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Odd-Even Staggering of Nuclear Masses: Pairing or Shape Effect?
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The odd-even staggering of nuclear masses was recognized in the early days of nuclear ph
Recently, a similar effect was discovered in other finite fermion systems, such as ultrasmall me
grains and metal clusters. It is believed that the staggering in nuclei and grains is primarily
to pairing correlations (superconductivity), while in clusters it is caused by the Jahn-Teller eff
We find that, for light- and medium-mass nuclei, the staggering has two components. The
originates from pairing while the second, comparable in magnitude, has its roots in the defor
mean field. [S0031-9007(98)07481-X]
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The odd-even staggering (OES) of binding energie
has been observed in several finite many-fermion syste
such as nuclei [1], ultrasmall superconducting grains [2
and metal clusters [3]. It manifests itself in the fac
that the binding energy of a system with an odd partic
number is lower than the arithmetic mean of the energi
of the two neighboring even-particle-number systems.

In atomic nuclei, the OES is usually attributed to
the existence of nucleonic pairing correlations [4,5]. A
similar scenario has been proposed for metallic grai
(see Ref. [6] and references quoted therein). In bo
cases, the finite-size effects are important, and the Coo
pairing is well described in terms of the parity-number
conserving quasiparticle approach. Although the motio
of electrons in metals is very different from that o
nucleons in nuclei, the mechanism behind electron
and nucleonic superconductivity (presence of attracti
residual interaction which gives rise to a correlated man
fermion system) is indeed very similar [7].

Thus far, no evidence has been found for supercondu
tivity in metal clusters [8], and the OES of binding energie
in such systems is attributed to a very different mechanis
Namely, it is believed to have its origin in the Jahn-Telle
effect which, by breaking the spherical symmetry of th
mean field, gives rise to deformed single-particle orbita
[9,10]. Recently, Häkkinenet al. [11], using the density-
functional theory, argued that light alkali-metal cluster
and lightN ­ Z nuclei have a similar pattern of OES, ir-
respective of differences in the interactions between t
fermions. Hence, they concluded that the OES in sm
nuclei appears to be a mere deformation effect rather th
a consequence of pairing.

The main objective of this study is to analyze th
phenomenon of OES in nuclei from the microscopi
perspective. Guided by self-consistent calculations, w
make an attempt to determine and separate the pairing
mean-field contributions to the experimental OES.
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In the independent quasiparticle (BCS) picture [12], th
gap parameter,D, can be related to the binding energie
of three adjacent systems. Assuming that the bindi
energies of even systems and those of odd systems
locally smooth functions of the particle numberN , the
quantity

Ds3dsNd ;
pN

2
fBsN 2 1d 1 BsN 1 1d 2 2BsNdg (1)

is often interpreted as a measure of the empirical pairi
gap. In Eq. (1),pN ­ s21dN is the number parity and
BsNd is the (negative) binding energy of a system wit
N particles. Indeed, assuming that the ground state
the odd-N system is a pure one-quasiparticle state, o
has Ds3dsNd ø Ek ø D, where Ek ­

p
sek 2 ld2 1 D2

is the lowest BCS quasiparticle energy,ek is the energy
of the single-particle orbital occupied by the odd nucleo
andl (­ dBydN) is the Fermi energy.

Another commonly used binding-energy relation forD

is the four-point expression [13],

Ds4dsNd ;
pN

4
f3BsN 2 1d 2 3BsNd 2 BsN 2 2d

1 BsN 1 1dg

­
1
2

fDs3dsNd 1 Ds3dsN 2 1dg , (2)

which averages theDs3d values in adjacent even and
odd systems. In nuclei, because there are two kinds
particles, neutrons and protons,D is calculated along the
isotopic or isotonic chains [5]. The resulting pairing gap
are denoted asDn andDp , respectively. In what follows
we argue that different physical effects determine th
behavior ofDs3dsNd for odd and even particle numbers
Hence, the interpretation of the average (2) in terms of t
pairing gap can be misleading.

To investigate the Jahn-Teller component of the OE
we performed the Hartree-Fock (HF) calculations witho
© 1998 The American Physical Society 3599
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pairing for nuclei with9 # Z # 28 and22 # N 2 Z #

6. The HFODD code (v1.75) [14] and two different
Skyrme parametrizations, SIII [15] and SLy4 [16], wer
employed. Since, according to our calculations, the tim
odd components which appear in the mean fields
odd and odd-odd systems do not affectqualitatively the
OES, the results presented in this work were obtained
neglecting these terms.

Figure 1(a) displays the theoretical values ofDs4d
n ob-

tained from binding energies in the SIII model. The re
sults obtained with the SLy4 parametrization are striking
similar, in spite of the fact that the total binding energie
predicted by these two forces show large differences, a
proaching 4 MeV in some cases.

