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We describe a four-state atomic system that absorbs two photons, but does not absorb one
As a switch, in the ideal limit, it operates at an energy cost of one photon per switching e
[S0031-9007(98)07421-3]

PACS numbers: 32.80.– t, 42.50.Dv, 42.50.Gy, 42.50.Hz
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This Letter describes a four-state atomic system th
will absorb two photons but will not absorb one photo
This occurs as a result of a quantum interference t
prohibits single-photon absorption. The system m
function as an optical switch where a pulse of light of on
frequency will cause the absorption of light at a seco
frequency. Because the quantum interference is frag
the switch is sensitive. In the ideal case, a pulse of ene
equal to that of a single photon is sufficient to open a
close the second channel.

An energy schematic of the four-state atomic syste
is shown in Fig. 1. The light pulse which is to b
switched on and off is termed as the probe and has ang
frequencyvp. We will take its intensity and pulse length
to be sufficiently weak that all of the atoms remain
the ground statej1l. The optical field which creates the
quantum interference is called the coupling field. It has
angular frequencyvc and Rabi frequencyVc. It is strong,
monochromatic, and present for all time. Its intensi
determines the bandwidth and speed of the switch but d
not affect the switching energy. The frequency of th
optical pulse which destroys the quantum interference a
thereby causes absorption of probe photons isv24. For
the quantum interference to be sharp, it is required that
j1l ! j2l transition have a linewidth which is very sma
as compared to that of thej1l ! j3l transition.

The suggestion of this Letter is in the class of nonli
ear optical processes that utilize electromagnetically
duced transparency [1–3]. These processes depend
using quantum interference to cancel the absorption a
dispersion of optical resonances to obtain unusually la
nonlinear optical susceptibilities [4,5]. In particular, th
two-photon nonlinearity which is described here is th
absorptive analog of the (reactive) Kerr nonlinearity
Schmidt and Imamogluet al. [6]. It also uses resonance
which are of the same nature as those used in the ph
conjugating experiments of Hemmeret al. [7] and in the
nonlinear spectroscopic work of Lukinet al. [8]. In re-
lated work, Agarwal and Harshawardhan have discuss
how interference may be used to enhance or decrease
photon absorption and to decrease the threshold for opt
bistability [9].

Although we are interested in switching one pulsed o
tical field with another pulsed field, we proceed by first d
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riving formulas which are strictly valid for monochromatic
fields. We then describe conditions for the application o
these formulas to the pulsed case. We show that it is the
lationship between the power per area which is necess
for switching, and the group velocity delay of the prob
pulse, that leads to an invariant switching energy per ar
equal to that of a single photon per square wavelength.

Working in the interaction representation, the Hamil
tonian and dipole moment operators for the four-state sy
tem of Fig. 1 are
H  2Dvcj2l k2j 2 Dvpj3l k3j 2 Dv24j4l k4j

2
1
2

sVpj1l k3j 1 Vcj2l k3j 1 V24j2l k4j 1 H.c.d ,

(1a)

P  m13 exps2jvptd j1l k3j 1 m23 exps2jvctd j2l k3j

1 m24 exps2jv24td j2l k4j 1 H.c. (1b)
The detunings from resonance are defined asDvp 
vp 2 sv3 2 v1d, Dvc  svp 2 vcd 2 sv2 2 v1d,
Dv24  svp 2 vc 1 v24d 2 sv4 2 v1d, andVc, Vp,
andV24 are the respective Rabi frequencies.

To start, we take all fields to be monochromatic and a
sume that the atoms remain in the ground state for all tim

FIG. 1. Energy schematic for a four-state system. Th
linewidths of statesj3l and j4l are greater than all other
characteristic frequencies.
© 1998 The American Physical Society 3611
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With the probability amplitudeja1j  1 these assumptions
allow a steady-state solution of Schrödinger’s equation
the probability amplitudes of statesj2l throughj4l. With
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or
these probability amplitudes known, the dipole momen
and susceptibility at the probe frequency are calculate
DefiningPsvpd  e0xsvpdEsvpd, the result is
xpsvpd 
KsjV24j

2 2 4DṽcDṽ24d
4DṽpDṽcDṽ24 2 jVcj2Dṽ24 2 jV24j2Dṽp

, (2)
es

is

e

where the constantK  N jm13j
2yh̄e0. By defining

the complex detuningsDṽp  Dvp 1 jg13, Dṽc 
Dvc 1 jg12, and Dṽ24  Dv24 1 jg24, we introduce
(Lorentzian) dephasing linewidths for the respecti
transitions. The susceptibility of Eq. (2) describes bo
the resistive nonlinearity of this work, and also, in th
appropriate limit, the associated Kerr nonlinearity
Imamoglu [6].

