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Superluminal Travel Requires Negative Energies

Ken D. Olum*
Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts

(Received 1 May 1998; revised manuscript received 11 August 1998)

I investigate the relationship between faster-than-light travel and weak-energy-condition violation
i.e., negative energy densities. In a general spacetime it is difficult to define faster-than-light travel, a
I give an example of a metric which appears to allow superluminal travel, but in fact is just flat space
To avoid such difficulties, I propose a definition of superluminal travel which requires that the path t
be traveled reach a destination surface at an earlier time than any neighboring path. With this definiti
(and assuming the generic condition) I prove that superluminal travel requires weak-energy-conditi
violation. [S0031-9007(98)06583-1]
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A long-standing question asks whether the met
of spacetime can be manipulated to allow very rap
travel between spatially distant points. (I will call thi
“superluminal” or “faster than light” even though, o
course, I am not proposing to go faster than a lig
signal in the same metric.) If one allows arbitrar
states of matter, one can construct such spacetim
as in the examples of Alcubierre [1] and Krasniko
[2,3]. However, these spacetimes require negative ene
densities [3,4]; i.e., they violate the weak energy conditi
(WEC), which states thatTmnV mV n $ 0 for any timelike
vectorV m. The question then is whether it is possible
have superluminal travel without this violation.

To answer this question one must first specify wh
one means by “superluminal travel.” The general id
is that some modification of the metric allows signals
propagate between two spacetime points that otherw
would be causally disconnected. However, it may n
always be easy to distinguish such superluminal tra
from a situation in which the supposedly distant obje
has been brought nearby, so that travel at ordinary spe
allows one to reach it in a short time.

As a concrete example consider a spacetime with me

ds2  s21 1 4t2x2ddt2 2 4txs1 2 t2ddxdt

1 s1 2 t2d2dx2 (1)

in the region21 , t , 1. Null rays in this metric have

dx
dt


61 1 2tx

1 2 t2 , (2)

and, for example, a right-going null geodesic from the o
gin hasx  tys1 2 t2d as shown in Fig. 1. It would ap-
pear that this metric allows superluminal travel. Startin
from the origin one can reach points at arbitrarily largex
in time t , 1. If the Earth were fixed atx  0 and a dis-
tant star atx  1, we could travel from the Earth att  0
to the star in times1 1

p
5dy2 ø 0.618.

However, this metric has nothing to do with superlu
minal travel. It is just flat space with an odd choic
of coordinates: if we letx0  xs1 2 t2d the metric be-
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comesds2  2dt2 1 dx02. The star which is “fixed” at
x  1 is in fact traveling on a path which brings it closer
to the Earth. The motion of the destination, rather tha
any superluminal travel, is what reduces the time to reac
the star.

The point of this example is that just examining a met
ric may not easily reveal whether it would be reasonab
to regard the spacetime as containing superluminal trav
One must have some idea how to distinguish bringing
place closer from establishing an arrangement which a
lows one to travel there more quickly.

In some simple cases, however, the spacetime is fl
except for a localized region not including the points
between which one wishes to travel. Then there
no question about the distance between the two poin
because they lie in a single region of Minkowski space
The Alcubierre bubble [1] and the Krasnikov tube [2,3
are of this type if one imagines the tube to be finite in
length or the bubble to exist for a finite time. A simple
example of this sort is shown in Fig. 2. The flat metric
has been modified in such a way that there is a causal p
P from st1, x1d to st2, x2d even thoughx2 2 x1 . t2 2 t1.
Since there is a connected region of Minkowski spac
which includesst1, x1d andst2, x2d, it is well defined to say
that the interval between these points would be spaceli
without the modification to the metric.

In this simple case we can show that WEC must b
violated, using the existing theorems [5–7] that prohib

FIG. 1. A null geodesic in the metric of Eq. (1). It appears
that one can reach arbitrary distances beforet  1.
© 1998 The American Physical Society 3567
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FIG. 2. Superluminal travel is produced by modifying the
shaded region of Minkowski space. The modification i
localized betweenx1 and x2 and after t0. Because of this
modification, there is a causal pathP connectingst1, x1d to
st2, x2d, even thoughx2 2 x1 . t2 2 t1.

closed timelike curves. LetS be a spacetime that
is flat except for a region witht . t0, x [ fx1, x2g,
y [ fy1, y2g, and z [ fz1, z2g, and suppose there is a
causal pathP that connects pointsst1, x1, y0, z0d and
st2, x2, y0, z0d with t2 2 t1 , x2 2 x1. Suppose also that
S contains no singularities and that the modified regio
of S obeys the generic condition [8], i.e., each nu
geodesic that passes through that region contains a po
where KfaRbgcdfeKfgKcKd fi 0, whereK is the tangent
vector to the geodesic. LetDt  t2 2 t1. Consider a
new spacetimeS0 which consists of the portion ofS
betweenx1 and x2 with the same metric asS, and with
pointsst, x1, y, zd andst 1 Dt, x2, y, zd identified for each
t, y, and z. In S0, the pathP is a closed causal curve.
However, causal paths that travel only through the fl
part of S0 cannot be closed, becauseDt , x2 2 x1. In
particular no point witht , t0 2 Dt can be on a closed
causal path. So there is a Cauchy horizon inS0 in the
future of the surfacet  t0 2 Dt and in the past of (or
at) the pathP. If S has no singularities, thanS0 will
not have any either. Thus by Tipler’s and Hawking’s
theorems [5–7], WEC must be violated somewhere inS0.
Since WEC is a local condition, it must also be violate
at the corresponding point ofS.

