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Measurement ofassssQ2ddd from the Gross–Llewellyn Smith Sum Rule
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We extract a set of values for the Gross–Llewellyn Smith sum rule at different values of 4-
momentum transfer squared (Q2), by combining revised CCFR neutrino data with data from other
neutrino deep-inelastic scattering experiments for1 , Q2 , 15 GeV2yc2. A comparison with the order
a3

s theoretical predictions yields a determination ofas at the scale of theZ-boson mass of0.1146
0.009
0.012.

This measurement provides a new and useful test of perturbative QCD at lowQ2, because of the low
uncertainties in the higher order calculations. [S0031-9007(98)07266-4]

PACS numbers: 12.38.Qk, 11.55.Hx, 13.15.+g, 25.30.Pt
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The Gross–Llewellyn Smith (GLS) sum rule [1] pre
dicts the integral

R1
0sxF3d dx

x , wherexF3sx, Q2d is the non-
singlet structure function measured in neutrino-nucleo
(nN) scattering. In the naive quark parton model, th
value of this integral should be three, the number of v
lence quarks in the nucleon. In perturbative quantu
chromodynamics (PQCD), this integral is a function o
assQ2d, the strong coupling constant.

The GLS integral is one of the few physical quanti
ties which has been calculated to next-to-next-to-leadin
order (NNLO) of perturbative QCD [2], and there are
estimates of the next order term [3] [i.e.,Osa4

s d]. In addi-
tion, there is a nonperturbative higher-twist contribution
proportional to1yQ2. This yields the GLS integral as a
function ofas, of the form

GLS ­ 3

"
1 2
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2 asnfd
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2
DHT
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where asnfd and bsnfd are functions [2] of the number
of quark flavors accessible at a givenQ2. The higher-
twist correction termDHT is predicted to be significant in
some models [4], while others [5–7] predict a negligibl
small correction term. We takeDHT as half the largest
model prediction, with errors which cover the full rang
(DHT ­ 0.15 6 0.15 GeV2).

The size andQ2 variation of the GLS integral is a
robust prediction in PQCD. The NNLO calculation ha
been shown to be largely independent of renormalizati
scheme [8], andxF3 is inherently independent of the gluon
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distribution. The number of orders to which the integr
has been calculated ensures an accurate perturbative
culation in spite of the large value ofas at low Q2.

An earlier measurement of the GLS integral has be
published by the CCFR Collaboration [9]. That analys
used a leading-order (LO) QCD-based fit to extrapola
all data toQ2 ­ 3 GeV2, fitted the extrapolated data to a
single function over allx, and numerically integrated tha
function. This was confirmed by a LO global fit analysi
of the same data [10]. However, these approaches can
make full use of the accuracy of the NNLO calculatio
shown above, since they depend on LO PQCD f
extrapolation. Also, the previous CCFR analysis d
not correct for quark mass thresholds [8], target ma
[11], or higher-twist [4–7] effects. These correction
are important at the effective meanQ2 of the result
(Q2 , 3 GeV2).

This paper describes a new GLS analysis, which us
revised CCFRxF3 data together with data from earlie
neutrino-scattering experiments. By combining data se
we expand the kinematic region to measure

R
xF3

dx
x

for 1 , Q2 , 15 GeV2 without any extrapolation in
Q2. This technique thus allows us to consistently use t
fundamental NNLO prediction shown in Eq. (1).

The CCFR data were collected at Fermilab in expe
ments E744 and E770, which ran in 1985 and 1987
1988, respectively. The experiments observed neutr
scattering in an iron calorimeter [12]. The calorimete
and muon spectrometer were calibrated using a test be
[13]. New structure functions (SFs) from this data [14
were published in 1997. These SFs had a number of i
provements compared to the SFs used in the previous G
© 1998 The American Physical Society 3595
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measurement [9]. Improvements include a revised ene
calibration based directly on test-beam data, an improv
calculation of radiative corrections [15], and the remov
of and correction for two-muon events (nN ! m1m2X)
from the data sample. Previously, the two-muon even
introduced a small ambiguity at lowx between neutrino-
induced and anti-neutrino-induced events, which is pa
ticularly important to the GLS integral.

This analysis further improves the CCFR structu
functions [14] at lowx by improving the acceptance and
smearing corrections. These corrections, which requ
a cross-section model, now incorporate measurements
the strange sea [16] and a more accurate parametriza
of the parton distributions. These procedures create a n
SF set [17] with reduced uncertainty at lowx.

We also expand our kinematic region at highx by using
xF3 data from othern-N experiments, namely, WA25
[18], WA59 [19], SKAT [20], Fermilab-E180 [21], and
BEBC-Gargamelle [22]. These were each normalized
CCFR in the regions of overlap, and the WA25 data we
corrected at highx for nuclear differences [23] in the
targets.

