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Chaos in Quantum Cosmology
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Most of the foundational work on quantum cosmology employs a simple minisuperspace model
describing a Friedmann-Robertson-Walker universe containing a massive scalar field. We show that
the classical limit of this model exhibits deterministic chaos and explore some of the consequences for
the quantum theory. In particular, the breakdown of the WKB approximation calls into question many
of the standard results in quantum cosmology. [S0031-9007(98)07464-X]

PACS numbers: 98.80.Hw, 03.65.Sq, 05.45.+b, 98.80.Cq

It has been suggested by Hawking [1] that the isotropyminimally coupled to a scalar field. A fuller description
and homogeneity of the universe is a natural consequena# the model can be found in Ref. [12]. The minisuper-
of the Hartle-Hawking [2] “no-boundary” boundary con- space action is given by = % [(NH /a)dt, where
ditions for the quantum state of the early universe. Test- a da\2 a® do\?
ing this idea has proved difficult since a realistic model H = —<— —) (— —) -V, ¢) (2
of the quantum state or wave function of the universe N dt N dt
must describe the entire geometry and matter conteri§ the classical Hamiltonian and = —a® + m*a*¢? is
of the universe. In order to make progress, a numihe minisuperspace potential. The classical equations of
ber of simple models have been introduced. The moshotion that follow from varying$ anda are
extensively studied model employs a homogeneous and . a - )
isotropic Friedmann-Robertson-Walker (FRW) spacetime ¢ +3 a ¢ +m¢p=0, (3)
with a minimally coupled massive scalar field. Linde [3]
showed that for certain initial conditions this model could
lead to exponential expansion of the universe and a suc-
cessful realization of the inflationary paradigm. Here an overdot denote@é™'d/dr. Variation of the lapse

The FRW:-scalar-field model has been the work-horsey |eads to the constraifi = 0.
of quantum cosmology. It is the model upon which most The quantum description employs the “wave function
of the successes of quantum cosmology are based [4—&f the universe” ¥(a, ¢), which obeys the Wheeler-
including Hawking'’s claim that the no-boundary proposalpeyyitt equation]l-\I\If — 0. Adopting a particular factor

predicts inflation [4]. In this Letter we describe a prOblemordering and changing coordinatesite= ae~¢ andv =
that complicates the interpretation of these results. We ¢ \ve find

show that the classical trajectories of the model exhibit a

form of deterministic chaos known as chaotic scattering <4i 9 + V(u,v))‘l’(u,v) =0, (5)

[7]. This is a cause for concern since the quantum du Jv

to classical transition is qualitatively different for chaotic where the minisuperspace potential now reads

and nonchaotic systems. The problem is particularly m2 5

pronounced in quantum cosmology since the theory Viu,v) = ”U{j wv[in(v/u)l” — 1}- (6)

is manifestly semiclassical [2,3], and since the wave In order to solve these equations we need boundary
function of the universe is interpreted using the WKB aP-.onditions. Hartle and Hawking have proposed that, in
proximation [4,8,9]. As first pointed out by Einstein [10], the Euclidean regime, the universe does not have ’any

the WKB approximation fails if the classical evolution is boundaries in space or time. The Euclidean version of the

%4247 - w2 =0, (4)

chaotic. . X :
L L t tric (1 b dinthef
Considering how much work has been done studying orentzian me “(2:( )cazn © ;expressze n the form
such a simple model, it may seem surprising that the ds® = dt° + a(1)dQg,. (7)

chaotic behavior went unr_10ticed. In fact, the fingerprintsrhe no-boundary proposal demands that the geometry be
of chaos can be found in some of the early literaturecompact and the matter fields regular. These conditions

[11-13], but it is only now, with an understanding of restrict the boundary conditions at zero voluire= 0)
chaotic scattering, that we can recognize them as such. tg pe

The model in question describes a closed FRW universe da dé

with Lorentzian metric a=0, — =0, ¢ = oo, —

dr dr

ds® = —=N*(t)dt* + a*(1)dQy) 1) (8)

=0.
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By integrating the Euclidean action from= 0to anearby outcome. Unless a universe bounces perpetually it must

point (a, ¢) for large ¢y and applying WKB matching eventually encounter one of the cosmological singulari-

techniques, Hawking [6] obtained the boundary conditiorties ata = 0, ¢ = *oo, corresponding to the lines= 0,

