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Relative Entropy in 2D Quantum Field Theory, Finite-Size Corrections,
and Irreversibility of the Renormalization Group
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(Received 3 November 1997)

The relative entropy in two-dimensional field theory is studied for its application as an irrevers
quantity under the renormalization group, relying on a general monotonicity theorem for that qua
previously established. In the cylinder geometry, interpreted as finite-temperature field theory, one
define from the relative entropy a monotonic quantity similar to Zamolodchikov’sc function. On the
other hand, the one-dimensional quantum thermodynamic entropy also leads to a monotonic qua
with different properties. The relation of thermodynamic quantities with the complex components
the stress tensor is also established and hence the entropicc theorems are proposed as analogs o
Zamolodchikov’sc theorem for the cylinder geometry. [S0031-9007(98)07422-5]
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In Euclidean quantum field theory (QFT) it is pos
sible to define a type of entropy, the relative entrop
which is a monotonic function of the couplings and
increases in the crossover from one multicritical poin
to another of lower order [1]. Therefore, it is a
suitable quantity to embody the irreversibility of the
action of the renormalization group (RG). There i
also a well-known and celebrated monotonic quanti
in two-dimensional (2D) QFT, Zamolodchikov’sc
function [2]. Although a priori there is no connection
between both quantities, some arguments indicate t
such a connection may nevertheless exist. For examp
Zamolodchikov’s c function is supposed to count the
independent degrees of freedom in a model near the cr
cal point (CP). This certainly agrees with the statistic
definition of entropy. On the other hand, the centra
charge of 2D conformal field theory (CFT), to which
Zamolodchikov’sc function reduces at the CP, has bee
shown to coincide with a particular type of renormalize
entropy, the geometric entropy [3]. These argumen
beg for an investigation on whether a relation betwee
Zamolodchikov’sc function and some type of entropy in
2D exists off the CP.

We study here the properties of the relative entrop
in general 2D models, in regard to its connection wit
Zamolodchikov’sc function, with explicit computations
for the Gaussian and the Ising models. We shall alwa
consider continuum theories with UV cutoffL and
we shall further introduce an IR cutoff, for example
by giving the system a finite size. A particular finite
geometry has an interesting interpretation: The classic
partition function in the strip or cylinder of widthb
is equivalent to the one-dimensional quantum partitio
function at temperatureT  1yb. We can then calculate
thermodynamic functions of this quantum system, fo
example, the quantum specific entropy. This entropy w
also have a role as a monotonic quantity.

The idea of applying finite-size scaling methods t
Zamolodchikov’s theorem appeared in [4,5]. The form
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of the finite-size corrections to the free energy for th
Gaussian model and the Ising model off their CP has be
obtained in [6]. There it is briefly discussed their con
nection with Zamolodchikov’sc function, concluding that
they differ but making no further analysis. The compa
dimensionb can be used as RG parameter, providing
thermodynamic interpretation of the RG [7,8]. The finite
size correction to the free energy was used as a candid
monotonic function in [7], concluding that a thermody
namic analog of Zamolodchikov’s theorem holds for
but only under an additional condition which cannot b
deduced from thermodynamics rules. Here, relying on t
monotonicity theorem for the relative entropy [1] we sha
propose a monotonicity theorem analogous to Zamolo
chikov’s. We shall further prove a new thermodynam
monotonicity theorem involving the quantum specifi
entropy.

Given the cutoff logarithm of the partition function
per unit volume Wfl, Lg, the relative entropy is the
Legendre transform ofWfl, Lg 2 Wf0, Lg with respect
to the relevant couplingsla,

Srel  W 2 W0 2 la≠aW . (1)

Now we select one couplingl—or take a common factor
of all the couplings—to evaluate the change ofSrel with
respect to it. To be precise, we must use thedifference
between the couplings and their critical values, since t
CP is taken as the reference for the relative entropy. (T
critical couplings may be null in some cases.) We ha
the following general monotonicity theorem [1]

l
dSrel

dl
 ksIl 2 kIlld2l $ 0 , (2)

where Il  l
R

F is the relevant part of the action
containing the coupling that we consider. Let us introdu
the stress tensor trace,Q : Ta

a , which in general is
proportional to the relevant part of the action; mor
precisely,

Q  lyF, with y  2 2 dF . 0 ,
© 1998 The American Physical Society 3587



VOLUME 81, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 26 OCTOBER 1998

on
e

-
e
.