In a general spacetime we need a definition of supe
luminal travel. Here I propose the following idea: A
superluminal travel arrangement should have some pa
along which it functions best. A signal propagating alon
this best path should travel further than a signal on an
nearby path in the same amount of (externally define
time. To formalize this we construct small spacelik
2-surfaces around the origin and destination points a
say that while the destination is reachable from the origi
no other point of the destination surface is reachable fro
any point of the origin surface. See Fig. 3. Of cours
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FIG. 3. A superluminal travel arrangement. The metric ha
been so arranged that a causal path (solid line) exists betwe
A andB, but there are no other causal paths [such a possibili
is shown (dashed line)] that connect the 2-surfacesSA andSB.

this would be trivial if, for example, the destination sur-
face were curved in such a way that the destination we
merely the closest point on its surface to the origin. T
avoid this problem we require that the origin (destination
surface be composed of a one-parameter family of spac
like geodesics through the origin (destination) point. For
mally, we say that a causal pathP is superluminal fromA
to B only if it satisfies the following.

Condition 1.—There exist 2-surfacesSA aroundA and
SB around B such that (i) if p [ SA then a spacelike
geodesic lying inSA connectsA to p, and similarly for
SB, and (ii) if p [ SA and q [ SB then q is in the
causal future ofp only if p  A andq  B.

This condition might not be sufficient for what one
would call superluminal travel, because it is possible tha
while P arrives earlier than any nearby path, it is stil
slower than a path some larger distance away. In th
case, we would not want to say thatP was superluminal.

Suppose that there is a pathP satisfying the above
condition, and suppose also that the generic conditio
[8] holds onP. The generic condition holds whenever
there is any normal matter or any transverse tidal forc
anywhere onP. With these assumptions, we will show
that WEC must be violated at some point ofP.

First we note thatP must be a null geodesic. IfP is not
a geodesic it can be varied to make a timelike path fromA
to B. If P is timelike anywhere, then it can be varied to
make a timelike path fromA to points ofSB other thanB.

Let K be the tangent vector to the geodesicP. The
vector K must be normal to the surfaceSA. Otherwise
there would be points onSA in the past of points onP.
Similarly, K must be normal toSB.

Now define a congruence of null geodesics with affin
parametery, normal toSA, and extendK to be the tangent
vector at each point of the congruence.
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Could there be some pointx [ P that is conjugate to
the surfaceSA? If x were an interior point ofP then it
would be possible to deformP into a timelike path. If
x  B then different geodesics of the congruence wou
all end atB or points very near toB. These geodesics
would have different tangent vectors, which could not a
be normal toSB. Thus no point onP is conjugate toSA.

Now we look at û, the expansion of the geodesic
congruence. It is given bŷu  Km

;m, wherem runs over
two orthogonal directions normal toK. (All choices of
such directions give the sameû.) At A we use directions
that lie in SA and at B we use directions that lie in
SB. SinceSA is extrinsically flat atA, the geodesics are
initially parallel, soû  0 at A. The evolution ofû is
given by the Raychaudhuri equation for null geodesics,

dû

dy
 2RabKaKb 1 2v̂2 2 2s2 2

1
2

û2, (3)

where v̂ is the vorticity, which vanishes here,̂s is the
shear, andRab is the Ricci curvature tensor. Since ther
are no conjugate points,û is well defined all alongP. If
the weak energy condition is satisfied, thenRabKaKb $

0, sodûydy # 0. From the generic condition,̂s cannot
vanish everywhere; thus WEC implies

û , 0 (4)

at B. If we can show that instead̂u $ 0 at B, then WEC
must be violated onP.

First we establish a basis for vectors atB. Let E1 and
E2 be orthonormal vectors tangent toSB at B. Let E3
be a unit spacelike vector orthonormal toE1 andE2 with
gsK , E3d . 0. Let E4 be the unit future-directed timelike
vector orthogonal toE1, E2, andE3. Using these vectors
establish (Riemannian) normal coordinates nearB. The
spaceSB consists of the points witht  z  0.

Let lssd be a smooth curve onSA with ls0d  A.
Let lss, yd be the point an affine distancey along the
null geodesic fromlssd. Eventually each geodesic will
pass nearB and will cross the hypersurface witht  0.
Call this crossing pointl0ssd and adjust the length of the
vectorsK on SA so thatlss, 1d  l0ssd. See Fig. 4.

