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Soliton Creation and Destruction, Resonant Interactions,
and Inelastic Collisions in Shallow Water Waves
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Shallow water waves are studied using a nonlinear wave equation (W2) derived from Euler's
equations by Whitham’s method: W2 is the Korteweg—de Vries (KdV) equation plus higher-order
correction terms. By projecting numerical simulations of W2 onto the soliton and radiation modes
of the inverse scattering transform for the KdV equation we (i) generalize the soliton concept to
higher order, (ii) provide a rigorous interpretation of a new soliton resonance effect, (iii) demonstrate
that solitons and radiation undergo inelastic collisions, and (iv) find evidence for soliton creation and
destruction. [S0031-9007(98)07500-0]

PACS numbers: 03.40.Kf, 03.40.Gc, 47.20.Ky, 47.35.+i

The study of shallow water waves In+ 1 dimensions sine wave initial conditions. We have developed a Fourier
has often focused on the Korteweg—de Vries (KdV) equaspectral code for numerically integrating KdV, L2, and
tion u, + 6uu, + u,, = 0, for which solitons were dis- Eq. (1) [9]. In order to check out the code we used
covered by Zabusky and Kruskal [1] (ZK). These resultsthe specific coefficient values for both KdV and L2 and
subsequently led to the discovery of the inverse scatteringrojected the numerical solutions onto the IST modes.
transform (IST), a method for solving ti@&auchy problem These modes are known theoretically to be constants of
for soliton equations [2,3]. To investigate higher-orderthe motion for KdV and L2 evolutions [6] and were also
wave behavior one can use the method of Whitham [4found by us to be numerically constant to high precision.
(see also Taniuti [5]) to carry out a multiscale expansion In the numerical study for W2 we use 1024 spatial
of the Euler equations in shallow water. At 1 order of points with time discretizatiols = 2 X 1073, and we
approximation higher than the KdV equation one finds ingraph space series evety = 5 X 10* time steps (estab-
normalized form lishing the arbitrary time unit = 1). We havea = 0.12

u, + e(6uu, + up) + &2(aqus, + andB = 2.8 X 1(.)*4 for the initial sine wave. Our mo-

5 3 tivation for studying this particular case is that it reduces

QoUltxex T @3uxltee + aguue) = 0(€”). (1) the number of solitons from nine [1,10] to five which al-
The constant coefficients are givenby = 19/10, @, =  lows us to observe the solitons while simultaneously visu-
10, a3 =23, and a4 = —6. We refer to (1) as the alizing other nonlinear effects which we have found to be
second Whitham equation (W2), which is valid for smallimportant. Figure 1 gives the results of the numerical in-
values of the dimensionless parameters= a/h and tegration for the KdV equation: In panel (a) we show the
B = (h/1)?, for a the wave amplitudd, the wave length, space-time evolution of the wave amplitude starting from
andh the water depth. In (1) one assumes that @« ~  the initial sine wave at time = 0. Panel (b) shows the
B in the multiscale expansion. The simple transformatiorcolored contours of this evolution. Five solitons are seen
x — Jex, t — \Jet, andu — u/e renders (1) (and our to emerge from the sine wave initial condition and to un-
numerical study) independent of the expansion paramet@ergo integrable, nonlinear dynamical motions, including
e. W2 has the same form as the second Lax equatiomteraction phase shifts [1].
[6] (L2) in the infinite hierarchy of higher KdV flows; In Fig. 2 we show the evolution of the W2 equation
L2 is integrable by IST and is identical to (1) exceptstarting from the same sine wave initial condition. While
that it has different coefficient valuea; = 1, a, = 10, there are five “solitons” which occur in the higher-order
a3z = 20, and oy = 30. It is generally thought that the dynamics, we note that the evolution is considerably
particular coefficients in thphysical equatio’tW2 render different than that for the KdV equation, as can be seen
(1) nonintegrable [7]. Asymptotic integrabilitho(¢2)] by comparing the respective (a) panels of Figs. 1 and 2
has been established by showing that W2 can be derivddompare also (b) panels]. For times priorste- 40 both
(@) from the second Lax equation [6] (L2) by lde  KdV and W2 evolutions are quite similar. For the W2
transformation[7] and (b) from the KdV equation by a equation, forr > 45, the evolution changes dramatically
master symmetry transformati¢®]. In the present paper from that described by the KdV equation: A row of
we numerically study the physical behavior and possiblerery regular oscillatory waves appears whose crests are
(near) integrability of Eq. (1). parallel to the time axis (they have zero phase speed) and

We study W2 in much the same way that ZK studiedwhich run from about 64 to 224 along the space axis.
the KdV equation originally, i.e., by carrying out numeri- The oscillatory component is then subsequently “mixed”
cal experiments with periodic boundary conditions forand “dragged” rather uniformly over the-r domain
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In order to better understand how the nonlinear soliton
resonance occurs we show in Fig. 3 theace serie®f
the evolution of the KdV and W2 equations at= 45,
which is the moment in time when we estimate that the
resonantly produced wave packet has reached its maximum
size. The evolution of both the KdV and W2 equations
appears quite “normal” for earlier times (i.e., “KdV-like"),
but nearr ~ 45 the W2 evolution resonantly emits the
packet of oscillatory waves which is seen to emerge at the
right-hand, leading edge of the largest soliton.