u-
e-
e

a-

-
n

ic

in
e

rge

3)
es

t

al

e
es
wheredF is the scaling dimension of the fieldF. Hence,
we can write the monotonicity theorem as

l
≠Srel

≠l


1
y2

Z
d2zkfQszd 2 kQs0dlg fQs0d 2 kQs0dlgl

$ 0 . (3)

We would like to derive a general expression forSrel.
We can use the scaling form

Wsl, Ld  L2F

µ
l2yy

L2

∂
. (4)

In the absence of logarithmic corrections,F is an analytic
function [9], soW can be expanded as

Wsl, Ld  L2F0 1 F1l2yy 1 OsL22d . (5)

The UV divergent term is irrelevant for the relative
entropy and in the infinite cutoff limit

Srelsld  Wsld 2 Ws0d 2 l
dW
dl

 F1
y 2 2

y
l2yy .

(6)

Taking into account thaty , 2 andF1 , 0 we have that
Srelsld . 0 and it increases withjlj. However, given the
simple scaling form ofSrelsld, this statement is not very
informative. We will obtain a more illuminating version
when we introduce a finite geometry.

Let us now consider solvable models, namely, th
Gaussian model (dF  0) and the Ising model (dF  1),
which, on the other hand, exhibit logarithmic correction
The relative entropy per unit volume of the Gaussia
model calculated using dimensional regularization w
given in [1]. It can be expressed as

S 
Gfs4 2 ddy2g

s4pddy2d
tdy2,

which in d  2 yields

S 
t

8p
, (7)

with t  r 2 rc  r ; m2, m being the mass parameter
It is more illustrative to start with the expression of th

cutoff logarithm of the partition function per unit volume

Wsrd ; 2 ln Z  6
1
2

Z L

0

d2p
s2pd2 ln

p2 1 r
L2 (8)

for free bosons (upper sign) or Majorana fermions (low
sign). It can be integrated exactly and yields

Wsrd  6
1

8p

∑
2L2 1 r ln

L2

r
1 r 1 OsL22d

∏
, (9)

exhibiting a quadratic and a logarithmic divergence. W
have in the infinite cutoff limit

Srelsrd  Wsrd 2 Ws0d 2 r
dW
dr


r

8p
, (10)

for the Gaussian model, in accord with the dimension
regularization result. For the Ising model,
3588
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Srelsrd  Wsrd 2 Ws0d 2 m
dW
dm

 2
m2

8p

µ
1 1 ln

m2

L2

∂
. (11)

The relative entropy is monotonic withm2 for both mod-
els. However, the presence of the logarithmic correcti
in the latter case signals that it is not well defined in th
continuum limitL ! ` unless we introduce a renormal
ization scale or, alternatively, an IR cutoff. This is th
general situation for models with logarithmic corrections

Let us now consider a finite-size geometry, in partic
lar, a cylinder, equivalent to finite temperature field th
ory. It provides an IR cutoff with physical interest. Th
partition function isZ  Tr e2bH , which can be repre-
sented as a functional integral onS1 3 4 with b  1yT
the length of the compact dimension. The specific log
rithm of the partition function on a cylinder of widthb
and lengthL has a finite-size expression asL ! `:

2 ln Z
L

 b
F
L

 e0sL, mdb 1
Csb, md

b
, (12)

with Csb, md a universal dimensionless function. Defin
ing x  mb, we can write it as a single variable functio
Csxd. At criticality it is proportional to the CFT central
charge,Cs0d  2pcy6 [10,11]. One can readily calcu-
late the 1D energy

E
L

 2
≠ ln ZyL

≠b
 e0 2

1
b2

µ
C 2 b

≠C
≠b

∂
. (13)

From the energy we can compute the thermodynam
entropy

S
L

 b
E 2 F

L
 22

C
b

1
≠C
≠b


pc
3b

1 Os1d .

(14)

The specific ground state energye0 does not contribute
to the entropy, which vanishes in the ground state,
accord with the third law of thermodynamics. At th
CP SyL  pcy3b, which is reminiscent of the relation
between geometric entropy for a CFT and central cha
found in [3].

The theorem of increase of the relative entropy (
holds in general on a finite geometry and guarante
that Srelsl, bd increases withl or, alternatively, with
m ~ l1yy . At the CP the theory is conformal invarian
andQszd  0; hencel≠Srely≠l  smyyd≠Srely≠m  0.
Therefore, we propose to define an off-critical “centr
charge”

C sxd  b2Srelsm, bd , (15)

which is monotonic withx and plays a similar role to
Zamolodchikov’sc function. Thus we can express th
monotonicity theorem in terms of dimensionless quantiti
simply as

x
dC

dx


b2

y

Z
d2zkfQszd 2 kQs0dlg fQs0d 2 kQs0dlgl .

