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Most of the foundational work on quantum cosmology employs a simple minisuperspace m
describing a Friedmann-Robertson-Walker universe containing a massive scalar field. We show
the classical limit of this model exhibits deterministic chaos and explore some of the consequenc
the quantum theory. In particular, the breakdown of the WKB approximation calls into question m
of the standard results in quantum cosmology. [S0031-9007(98)07464-X]

PACS numbers: 98.80.Hw, 03.65.Sq, 05.45.+b, 98.80.Cq
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It has been suggested by Hawking [1] that the isotrop
and homogeneity of the universe is a natural consequen
of the Hartle-Hawking [2] “no-boundary” boundary con
ditions for the quantum state of the early universe. Tes
ing this idea has proved difficult since a realistic mode
of the quantum state or wave function of the univers
must describe the entire geometry and matter conte
of the universe. In order to make progress, a num
ber of simple models have been introduced. The mo
extensively studied model employs a homogeneous a
isotropic Friedmann-Robertson-Walker (FRW) spacetim
with a minimally coupled massive scalar field. Linde [3
showed that for certain initial conditions this model coul
lead to exponential expansion of the universe and a su
cessful realization of the inflationary paradigm.

The FRW-scalar-field model has been the work-hor
of quantum cosmology. It is the model upon which mo
of the successes of quantum cosmology are based [4–
including Hawking’s claim that the no-boundary proposa
predicts inflation [4]. In this Letter we describe a problem
that complicates the interpretation of these results. W
show that the classical trajectories of the model exhibit
form of deterministic chaos known as chaotic scatterin
[7]. This is a cause for concern since the quantu
to classical transition is qualitatively different for chaotic
and nonchaotic systems. The problem is particular
pronounced in quantum cosmology since the theo
is manifestly semiclassical [2,3], and since the wav
function of the universe is interpreted using the WKB ap
proximation [4,8,9]. As first pointed out by Einstein [10]
the WKB approximation fails if the classical evolution is
chaotic.

Considering how much work has been done studyin
such a simple model, it may seem surprising that th
chaotic behavior went unnoticed. In fact, the fingerprin
of chaos can be found in some of the early literatu
[11–13], but it is only now, with an understanding o
chaotic scattering, that we can recognize them as such.

The model in question describes a closed FRW univer
with Lorentzian metric

ds2 ­ 2N2stddt2 1 a2stddV
2
s3d , (1)
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minimally coupled to a scalar fieldf. A fuller description
of the model can be found in Ref. [12]. The minisupe
space action is given byS ­

1
2

R
sNHyaddt, where

H ­ 2

µ
a
N

da
dt

∂2

1

µ
a2

N
df

dt

∂2

2 V sa, fd (2)

is the classical Hamiltonian andV ­ 2a2 1 m2a4f2 is
the minisuperspace potential. The classical equations
motion that follow from varyingf anda are

f̈ 1 3
Ùa
a

Ùf 1 m2f ­ 0 , (3)

ä
a

1 2 Ùf2 2 m2f2 ­ 0 . (4)

Here an overdot denotesN21dydt. Variation of the lapse
N leads to the constraintH ­ 0.

The quantum description employs the “wave functio
of the universe” Csa, fd, which obeys the Wheeler-
DeWitt equationbHC ­ 0. Adopting a particular factor
ordering and changing coordinates tou ­ ae2f andy ­
aef, we findµ

4
≠

≠u
≠

≠y
1 V su, yd

∂
Csu, yd ­ 0 , (5)

where the minisuperspace potential now reads

V su, yd ­ uy

Ω
m2

4
uyflnsyyudg2 2 1

æ
. (6)

In order to solve these equations we need bound
conditions. Hartle and Hawking have proposed that,
the Euclidean regime, the universe does not have a
boundaries in space or time. The Euclidean version of
Lorentzian metric (1) can be expressed in the form

ds2 ­ dt2 1 a2stddV
2
s3d . (7)

The no-boundary proposal demands that the geometry
compact and the matter fields regular. These conditio
restrict the boundary conditions at zero volumest ­ 0d
to be

a ­ 0,
da
dt

­ 0, f ­ f0,
df

dt
­ 0 .

(8)
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By integrating the Euclidean action fromt ­ 0 to a nearby
point sa, fd for large f0 and applying WKB matching
techniques, Hawking [6] obtained the boundary conditio
C ­ 1 along the characteristicsu ­ 0 and y ­ 0. We
will subsequently question the validity of this procedur
The corresponding classical solutions take the form

a ø sm2f2d21y2 sinfsm2f2d1y2tg, f ø f0 , (9)

with f0 a constant. The Euclidean solution is matche
onto the Lorentzian metric (1) near a totally geodes
spacelike surfaceS ­ ≠S4 ­ S3 [14], wheredaydt ­
0. The rotation to imaginary time is thus accomplishe
by taking t ­ py2mf 1 it, leading to the Lorentzian
boundary conditions

a0 ø
1

mf0
, Ùa0 ø 0, f ­ f0, Ùf0 ø 0 .