The GLS integral is evaluated numerically using th
combinedxF3 data in bins ofx and Q2. The integral
over x is evaluated separately for eachQ2 bin. At very
low x we must extrapolate below the CCFR kinemat
limit, while at high x we use other experiments’ data
and interpolate as necessary within the large bins.
each case, we vary the forms of the interpolations a
extrapolations and use the differences in the integral
estimates of the systematic uncertainties in the procedu

The CCFR data have a minimumx of roughly (x ­
0.002 3 Q2). To extrapolate below this, we fit a powe
law (AxB) to all points with x , 0.1. The power-law
form is suggested by Regge theory [24], which predic
a shape ofx0.5. To test this assumption, we made a
alternate fit of the formCx0.5, using the difference as an
independent systematic uncertainty. This systematic er
becomes large atQ2 above5 GeV2.

For x . 0.5, there are also few data points. Most o
the data here come from BEBC and SKAT which quo
only two points for the range0.5 , x , 1.0. HerexF3
is steeply falling and thus the precise shape is importa
for integration. Again, to estimate the contribution an
error we use various assumptions. For the central val
we use the principle that at highx, the shape ofxF3 should
be the same asF2, since the sea quarks are negligible
high x. Electron scattering experiments at SLAC hav
precisely measuredF2 in this region [25]. These data are
corrected for nuclear effects [23] and differences betwe
eN andnN scattering [14]. The correctedF2 data alone
give the same result as interpolating thexF3 data with the
F2 shape.

However, the SLAC data have small resonance pea
which may be different from neutrino resonances. T
estimate the systematic error, we take the differen
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FIG. 1. xF3 as a function ofx at the four lowestQ2 values,
with x on a log scale. The area under the points thus represR

xF3
dx

x
. The curve is a power-law (AxB) fit to the x , 0.1

points, which is used to calculate the integral in the shad
region.

between two power-law fits to thexF3 data, using
the forms Ds1 2 xdE and Fs1 2 xd3. These bracket
the SLAC fit and serve as the limits of reasonab
interpolation forms. Note that resonance behavior at l
Q2 coupled with approximate scaling [26] leads to
predicted form ofs1 2 xd3.

FIG. 2. xF3 as a function ofx at the four lowestQ2 values,
with x on a linear scale to show the high-x data. The shaded
region shows the fit using the shape from SLACF2 data.
The other lines are the power-law fits [Ds1 2 xdE above and
Fs1 2 xd3 below] used to estimate systematic error.
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TABLE I. The contributions to the GLS integral from different regions ofx and the
quasielastic (qElas) peak added atx ­ 1, shown as a function ofQ2 (in GeV2). For high
and low x, it shows the estimated uncertainties due to the model choice only. The val
include the target mass corrections.

Q2
R0.02

0 F3 dx
R0.5

0.02 F3 dx
R1

0.5 F3 dx qElas

1.0 1.6 0.376 6 0.082 1.730 0.183 6 0.073 0.103
1.6 2.5 0.523 6 0.002 1.843 0.091 6 0.026 0.033
2.5 4.0 0.558 6 0.026 1.889 0.092 6 0.020 0.009
4.0 6.3 0.700 6 0.137 1.991 0.084 6 0.016 0.002
6.3 10.0 0.748 6 0.139 2.004 0.064 6 0.008 0.0004

10.0 15.5 0.718 6 0.113 2.007 0.073 6 0.003 0.0001
e
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Figure 1 shows the combinedxF3 data on a logx scale
in four low-Q2 regions, along with a line representing
the power-law fit (AxB) for x , 0.1 and thex2 for the
fits. Figure 2 shows the same data on a linearx scale to
highlight the high-x region.

Following the procedure of the BEBC Collaboratio
[22], we add the quasielastic contribution and correct t
GLS integral for target mass effects. This is necessa
to be consistent with theoretical prediction of higher-twi
contributions [4] to the GLS integral. Table I shows th
exact Q2 ranges of each bin and the contributions tR

xF3
dx
x for the different regions ofx.

The systematic uncertainties are divided into thre
classes. The first includes calibration, normalization, a
other purely experimental issues. The second is unc
tainty in the integration of experimentalxF3, estimated by
varying the assumed functional forms as described abo
The third class includes uncertainties in the theoretic
prediction of the GLS integral itself. A summary of al
the uncertainties is shown in Table II.

The dominant experimental systematic uncertai
ties are in the normalization ofxF3, which comes
from the total neutrino and antineutrino cross sectio
(sn and sn̄). The absolutesn is not measured by
CCFR, so we use the world average [27,28] (snyEn ­
0.677 6 0.007 3 10238 cm2yGeV). The ratiosn̄ysn is
measured by CCFR, and combined with the world avera
[28,29] yields sn̄ysn ­ 0.499 6 0.007. Other experi-
mental uncertainties include the energy scale calibrati
of the detector and the effects of charm production on t
measured structure functions.