¥ = 1 along the characteristias = 0 andv = 0. We v = 0, respectively. We can confirm Page’s conjecture

will subsequently question the validity of this procedure.by studying the boundaries between the two attractors

The corresponding classical solutions take the form u = 0andv = 0. We do this by color coding, accord-
2 =12 2, 9\1/2 . ing to the outcome; gray fag = 0 and black forv = 0.

a = (m*$?)" P sinl(m®$)' 7], ¢ =0, ) The attractor basin boundaries are shown in Fig. 2 for a
with ¢ a constant. The Euclidean solution is matchedrepresentative range gf,. Each successive strip of “uni-
onto the Lorentzian metric (1) near a totally geodesicverse DNA” resolves a small portion of the previous strip.
spacelike surfac& = a5* = S3 [14], whereda/dT =  We were able to track the fractal structure over 12 decades
0. The rotation to imaginary time is thus accomplishedin magnification before saturating machine precision.
by taking r = w/2m¢ + it, leading to the Lorentzian In the close-up views we start to see a third, white out-

boundary conditions come occurring. These regions correspond to trajectories
1 ) that inflate by at least 10-folds to produce a “big” uni-
~— ap = 0, ¢ = o, ¢ = 0. verse. A higher cutoff, such as the cosmologically inter-
m¢o esting value of 6@-folds, would produce much the same
(10) pictures, but with a smaller white region. The lower cut-

Typical Lorentzian solutions see the universe inflateOff was chosen to keep the numerical integration short. It
then enter into a dust filled state whee oscillates IS interesting that trajectories near the bouncing solutions
rapidly, before recollapsing to a final singularity #as—  can lead to successful inflation (in the sense of solving the
+c monotonically. In addition to these typical solutions @9€ and flatness problems) without requiring a large ini-
there are an infinite collection of anomalous solutionsfial value for¢. For our choice ofn = 1, a universe that
[4]. The anomalous solutions expand, then recollapse]éVver bounces requires > 5.88 to successfully inflate,
then bounce and expand again. The cycle of expansiofyhile a universe that bounces just once can successfully
and collapse may continue indefinitely, or may terminatdnflate if ¢o = 1.19. Although the fractal set of perpetu-

after a finite number of bounces. One of these bouncinglly bouncing solutions are countable and thus of zero
solutions is shown in F|g 1. Also marked are the linesmeasure, the collection of universes that bounces at least

V ~ 0, where the bounces occur, and the line= 1. It  once is uncountably infinite and of nonzero measure. For
is difficult to track bouncing solutions for more than three €xample, if we randomly chose an initial valuedffrom
of four bounces as they are exquisitely unstable. the region shown in the upper strip of Fig. 2, a big uni-
In a remarkable paper, Page [11] conjectured that th¥erse is formed about once in every thousand attempts.
anomalous solutions comprise a fractal set of perpetually The set of unstable periodic solutions can be quantified
bouncing universes. What Page described is now knowRY its spectrum of multifractal dimensions or by its
as a strange saddle or strange repeller [15]—the analog &Pological entropy [7]. Both of these methods provide a
a strange attractor for nondissipative chaotic systems. coordinate invariant measure of chaos in general relativity
The unstable periodic orbits partition the space of initial[16]. Here we calculate the topological entropy as it can

conditions (here just the value @f,) according to their be found analytically. The topological entropy measures
the growth in the number of periodic orbits as their period

increases. We quantify the length of an orbit by the

13 15

1.1

L -

1.191 1.195 1196
x I L) -
2 0 2 1.195588 1195571
FIG. 1. A bouncing classical trajectory in the,y) plane. (I)O
Also shown are the line¥ (u,v) = 0 (dashed) andiv = 1
(dotted). Herex = (v — u)/2 andy = (v + u)/2. FIG. 2. Universe DNA: zooming in on a boundary.
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number of symbols needed to describe it. To do this westructure if the classical dynamics is chaotic [19]. This
need to introduce a symbolic coding. The most efficientvas demonstrated in Ref. [19] by artificially choosing a

coding we could come up with records the symbbl potential with an infinite number of discontinuities. In the
for each upward crossing of the linev = 1, and the present more realistic model, we have to look elsewhere
symbol B for each crossing of thg axis. For example, for the source of fine structure since the potential is
the bouncing trajectory shown in Fig. 1 has the codingcompletely smooth. Moreover, if we accept the boundary
ABABABBBABB. Applying this recipe to the first four conditionW = 1, there is no reason to expect small scale
primary orbits shown in Fig. 3 we obtain the codings structure to develop since the evolution is governed by a

| = 4B | = ABB linear wave equation wﬁth a smooth potential [20]. '