(10)

Typical Lorentzian solutions see the universe inflat
then enter into a dust filled state wheref oscillates
rapidly, before recollapsing to a final singularity asf !
6` monotonically. In addition to these typical solution
there are an infinite collection of anomalous solution
[4]. The anomalous solutions expand, then recollap
then bounce and expand again. The cycle of expans
and collapse may continue indefinitely, or may termina
after a finite number of bounces. One of these bounci
solutions is shown in Fig. 1. Also marked are the line
V ø 0, where the bounces occur, and the lineuy ­ 1. It
is difficult to track bouncing solutions for more than thre
of four bounces as they are exquisitely unstable.

In a remarkable paper, Page [11] conjectured that t
anomalous solutions comprise a fractal set of perpetua
bouncing universes. What Page described is now kno
as a strange saddle or strange repeller [15]—the analog
a strange attractor for nondissipative chaotic systems.

The unstable periodic orbits partition the space of initi
conditions (here just the value off0) according to their

2

4

-2 0 2

y

x

0u=0v=

FIG. 1. A bouncing classical trajectory in thesx, yd plane.
Also shown are the linesV su, yd ­ 0 (dashed) anduy ­ 1
(dotted). Herex ­ sy 2 udy2 andy ­ sy 1 udy2.
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outcome. Unless a universe bounces perpetually it m
eventually encounter one of the cosmological singula
ties ata ­ 0, f ­ 6`, corresponding to the linesu ­ 0,
y ­ 0, respectively. We can confirm Page’s conjectu
by studying the boundaries between the two attract
u ­ 0 andy ­ 0. We do this by color codingf0 accord-
ing to the outcome; gray foru ­ 0 and black fory ­ 0.
The attractor basin boundaries are shown in Fig. 2 fo
representative range off0. Each successive strip of “uni-
verse DNA” resolves a small portion of the previous stri
We were able to track the fractal structure over 12 deca
in magnification before saturating machine precision.

In the close-up views we start to see a third, white ou
come occurring. These regions correspond to trajector
that inflate by at least 10e-folds to produce a “big” uni-
verse. A higher cutoff, such as the cosmologically inte
esting value of 60e-folds, would produce much the sam
pictures, but with a smaller white region. The lower cu
off was chosen to keep the numerical integration short.
is interesting that trajectories near the bouncing solutio
can lead to successful inflation (in the sense of solving
age and flatness problems) without requiring a large i
tial value forf. For our choice ofm ­ 1, a universe that
never bounces requiresf0 . 5.88 to successfully inflate,
while a universe that bounces just once can successf
inflate if f0 . 1.19. Although the fractal set of perpetu
ally bouncing solutions are countable and thus of ze
measure, the collection of universes that bounces at le
once is uncountably infinite and of nonzero measure. F
example, if we randomly chose an initial value off from
the region shown in the upper strip of Fig. 2, a big un
verse is formed about once in every thousand attempts

The set of unstable periodic solutions can be quantifi
by its spectrum of multifractal dimensions or by it
topological entropy [7]. Both of these methods provide
coordinate invariant measure of chaos in general relativ
[16]. Here we calculate the topological entropy as it ca
be found analytically. The topological entropy measur
the growth in the number of periodic orbits as their perio
increases. We quantify the length of an orbit by th

FIG. 2. Universe DNA: zooming in on a boundary.
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number of symbols needed to describe it. To do this w
need to introduce a symbolic coding. The most efficie
coding we could come up with records the symbolA
for each upward crossing of the lineuy ­ 1, and the
symbol B for each crossing of they axis. For example,
the bouncing trajectory shown in Fig. 1 has the codin
ABABABBBABB. Applying this recipe to the first four
primary orbits shown in Fig. 3 we obtain the codings

I ­ AB, II ­ ABB ,

III ­ ABBB , IV ­ ABBBB .
(11)

Here the overline denotes a sequence to be repea
We can develop a recurrence relation for the number
periodic orbits,Nskd, with period k. Writing Nskd ­
Pskd 1 Qskd, where Pskd is the number of periodk
words ending inA andQskd the number ending inB, we
find

Qsk 1 1d ­ Pskd 1 Qskd, Psk 1 1d ­ Qskd ,
(12)

and Ns2d ­ 2. The solution is thenNskd ­ sgk11 2

g2k21dy
p

5, whereg ­ s1 1
p

5dy2 is the golden mean.
The uncountably infinite set of aperiodic orbits describ
by Page corresponds to orbits withk ­ `.

Denoting the number of periodic orbits with length
less than or equal tok by N skd, we find the strange
repeller has a topological entropy of

HT ­ lim
k!`

1
k

ln N skd ­ ln g . (13)

Since HT . 0, we can conclude that the dynamics
chaotic. It is interesting to note that the system has a fo
dimensional phase space—the minimum number requi
for chaos to occur in a Hamiltonian system.

