged plasma in the mean-field approximation),
020 r l f(x) = sgr(x), synchronizes at a finite temperature. This
last case is one of the few nontrivial models for synchro-
010 1 ! i nization dynamics which can be analytically solved. Sta-
, / tionary synchronized phases bifurcate from incoherence
0.00 : - - at a finite temperature which corresponds to a thermody-

0.0 4.0 8.0 12.0 lé.O 2(;.0 24.0 2£;.0 32.0 36.0 . ..
2K, It namic second order phase transition. It would be very
FIG. 1. Bifurcation diagran® versus2Ko/=T for stationary interesting to extend our considerations to the case of ran-
. 1. o/ ; : : : _
synchronized solutions branching off from incohereffte= 0 dp_m freqqehCIes for models with a synchronization trgn
at the square of the odd integer numbers. sition at finite temperature, where we expect dynamical
instabilities as well as nonlinear behavior to appear.
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