' ' (11) On the other hand, it is clear that the WKB approxi-

Il = ABBB, IV = ABBBB. mation breaks down for our model. This breakdown was

Here the overline denotes a sequence to be repeatdgdependently observed by Shellard [12] and Kiefer [13].
We can develop a recurrence relation for the number of "€ WKB approximation seeks to interprétin terms of

periodic orbits, N(k), with period k. Writing N(k) = classical trajectories according to the decomposition [8]
P(k) + Q(k), where P(k) is the number of periodk )
words ending it and Q(k) the number ending i, we =~ ¥ = Y+ + ¥, W. = D CoexpxiS,),  (14)
find !
where each phase fact§y is taken to obey the Hamilton-
Qk + 1) =Plk) + Q(k), Pk +1)=0(k), Jacobi equatioriVS)? + V = 0. The integral curves of
(12) Vs correspond to classical Lorentzian solutions:

and N(2) = 2. The solution is thenN (k) = (y*t! — s a . as a

3.
y~%=1)/4/5, wherey = (1 + +/5)/2 is the golden mean. da TN e TN ¢. (15)
The uncountably infinite set of aperiodic orbits described S L .
by Page corresponds to orbits with= c. The_ WKB approximation is valid if the amplltudé:w
Denoting the number of periodic orbits with lengths Variés much more slowly than the phase There is

less than or equal ta by 2V (k), we find the strange & conserved current® = |C2|a*S, associated with the
repeller has a topological entropy of flux of each WKB wave packet. The flux of a bundle of

classical trajectorieB, = f Jy eaﬁdxﬁ remains constant,
Hy = lim 1 NN k) =Iny. (13) regardless of the hypersurface on which it is sampled [8].
k= k In order for the flux to be constaniC,|> must
Since Hy > 0, we can conclude that the dynamics isincrease if the bundle of trajectories focuses, and decrease
chaotic. Itis interesting to note that the system has a fourif the bundle defocuses. When classical trajectories
dimensional phase space—the minimum number requirecross, a caustic occurs ahd,|> — ». The basic WKB
for chaos to occur in a Hamiltonian system. approximation breaks down at a caustic, but an enhanced

Having established that the classical evolution isversion continues to hold if the caustic is taken to be the
chaotic, we can consider possible implications for thesource of a new complex conjugate pair of WKB solutions
guantum theory [17,18]. It has been suggested that th@]. However, even this enhanced WKB approximation
wave function of the universe will develop small scalebreaks down when the system is chaotic, as regions near
the unstable periodic orbits contain an infinite fractal set
of caustics. The sum over th&. pairs spawned in
these regions does not converge. In addition to the fractal
set of caustics, the strange repeller also produces rapid
defocusing of nearby trajectories. This rapid divergence
drives|C,|? rapidly to zero, and the WKB approximation
again fails. Both of these effects can be seen in the
numerical studies of Refs. [12,13].

At this juncture we appear to have a contradiction: So-
lutions of the Wheeler-DeWitt equation with the boundary
condition ¥ = 1 appear completely benign, despite the
classical evolution being chaotic and the WKB approxi-
mation breaking down.

We believe the reason for the apparent contradiction can
be traced to the boundary condition f#. In deriving
the condition ¥ = 1, Hawking only included a small
subset of the nonsingular bouncing universes. This was
FIG. 3. The first four primary orbits in the, y plane. subsequently criticized by Page [21], who argued that the
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ogy, the issues we have raised will affect any theory of

A Ti
Time guantum gravity since all dynamical systems need bound-

X ary conditions, and generic dynamical systems are chaotic.
We benefited from discussions with Janna Levin and
John Stewart.
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