Results shown in Fig. 1(a) demonstrate that the se
consistent mean-field theorywithout pairing does indeed
predict the OES according to the criterion (2). The effe
is sizable: theoretical values ofDs4d

n reach 30% to 50%
of the empirical OES and they, on average, gradua
decrease with mass. A rather complicated pattern ofDs4d

n

can be easily explained by looking at values ofDs3d
n

presented in Fig. 1(b). Values ofDs3d
n are large forpN ­

11 and very small forpN ­ 21; hence, the averages
Ds4d

n (2) simply reflect the simple pattern ofDs3d
n . (The

behavior ofDs3d
p shows a very similar pattern. Also much

the same results were obtained with the SLy4 force.)
We are now in a position to trace the pattern ofDs3d

n ,
shown in Fig. 1(b), back to properties of the deforme
mean field. Indeed, Eq. (1) represents the second-or
difference with respect toN ; i.e.,

FIG. 1. Ds4d
n (a) andDs3d

n (b) calculated in the SIII HF model
without pairing as a function of neutron number.
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2pN Ds3dsNd ø
≠2B
≠N2 ­

≠l

≠N
­

1
gsld

, (3)

wheregsed ; dNyde is the single-particle level density
Consequently, in the absence of OES due to pairi
Ds3d represents the variation of the Fermi energy wi
particle number. In the case of a degenerate sh
the Fermi energy does not change withN (l lies on
the last occupied level) andDs3d ­ 0. The change in
l takes place when the valence shellen (N ­ 2n) is
completely filled and the higher shell,en11, needs to
be occupied. In this case, corresponding topN ­ 11,
dlydN ø en11 2 en, and Ds3d ø sen 2 en11dy2. That
is, in the absence of pairing correlations,Ds3d becomes
a measure of a gap in the single-particle spectru
This single-particle mechanism behind the OES w
early noticed in Ref. [5] and subsequently employed
Refs. [9,10] to explain the OES in metal clusters. T
alternating behavior ofDs3d in Fig. 1(b) comes from
the twofold Kramers degeneracy of the deformed sing
particle energy levels. Indeed, the spherical symmetry
the mean-field potential, which gives rise to a (2j 1 1)-
fold degeneracy of single-particle levels, is preserv
only for doubly magic nuclei. For open-shell system
spherical symmetry is spontaneously broken by the Ja
Teller mechanism, and the ground state is characteri
by the deformed mean field; cf. Refs. [17,18].

Results of the self-consistent calculations for nuc
and metal clusters can be understood in terms of
macroscopic-microscopic shell-correction method. In th
approach, which can be viewed as an approximation to
HF treatment [19], the total binding energy can be writt
asB ­ Esp 2 Ẽsp 1 Emacro, where

Esp ­
AX

k­1

ek (4)

is the shell-model energy (sum of single-particle energ
of occupied states),̃Esp is the Strutinsky-averaged shell
model energy, andEmacro stands for the macroscopic
liquid-drop energy.

The liquid-drop contributions to the second differen
(3) differ for nuclei and clusters. For nuclei, the main e
fect comes from the symmetry energy term [20]. Assu
ing the symmetry energy coefficientaI ­ 38 MeV (the
value appropriate for light nuclei [21]), the nuclear liquid
drop curvature contribution to (3) is38yA MeV, while the
contribution of the surface-energy term is much small
On the contrary, in alkali-metal clusters, theleadingcon-
tribution from the liquid-drop term to (3) comes from th
surface energy and is negligible. Indeed, taking the ty
cal value of the surface-tension coefficient for the bu
Na,s ø 0.01 eVyÅ2, one obtains a very small correctio
≠2Emacroy≠N2 ø 20.15yN4y3 eV.

In order to evaluate the curvature contribution fro
Ẽsp, one needs to estimate the average single-particle le
density at the Fermi energy,gsld [see Eq. (3)]. In the
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nuclear casegsld ­ 3ayp2, wherea is the level density
parameter [5]. Experimentally,a ø Ay8 MeV for light
nuclei, and this agrees well with the estimate based
realistic potentials [22]. Since in our HF calculations th
effective mass is less than one, the level density parame
should be additionally multiplied by the effective-mas
factor: mpym ­ 0.76 and 0.7 for SIII and SLy4, re-
spectively. Consequently, the corresponding curvatu
contribution becomes21ygsld ø 236yA MeV, and
nearly cancels out the liquid-drop contribution. One ca
therefore, conclude that the leading contribution to th
HF values ofDs3d shown in Fig. 1(b) comes from the
single-particle sum (4),

Ds3dsNd ­
1
2

de ø
1
4

s1 1 pN d sen11 2 end , (5)

provided that one neglects small shifts in the singl
particle energies due to variations of the mean field (e.
deformation changes) when increasing the particle num
from N to N 1 1. (The effect of the mean-field variations
is seen in Fig. 1(b) for particle numbers 13, 19, and 27, i.
around magic gaps where the shape transitions take pla
Quantityde in Eq. (5) represents, therefore, theeffective
single-particle spacing between nucleonic energy levels

The above conclusion is not true for alkali-meta
clusters. The level density for alkali-metal clusters ca
be estimated following Ref. [5]:gsld ­ 0.154mer2