(16)
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While this form resembles that of Zamolodchikov, i
is not quite the same. The correlator ofQ’s in the
second term appears integrated. Furthermore, a deta
calculation of Zamolodchikov’s functioncsmd for the free
boson or fermion shows that it differs fromC smd 
C sxdjb1. The cause is actually geometrical: A crucia
step in the proof of Zamolodchikov’s theorem relies o
the assumption of rotation symmetry [2], which doe
not exist on the cylinder. Hence, one cannot obta
the theorem for it, contrary to the assertion in Ref. [8
However, the absence of rotation symmetry is traded
the appearance of a new parameter, the lengthb, which
can be used to obtain the monotonicity theorem above.

Besides, we may consider the behavior of the absol
1D quantum entropyS with respect tob:

≠S
≠b


≠

≠b
sbE 2 bFd  b

≠E
≠b

 b
≠2sbFd

≠b2 . (17)

We have again monotonicity, forbF is a convex function
of b, as deduced from the expression of its seco
derivative as the average2ksH 2 kHld2l with H the total
Hamiltonian, that is, including the kinetic term, unlike th
monotonicity in [1]. This monotonicity is in principle
unrelated with the monotonicity ofSrel with respect tom.
It allows us to define another monotonic dimensionle
function, C̃ sxd  SyLm. At the CP SyL  pcy3b,
implying thatC̃ sxd diverges atx  0, whereasC s0d  0.
On the other hand, in the IR zone,x ¿ 1, C diverges as
C sxd , x2, whereasC̃ sxd decays exponentially.

We illustrate the form of finite-size corrections agai
with solvable models. For the Gaussian model th
correction to the free energy can be expressed as the
energy of an ideal Bose gas,

b
F
L

 e0b 1
Z `

2`

dp
2p

lns1 2 e2bes pdd , (18)

where the one-particle energy isespd 
p

p2 1 m2.
This formula can also be obtained by an explicit calcul
tion of the finite-size corrections [6]. Whenm  0 it can
be used to calculate the central charge [11]. However,
expansion in powers ofm is not advisable: The ensuing
integral at the next order is IR divergent; that is to sa
the expression (18) is nonanalytic atm  0. Fortunately,
the integral can be computed by changing the integrati
variable toe and expanding the logarithm in powers o
e2be. One obtains

b
F
L

 e0b 2
m
p

X̀
n1

1
n

K1snmbd , (19)

whereK1sxd is a modified Bessel function of the secon
kind. For largex  mby2p the correction is exponen-
tially negligible but a small-x expansion yields

Csxd
2p

 2
z s2d
2p2 1

x
2

1
x2

2

µ
ln

x
2

1 g 2
1
2

∂
1

X̀
l2

µ
1y2

l

∂
x2lz s2l 2 1d . (20)

The first termz s2d  p2y6 gives the usual critical part
and central chargec  1. The specific entropy (14) is
t
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S
L


p

3b
2

1
2

m 1 b
m2

4p
1 Osm4d . (21)

For the Ising model we have instead an ideal Fermi ga

b
F
L

 e0b 2
Z `

2`

dp
2p

lns1 1 e2bespdd

 e0b 1
m
p

X̀
n1

s2dn

n
K1snmbd , (22)

where the one-particle spectrum close to the CP is aga
espd 

p
p2 1 m2 and the integral is computed like the

bosonic one. The small-x expansion yields

Csxd
2p

 2
z s2d
4p2 2

x2

2

µ
ln

x
2

1 g 2
1
2

∂
1

X̀
l2

µ
1y2

l

¥
x2ls1 2 22l21dz s2l 2 1d . (23)

Now the specific entropy is

S
L


p

6b
2 b

m2

4p
1 Osm4d . (24)

On the cylinder, the relative entropySrelsl, bd includes
a finite-size contribution fromC but in general differs
from the 1D absolute entropyS. Let us see if there is a
relation between them for solvable models. We calculat
the relative entropy forW  2 ln ZysbLd  FyL. For
the Gaussian model,

Srelsr, bd  Wsr , bd 2 Ws0, bd 2 r
≠W sr , bd

≠r

 Srelsrd 1
1

b2

µ
C 2 Cs0d 2 r

≠C
≠r

∂


r
8p

2
S

2Lb
1

p

6b2 . (25)

For the Ising model the relative entropy is related instea
to the 1D energy. Thus only for the Gaussian modelC

andC̃ are closely related. In any event, for both Gaussia
and Ising models it is easy to derive series expansions
C or C̃ .