Having established that the classical evolution
chaotic, we can consider possible implications for th
quantum theory [17,18]. It has been suggested that
wave function of the universe will develop small sca

I II

III IV

FIG. 3. The first four primary orbits in thex, y plane.
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structure if the classical dynamics is chaotic [19]. Th
was demonstrated in Ref. [19] by artificially choosing
potential with an infinite number of discontinuities. In th
present more realistic model, we have to look elsewhe
for the source of fine structure since the potential
completely smooth. Moreover, if we accept the bounda
conditionC ­ 1, there is no reason to expect small sca
structure to develop since the evolution is governed by
linear wave equation with a smooth potential [20].

On the other hand, it is clear that the WKB approx
mation breaks down for our model. This breakdown w
independently observed by Shellard [12] and Kiefer [13
The WKB approximation seeks to interpretC in terms of
classical trajectories according to the decomposition [8]

C ­ C1 1 C2, C6 ­
X
n

Cn exps6iSnd , (14)

where each phase factorSn is taken to obey the Hamilton-
Jacobi equations=Sd2 1 V ­ 0. The integral curves of
=S correspond to classical Lorentzian solutions:

≠S
≠a

­ pa ­ 2
a
N

Ùa,
≠S
≠f

­ pf ­
a3

N
Ùf . (15)

The WKB approximation is valid if the amplitudeC
varies much more slowly than the phaseS. There is
a conserved currentJa

n ­ jC2
nj≠aSn associated with the

flux of each WKB wave packet. The flux of a bundle o
classical trajectoriesFn ­

R
Ja

n eabdxb remains constant,
regardless of the hypersurface on which it is sampled [8

In order for the flux to be constant,jCnj2 must
increase if the bundle of trajectories focuses, and decre
if the bundle defocuses. When classical trajectori
cross, a caustic occurs andjCnj2 ! `. The basic WKB
approximation breaks down at a caustic, but an enhan
version continues to hold if the caustic is taken to be t
source of a new complex conjugate pair of WKB solution
[8]. However, even this enhanced WKB approximatio
breaks down when the system is chaotic, as regions n
the unstable periodic orbits contain an infinite fractal s
of caustics. The sum over theC6 pairs spawned in
these regions does not converge. In addition to the frac
set of caustics, the strange repeller also produces ra
defocusing of nearby trajectories. This rapid divergen
drivesjCnj2 rapidly to zero, and the WKB approximation
again fails. Both of these effects can be seen in t
numerical studies of Refs. [12,13].

At this juncture we appear to have a contradiction: S
lutions of the Wheeler-DeWitt equation with the boundar
condition C ­ 1 appear completely benign, despite th
classical evolution being chaotic and the WKB approx
mation breaking down.

We believe the reason for the apparent contradiction c
be traced to the boundary condition forC. In deriving
the condition C ­ 1, Hawking only included a small
subset of the nonsingular bouncing universes. This w
subsequently criticized by Page [21], who argued that t
3573
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FIG. 4. Some of the Euclidean instantons (circles) that co
tribute to the Lorentzian bouncing solution (dashed line) di
played in Fig. 1.

recollapsing, singular paths would modify Hawking’s re
sult. Shellard [12] attempted to calculate the contributio
from these paths using an enhanced WKB approximatio
but was thwarted by the caustics that developed near
unstable periodic orbits.

Knowing that the root of the problem lies in the chaoti
nature of the classical paths, we suggest a new approa
We conjecture that the contribution from the perpetual
bouncing solutions, and the singular paths in their vici
ity, can be found by performing a weighted sum over th
multiple instantons that contribute to the bouncing sol
tions (see Fig. 4). The sum should be weighted by the
stability exponent for each periodic orbit. The collectio
of Euclidean instantons that contribute to the strange
peller can be viewed as a fractal set of spherical “Russ
dolls,” with the radius of each 4-sphere given by1ymf0
wheref0 takes all values on the fractal boundary.

Our proposal is motivated by Gutzwiller’s [22] ap
proach to quantum chaos. The Gutzwiller trace fo
mula expresses the quantum-mechanical energy levels
a chaotic system in terms of a sum over the classical u
stable orbits. By adapting some of the techniques [2
developed to evaluate the Gutzwiller sum, we may
able to properly describe the fractal boundary conditio
and subsequent chaos in the wave function. It wou
be interesting to study how these issues impact oth
approaches to quantum cosmology, such as Vilenkin
tunneling proposal [5]. A breakdown in the WKB ap
proximation would complicate the notion of “outgoing”
wave functions used in the tunneling approach.

While our arguments are based on a particular mod
in the context of a particular approach to quantum cosm
3574
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ogy, the issues we have raised will affect any theory
quantum gravity since all dynamical systems need bou
ary conditions, and generic dynamical systems are chao

We benefited from discussions with Janna Levin a
John Stewart.
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