0 Nyh̄2.
By taking r0 ­ 2.17 Å (the value corresponding to the
density of bulk Na at 500 K), one obtains1ygsld ø
1.4yN eV. (This result is fairly close to the Fermi-
gas estimate of1ygsld ø 2.15yN eV, assumingl ­
3.23 eV.) Contrary to the nuclear case, since the liqui
drop component of the second difference is very sma
the smoothed-energy term strongly contributes toDs3d.
Moreover, the typical single-particle splitting due t
cluster deformation is of the order of 0.2 eV [23]
i.e., it is very similar to the value of1ygsld. For
example, in Fig. 4 of Ref. [11], the calculated OE
parameter2pNDs3d oscillates aroundzero—in contrast to
the nuclear case presented in Fig. 1(b). This is beca
the smoothed-energy contribution to the OES,21ygsld,
introduces a negative shift of the same order as term (5

Since in nuclei the HF contribution to the OES i
very small for pN ­ 21, both pairing and mean-field
components of OES can be extracted from bindin
energies by using the three-point filterDs3d. As illustrated
schematically in Fig. 2, values ofDs3d calculated at odd
values ofN can be, roughly, associated with the pairin
effect,

DnsNd ; Ds3d
n sN ­ 2n 1 1d , (6)

while the differences ofDs3d at adjacent even and odd
values of N give information about the single-particle
spectra,

en11 2 en ­ 2fDs3d
n sN ­ 2nd 2 Ds3d

n sN ­ 2n 1 1dg .

(7)
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FIG. 2. Schematic illustration of various contributions to th
OES. The odd-even energy difference,Do2e, is decomposed
into the pairing part,D, and the mean-field part,dey2.

(A similar conclusion can be drawn based on the senio
model, pairing-plus-quadrupole model, and equidista
level model [21]. It is to be noted that the quantityD

as defined in Eq. (6), in addition to the dominant pairin
component, also contains a contribution coming fro
dynamical correlations beyond mean field.)

Values of the neutron staggering parametersDs3d and
Ds4d extracted from the experimental binding energies a
shown in Fig. 3. The values ofDs3d

n at even neutron
numbers are almost twice as large as those at odd neu
numbers. Therefore, in light nuclei the mean-field a
pairing effects contribute almost equally to the stagger
of nuclear masses. The expected quenching of neu
pairing (6) at magic (or semimagic) particle numbe
N ­ 14, 28, and 50 is clearly seen. (Interestingly, th
minimum atN ­ 20 is absent.)

Since the differences (7) reflect the mean-field contrib
tions to the OES, they sharply peak at magic numbers.
the experimental values ofDs4d

n the magic gaps are almos
invisible. This is so because the effects of a large sing
particle gap and quenched pairing cancel out in the av
ages (2). Since the commonly used smooth depende

FIG. 3. Experimental values ofDnsNd ­ Ds3d
n sNd for N odd

(filled circles), Ds3d
n for N even (open circles), andDs4d

n for N
odd (open triangles). The thick gray line indicates the avera
trend,D̃ ­ 12y

p
A. Each point represents the arithmetic me

over several even-Z isotones.
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FIG. 4. Experimental and calculated effective single-partic
spectrum extracted by means of relation (7) forN 2 Z ­ 4.

of average pairing gap on mass number,D̃ ­ 12y
p

A, was
fitted to Ds4d [24], the values ofD̃ are overestimated, es
pecially for light systems. As seen in Fig. 3, the values
Dn in the middle of thesd andpf shells are fairly simi-
lar, and are not consistent with theA21y2 trend.

Finally, we have extracted from the data the mea
field contributions to the OES according to Eq. (7). A
an example, in Fig. 4 they are compared with the H
results for theN 2 Z ­ 4 chains. In spite of the fact
that no pairing correlations have been considered in
calculations, a good agreement between the experime
and theoretical levels is obtained. The fact that theoreti
and experimental energy scales agree is a conseque
of the fact that both SIII and SLy4 reproduce fairl
well the symmetry energy. The level bunching predicte
between theN ­ 20 and N ­ 28 gaps reflects small
calculated equilibrium deformations in these1f7y2-shell
nuclei, which nicely agrees with a similar grouping o
levels seen in the experiment.

In summary, our analysis does not confirm the rece
suggestion [11] that the OES in light nuclei is a me
reflection of the deformed mean field. We have demo
strated that the OES in light atomic nuclei is strongly a
fected byboth nucleonic pairingand the deformed mean
field. A method has been proposed to extract the pa
ing contribution to the OES from experimental data. Th
experimental pairing gaps show a weakerA-dependence
than that obtained previously. Since the fourth-order ma
differenceDs4d is strongly affected by the mean-field con
tribution, it is not a good measure of pairing correlation
at least in light nuclei.

In our discussion we have not discussed the singu
behavior of binding energies of theN ­ Z nuclei, known
as the Wigner energy, which dramatically influences t
binding-energy relations (1) and (2) [21,25,26]. Cons
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quently, the OES near theN ­ Z line has an additional
third component originating from the neutron-proton cor
relations. In particular, the OES parameter discussed
Ref. [11], which is based on binding-energy difference
of even-even and odd-oddN ­ Z nuclei (hence, itdoes
not representany pairing gap), is strongly perturbed by
this third component [26].
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