Additionally, there is a small uncertainty in the re
vised calculation of acceptance and smearing correctio
These corrections depend on a parametrization of the S
Variations of the functional form of the parametrizatio
were used to estimate the systematic error.

The dominant theoretical uncertainty is the erro
on the higher-twist correction (DHTyQ2). Braun and
Kolesnichenko [4] use three models which predict
correction termDHT between0.16 and0.29 GeV2. Other
models, such as bag models [5] and a recent NNL
analysis [6] using a renormalon [7] approach, predict
negligible correction term (DHT , 0.02 GeV2). For our
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central value, we takeDHT ­ 0.15 6 0.15 GeV2, thus
covering all three predictions. The nuclear effects of th
target are predicted to be small [30] (20.01yQ2 for iron).
We also use estimates of the renormalization schem
dependence [8] and the ordera4

s term in the PQCD ex-
pansion [3] as uncertainties in the perturbative calculation

To extract a single value forL
s5d
MS, we combine the

measured values of the GLS integral in eachQ2 with the
uncorrelated systematic errors, including the acceptan
model error and the high-x and low-x fitting errors. These
points are fitted to the NNLO PQCD function and higher-
twist term, shown in Eq. (1). The prediction includes
quark mass thresholds using the procedure of Chyla an
Kataev [8]. The other systematic error sources are full
correlated inQ2 and are applied by shifting all GLS values
by the uncertainty from that source and redoing the fit
The difference between the shifted and unshifted fit resu
represents the uncertainty inas from that systematic error.

The best fit to the measured GLS integral as a functio
of Q2 is for a value ofL

s5d
MS ­ 165 MeV. Evolving to

TABLE II. Uncertainties inassM2
Zd. Errors which are uncor-

related inQ2 are marked with an “a.” Other sources are fully
correlated inQ2.

Source Error

Statistical s10.005
20.006d

sn Normalization s10.003
20.005d

snysn̄ Ratio s10.005
20.006d

Energy calibration s10.002
20.003d

Charm production 60.005
Acceptance modela 60.002

Total experimental error s10.006
20.008d

High-x fittinga 60.003
Low-x fittinga 60.002

Total model error 60.004

Combined systematic error s10.007
20.009d

Higher twist s10.004
20.005d

Renormalization scheme [8] 60.001
Ordera4

s 60.0003

Total theory error 60.005
3597
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TABLE III. The total GLS integral andas for each bin inQ2. The errors on the GLS are
6sstatd 6 ssystd. The errors onassQ2d are6sstatd 6 ssystd 6 stheord. Systematic errors are
correlated inQ2.

kQ2l GLSsQ2d assQ2d

1.26 2.39 6 0.08 6 0.14 0.330 6 0.023 6 0.042 6 0.050
2.00 2.49 6 0.08 6 0.10 0.303 6 0.020 6 0.026 6 0.036
3.16 2.55 6 0.06 6 0.10 0.287 6 0.008 6 0.034 6 0.026
5.01 2.78 6 0.06 6 0.19 0.165 6 0.033 6 0.144 6 0.024
7.94 2.82 6 0.07 6 0.19 0.145 6 0.061 6 0.136 6 0.022

12.59 2.80 6 0.13 6 0.18 0.164 6 0.068 6 0.101 6 0.014
t

.

n

M2
Z and3 GeV2 at NNLO, this corresponds to

assM2
Zd ­ 0.114 60.005

0.006 sstatd 60.007
0.009 ssystd

6 0.005stheord , (2)

ass3 GeV2d ­ 0.28 6 0.035sstatd 6 0.05ssystd

6 0.035
0.03 stheord . (3)

If the higher twist models of 5–7 are used, the centr
values becomeassM2

Zd ­ 0.118 andass3 GeV2d ­ 0.31.
Table III shows the results of fitting forL

s5d
MS at each

Q2 value as a consistency check. In all cases the sm
target mass and quasielastic corrections are included,
roughly cancel

In conclusion, the GLS sum rule allows a precise me
surement ofas at low Q2. An independent measuremen
of as from the CCFR calculation [14] used the slope o
global NLO fits toxF3 andF2 for 15 , Q2 , 125 GeV2

and found assM2
Zd ­ 0.119 6 0.004. Three orders of

magnitude higher in scale (Q2 ­ M2
Z ­ 8315 GeV2),

electroweak fits to CERN Large Electron-Positron Co
lider data [31] foundassM2

Zd ­ 0.124 6 0.004 6 0.002
based on the parameterR,.

The GLS result is consistent with other measuremen
showing the power of PQCD across a very wide range
scales. An inconsistency in results might have indicated
need for higher order calculations in other measureme
(i.e., NNLO) or the presence of other theoretical effec
[32] which scale with Q2. The GLS result can be
improved in the future by additional data from the NuTeV
experiment at Fermilab and by a better understanding
higher-twist effects.
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