To specialize to the pure resistive nonlinearity we ta
the linewidths of statesj3l andj4l to be large as compare
to all other characteristic frequencies, includingVc. This
assumption causesg23  g13 and allows the square of th
e
th
e
f

ke

Rabi frequenciesVp, Vc, andV24 to be grouped with the
linewidths and replaced by the golden rule transition rat

Wp 
V2

p

2g13
, Wc 

V2
c

2g23
, W24 

V
2
24

2g24
. (3)

We neglectDvp and Dv24 as compared to their re-
spective linewidths and, because the coupling laser
monochromatic, then letDvc  Dvp. By combining the
susceptibility of Eq. (2) with Maxwell’s equations, we ob-
tain expressions for the power loss2aL, the phase shift
bL, and the group velocity delay time for the probe puls
of frequencyvp. These are
2aL  NLs13

"
sW24 1 2g12d sWc 1 W24 1 2g12d 1 4Dv2

p

sWc 1 W24 1 2g12d2 1 4Dv2
p

#
,

bL  NLs13

"
DvpWc

sWc 1 W24 1 2g12d2 1 4Dv2
p

#
, (4)

TD 
≠sbLd

≠v
 NLs13

(
WcsWc 1 W24 1 2g12d2 2 4WcDv2

p

fsWc 1 W24 1 2g12d2 1 4Dv2
pg2

)
.
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The group delay time of the probe pulseTD is relative
to the speed of light in vacuum. In Eq. (4) and in th
following equations, we write the matrix elements
the j1l ! j3l and j2l ! j4l transitions in terms of the
cross sections for power absorptionsij of the respective
transitions. These cross sections, in terms of the ma
elements, aresij  vijjmijj

2ye0ch̄gij .
We now allowW24 andWp, but notWc, to be functions

of time and ask for the conditions for which Eq. (4
remains valid. There is both a single atom (adiabatici
and a macroscopic (group velocity delay) condition.
obtain the adiabatic condition, we use the Hamiltoni
of Eq. (1) with the decay rates as defined above
write the equations for the probability amplitudes
statesj1l through j4l. We take the derivatives of the
probability amplitudes of statesj3l andj4l to vary slowly
as compared to the linewidths of these states and d
these derivatives. These equations are

≠a1

≠t
 j

Vp

2
a3 ,

≠a2

≠t
1 g12a2  j

Vc

2
a3 1 j

V24

2
a4 ,

a3 
j

2g3
fVp

pstda1 1 Vp
ca2g ,

(5)

a4  j
V

p
24std

2g24
a2 ,
e
f

trix

)
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and, with the previous definitions, combine to

≠a2

≠t
1

√
g12 1

Wc

2
1

W24

2

!
a2  2

Wc

2

√
Vp

p

Vp
c

!
a1 .

(6)

The first terms of a series solution of Eq. (6) are

a2std  2
Vp

pstd
Vp

c
a1 1

s2g12 1 W24d
Wc

Vp
pstd

Vp
c

a1

1
2

WcVp
c

≠Vp
p

≠t
a1 1 · · · 1 . . . . (7)

The first term is the solution with monochromatic field
and no dephasing of thej1l ! j2l transition. The second
is the (steady-state) switching term. The last resu
from the time variation of the probe pulse and leads
the group delay discussed below. For the steady-st
solution to apply, this term must be small as compar
to the first, i.e.,

1
Vp

p

≠Vp
p

≠t
ø

1
Wc

. (8)

The maximum rate of variation ofVpstd and therefore the
switch bandwidth is set by the (adjustable) golden ru
transition rateWc [10].

There is a more important constraint: The pulses
frequenciesv24 andvp must not slip apart as they trave
through the medium. In a medium whereWc is less
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than the EinsteinA coefficient, the group velocity of the
probe pulse may be many orders of magnitude slower th
the velocity of light [11]. Because of the small prob
assumption, the switching pulsev24 has a group velocity
which is very close toc. For largeWc, the group delay
time, relative to the speed of lightTD, of Eq. (4) is

TD 
NLs13

Wc
. (9)

Note that at unity absorption depth, i.e.,s13NL  1, the
delay time is equal to the minimum pulse width1yWc

and, to be observable, requires that the optical thickn
be greater than unity. With cool atoms, whereWc may
be at least a factor of 10 smaller than the EinsteinA
coefficient and withs13NL  10 in a length of 1 mm,
a group velocity slower than about1025c is expected.