The components of the stress tensor can also b
calculated exactly for free models. DefiningQ : Ta

a
andT : T11 2 T22 2 2iT12 we obtain [12]

kQs0dl  6
m2

2p

√
K0s0d 1 2

X̀
n1

s6dnK0snmbd

!
, (26)

kT s0dl  6
m2

2p

√
K2s0d 1 2

X̀
n1

s6dnK2snmbd

!
, (27)

with the same sign convention as before. The modifie
Bessel functions are divergent at zero, namely,K0s0d is
logarithmic divergent andK2s0d is quadratically diver-
gent. These are UV divergences, like theL divergent
3589
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Using the recursion relations satisfied by the Bess
functions we can write the free energy (19) or (22) as

b
F
L

 e0b 7
m2b

2p

X̀
n1

s6dnfK2snmbd 2 K0snmbdg

 2
b

2
kT s0d 2 Qs0dl  bkT22s0dl , (28)

showing its relation with the expectation values of th
components of the stress tensor, which generalizes off t
CP the standard relation [10]. Notice that it implies
definite form fore0, namely,e0  6

m2

4p fK0s0d 2 K2s0dg,
to be compared with (9).

Similarly, we can calculate

≠W
≠r


≠e0

≠r
6

1
2p

X̀
n1

s6dnK0snmbd 
1

2r
kQs0dl ,

(29)

E
L

 e0 6
m2

2p

X̀
n1

s6dnfK2snmbd 1 K0snmbdg


1
2

kT s0d 1 Qs0dl  kT11s0dl . (30)

The first equation is just a particular case of the expressi
of the derivative ofW with respect tor as the expectation
value of the “crossover part” of the action [1], sinceQ is
proportional to it. Furthermore,

Ssr, bd
bL

 6
r
p

X̀
n1

s6dnK2snmbd  kT s0dl . (31)

Notice that this off-critical equation relateskT l with
the entropy and therefore disagrees with the surmise
Ref. [5], which relates it with the free energy.

The relations between thermodynamic quantities an
the expectation values of components of the stress te
sor obtained above are not restricted to free-field mo
els. To see this one must regard those expectation valu
as the response ofW to various geometrical transforma-
tions [10]; namely, a dilation in thex2 direction,dLF 
sFyLddL is given byT22, a dilation in thex1 direction,
dbsbFd  Edb is given by T11, a dilation in both di-
rections, equivalent to a change ofr, is given by Q,
and a dilation in one direction plus a contraction in th
other (shear transformation) is given byT , corresponding
to SysLbd  kT11l 2 kT22l  kT l. However, closed ex-
pressions for these quantities can be obtained only for fr
models. For interacting models one can compute the fin
size quantities above with conformal perturbation theo
or the thermodynamic Bethe ansatz [13].

In conclusion, the 2D relative entropy grows with the
coupling, according to a general theorem [1], which i
2D can be expressed in terms of the correlator ofQ’s,
similarly to Zamolodchikov’s theorem. Nevertheless, th
function C extracted from the relative entropy is no
obviously connected with Zamolodchikov’sc function.
On the other hand, the quantum 1D entropy satisfies
different monotonicity theorem with respect tob or, say,
3590
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the temperature, of pure thermodynamic nature, wh
leads to another monotonic function,̃C  sbymd kT l.
The former function is well defined in the UV region
whereas the latter is well defined in the IR region. As h
been remarked before, a function monotonic with the R
is not unique [14]. Unlike Zamolodchikov’sc function,
the quantitiesC or C̃ have a clear physical origin.
Therefore, the entropic monotonicity theorems propos
here constitute an interesting alternative formulation.

Let us make two comments on possible generalizatio
A different approach uses the Wilson RG [15]. It is cu
tomary to try to prove the monotonicity theorem for th
free energy. However, we believe that in that approach
is also some entropy the appropriate monotonic functio
according to arguments presented previously [1]. Final
the results in this paper can be generalized to higher
mensions (d  3 or 4) and we expect them to contribute
to the efforts to find a higher dimensional version o
Zamolodchikov’sc theorem.
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