Thez coordinate ofl0ssd must be negative. Otherwise,
points onSB (z  t  0) would be the future of points
of the geodesics fromSA.

Let Z be the tangent vector tolss, yd in the s
direction. By construction,KaZa  0 on SA. This
product is constant along each geodesic [8], soKaZa  0
everywhere. If we follow alongl0ssd from B we see that

0 
d
ds

sKaZad  sKaZad;bZb  Ka
;bZaZb

1 KaZa;bZb . (5)

The only nonvanishing components ofK are K3 and
K4. Sincel0ssd lies in the t  0 hypersurface,Z4  0
everywhere, so onlya  3 contributes toKaZa;b at B.
ld

ll

e

FIG. 4. Congruence of null geodesics fromlssd followed into
the future until they reach points nearB with t  0 at a curve
l0ssd with tangent vectorZ. At points nearB, l0ssd must have
a negativez coordinate.

Thus from Eq. (5)

Ka
;bZaZb  2K3Z3;bZb . (6)

At B, Z3  0. We must also haveZ3;bZb # 0 because
otherwisel03 would become positive. By construction,
K3 . 0, soK3Z3;bZb # 0 and

Ka
;bZaZb $ 0 . (7)

The congruence of geodesics provides a map from tange
vectors tolssd at A to tangent vectors tol0ssd at B. Since
there are no conjugate points, this map is nonsingular a
can be inverted. Thus we can find choices oflssd that
makeZ  E1 or Z  E2. Then we find thatK1

;1 $ 0
andK2

;2 $ 0 and so

û  Km
;m $ 0 (8)

in contradiction to Eq. (4).
Thus we see that any spacetime that admits super

minal travel on some pathP (and thus, according to our
definition, that satisfies condition 1) and that satisfies th
generic condition onP, must also violate the weak energy
condition at some point ofP.

One can compare this theorem with those of Tiple
[5,6] and Hawking [7] that we used earlier. These
theorems rule out the construction of closed timelik
curves (CTC’s) from a compact region unless there
WEC violation or a singularity on the boundary of the
causality violating region. The present theorem rules o
the existence, rather than construction, of superlumin
travel, unless there is weak-energy-condition violation
Spacetime singularities do not provide an alternativ
(other than by making the purported path not actuall
reach the destination), and the WEC violation must occu
along the path to be traveled.

This raises the question of whether the present theore
can be extended to rule out more time machines tha
the theorems of Tipler and Hawking do. However, thi
extension is not easily accomplished. Inside a CTC
containing region, each point will be in the future of
3569
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each other point. Thus one cannot construct surfacesSA

and SB with the required properties. Even if one put
the points A and B on the Cauchy horizon, it is still
not possible to construct spacelike 2-surfaces that do n
intersect the CTC-containing region.

Does this theorem mean that superluminal travel
impossible? No, because the weak energy condition is n
obeyed by systems of quantum fields. The best exam
is the Casimir effect, and, in fact, the Casimir effect doe
provide an example which satisfies condition 1.

Consider the system shown in Fig. 5. The quantu
expectation value of the electromagnetic stress-ener
tensor between the plates is

Tab 
p2

720d4 diags21, 1, 1, 23d . (9)

For a geodesic traveling in thez direction, we find

RabKaKb  2
2p3

45d4 . (10)

Now let SA be the lower plate andSB be the upper plate,
and we can go through the argument above in reverse.
start withû  0 as before, and noŵs  0 by symmetry.
As before,v̂  0, so the Raychaudhuri equation (3) give

dû

dy
 2RabKaKb . 0 (11)

so the geodesics aroundP are defocused. Thus the
geodesicP travels further in thez direction by the samet
than neighboring geodesics, and condition 1 is satisfied

It is not clear whether this phenomenon is sufficient t
provide a system of superluminal travel. The discussio
above is not complete, because it does not account for
mass of the plates or of the supporting structure requir
to keep them apart against the tension in the field. A lon
straight path traveling through the center of the plate
arrives earlier than nearby paths, but it is possible tha
3570
s

ot

is
ot

ple
s

m
gy

We

s

.
o
n

the
ed
g,
s

t a

FIG. 5. Circular conducting plates give rise to a negative
pressure and energy density, and a consequent advancemen
the time of arrival of a null ray fromA to B.

path that avoids the system of plates entirely might arriv
still earlier.

The author thanks Arvind Borde, Allen Everett, Larry
Ford, Michael Pfenning, and Tom Roman for helpful
conversations. This work was supported in part by th
National Science Foundation.

Note added in proof.—While this paper was in press, I
learned of unpublished work by R. Penrose, R. D. Sorkin
and E. Woolgar (gr-qc/9301015) which also discusse
the connection between WEC violation and geodesi
advancement.
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