We next solve the first of Eqs. (4) for the transitio
rate sW24dcrit and power densitysP24yAdcrit at which the
power loss at the probe frequency is equal to unity, i.
s2aLd  1. For Wc large compared toW24 andg12, but
small compared tog13, sW24dcrit  sWcyNLs13d and the
critical power density is√

1
h̄v24

! √
P24

A

!
crit



√
1

s13s24

! √
1

NL

!
Wc . (10)

The energy per area at frequencyv24 which is nec-
essary for switching is the product of the critical powe
density and the delay time of Eq. (9)

Energy
Area



√
P24

A

!
crit

TD 
h̄v24

s24
. (11)

The cross section of an atom which is naturally broaden
and spontaneously decays into a single polarization
s  3l2ys2pd and, in this case,

Energy
Area



√
2p

3

!
h̄v24

l
2
24

. (12)

Therefore, in the limit of ideal assumptions, a pulse
frequencyv24 with the energy of a single photon an
focused to a spot size of a half a wavelength is sufficie
to make the medium opaque to a photon of frequencyvp.
In this limit, the duration of the pulse of frequencyv24
must be equal to the group delay timeTD. We note that
a switch which works by saturation of a two-state ato
also has an ideal switching energy of a single phot
per square wavelength [12]. But because it works
sequential absorption and decay, it has a characteri
time constant equal to the EinsteinA coefficient. Here,
the switch may open or close with a speed equal to
golden rule transition rateWc.

Figures 2(a) and 2(b) show the power transmissi
exps22aLd and phase shiftbL as a function of the
detuning Dvp. The figures are plotted using Eq. (4)
Both assume an optical depthNLs13  10. Both take
Wc  1 and g12  1024. In each case, the switch is
shown opensW24  0d and closedsW24  Wcrit  0.1d,
such that the transmission is approximately exps21d.
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FIG. 2. Power transmissionand phase shift as a function
of the detuningDvp  Dvc. The switch is shown open
sW24  0d and closedfW24  sW24dcrit  0.1g. The golden
rule transition and dephasing rates areWc  1 andg12  1024,
respectively.

We next examine the reciprocal question: How d
photons of frequencyvp affect the transmission of photons
at frequencyv24. Retaining the assumption thatWc is
sufficiently strong thatja1j

2  1, we calculate the dipole
moment and absorption at frequencyv24. Proceeding as
above, one finds that the critical power density at frequen
vp which results inaL  1 at frequencyv24 is√

1
h̄vp

! √
Pp

A

!
crit



√
1

s13s24

! √
1

NL

!
Wc . (13)

Note that the right-hand side is the same as that of Eq. (1
There is exact reciprocity: The number of photons pe
second which will close one channel is the same as t
number which will close the other. In the ideal limit of a
single photon in each channel, both are absorbed, while
single photon in either channel alone is not.

For the validity of the assumptionja1j
2  1, the

product of the total transition rate from statej1l and the
time TD during which the switch is open, must be les
than unity. The transition rate from statej1l is

W  2
≠

≠t
ja1j

2 

√
2g12 1 W24

Wc

!
s13

P
A

h̄v13
. (14)

For a small dephasing rateg12, this condition may be
3613
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s
FIG. 3. Formation of a threefold entangled state. The measurables are the presence or absence of photons at frequencievp and
v24 and the presence or absence of fluorescence from statej4l.
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written as

W24WpsNs13Ld , W2
c . (15)

Since the two-photon absorption depends on the sim
taneous arrival of two photons, it may have application t
the processing of quantum entangled states. Suppose
a parametric down-converter is tuned to generate a tw
photon pairj1lvp j1lv24 and one photon, sayj1lv24 , is split
into the two arms of a 50%-50% beam splitter. If on
part of this entangled state interacts withj1lvp in an ideal
two-photon absorber (Fig. 3), the simultaneous presen
and absence of two-photon absorption generates a thr
fold state [13].

1
p

2
sj10l 1 j01ldv24 ≠ j1lvp ≠ j1latom

!
1

p
2

sj00lv24 j0lvp j4latom 1 j01lv24 j1lvp j1latomd . (16)

Here j1latom denotes the condition where all of the atom
are in the ground state, andj4latom denotes a single atom
in an excited state and all others in the ground state. T
measurables are the presence or absence of a photo
each channel and the presence of absence of fluoresce
of statej4l atoms.

The ability to construct this type of interference switch
is dependent on a very high ratio of allowed to nona
lowed transition linewidths. It is therefore of interest to
note that by using a buffer gas to eliminate time of fligh
broadening, linewidths of hyperfine transitions in Cs va
por as low as 42 Hz have recently been reported [14].

In summary, we have described an optical syste
which, in the ideal limit, may absorb two photons bu
not a single photon. It may function as an absorptiv
optical switch with an adjustable bandwidth and with a
invariant switching energy of one photon per atomic cros
section. Because it operates by quantum interferen
almost all of the atoms remain in the ground state an
except when switched, beams propagate as in vacuu
Since its action depends on the simultaneous arrival
3614
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photons, it may also have application to the processing
quantum superposition states.
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