Up to the present point we have investigated the
evolution of the W2 wave trains ioonfiguration space
We now use the inverse scattering transform of the KdV
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FIG. 1(color). (a) Space-time evolution of the KdV equation
for a sine wave initial condition. (b) Smoothed contours of the
dynamics shown in panel (a). o

&4

. o e
by the solitonic component. The numerical simulations=
suggest that there is a “nonlinear resonant excitation
of the oscillatory modes which is effectively initiated 15
and “driven” by the solitons for a brief interval of time
nearr ~ 45. Thereafter the W2 dynamics consists of a2
the five soliton modes evolving and interacting in the
background field of oscillatory waves (Fig. 2). Note that .,
the expression “nonlinear resonance” as used herein refe
to theresonant excitation of oscillatory modes by solitons
Thus the present resonant behavior occurs at 1 (singuli 0 40 B 120 160 200 240 28D
perturbative) order of approximation higher than classica Time
resonances in which linear sine waves exchange energis »(color). (a) Space-time evolution of the W2 equation
In the present study it is the solitons which undergofor a sine wave initial condition. (b) Smoothed contours of the
energy exchange. dynamics shown in panel (a).
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L5 : be integrable) onto the IST modes for the KdV equation
(which is integrable). We conduct our IST analysis in
the hope that W2 dynamics will, in some sense, be a

Solitons

e' -
L1+ '= /// /// relatively small perturbation of KdV dynamics, at least
09 S Resonantly Generated Radiation to the extent thaény time variation in the projection of
e in the W2 Equation the W2 dynamics onto the IST modes will be sufficiently

slowso that useful physical information may be obtained.
This turns out to be the case as we now discuss.

0.7

-Q'; 3 . .

3 Evolution Note in Fig. 4(b) that the IST modes for the W2 equa-

20 of the tion are relatively constant up to the early time- 40;
o1t KdV Equation during this short time interval the W2 spectrum is seen to

remain similar to that for the spectrum of the KdV equa-
tion as shown in Fig. 4(a). Times> 45 are character-

ized simultaneously by (a) a rapid, momentary reduction in
the amplitudes of the two largest solitons [Fig. 4(b)] and
(b) a rapid growth in radiation modes near wave number
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FIG. 3. Comparison between the nonlinear evolution of the - @)
KdV equation (dotted line) and the W2 equation (solid line) T
for t = 45. While the KdV equation dynamically evolves five $8ien s

solitons in classical fashion, the W2 equation instead initiates
a soliton/radiation resonance which injects energy into a wave
packet lying to the immediate right of the largest soliton.

Components

r10
equation to analyze the numerical resultsviave number £“0-6
space[11,12]. For the periodic boundary conditions used Fo2
here the IST modes arenoidal waves(the Jacobian 0 P
elliptic function c¢n) which have the form okine waves - -/—/300800
when their moduli are small with respect to 1 and 0 S =™
are solitons for moduli near 1. The results are given Wave Number (5”55~ 400" Time
in Fig. 4(a) for KdV evolution, where we show the 5(?\:4;\-6;/3;3"0
IST spectrum in wave-number space as it evolves in ) 257 o '
. . . Sudden Drop in
time. The actual spectral components consist of five  Ampliude of Two
soliton modesat low wave number, while the nearby — SaEestiolions o )
components aremall amplitude radiatior(modes 6—8). 3"
Mode numbers 9 and above do not significantly contribute T

to the dynamics because they have very small amplitudes.

We see that all spectral components are constants of the Bandof [,
motion for the KdV equation during the entire period g Reshath ™
of the simulations [total timeT" ~ 880, or about one g Radiation |10
Fermi-Pasta-Ulam (FPU) recurrence time]. These latter £+ o fo_ﬁ
results are gratifying because the IST mode amplitudes = -
are theoretically constants of the motion for pure Kdv “ - . [02
dynamics: Fig. 4(a) thus demonstrates the accuracy of © ™. LA
the numerical algorithm used to integrate the equation of e, / o
motion: The numerical code conserves the IST spectral . Rl
amplitudes for at least one FPU recurrence period. We 157’) 0 Time

X . Increase of Radiation 2()>\' 200
have also checked L2 evolution for the same sine wave Mode Amplitudes at the S /1/00

initial condition; we find the modes to be identical to those O™t of Solion Resonance 250
of Fig. 4(a), as theoretically required [6]. FIG. 4. (a) Inverse scattering transform for the evolution of
In Fig. 4(b) we show the time evolution of the IST the KdV equation. Note that the nonlinear mode amplitudes

spectrum for the W2 equation. Note that in this ctee (as a function of wave number) are constants of the motion
) for the entire simulation timer, = 880. (b) Inverse scattering

,IST modes for W2 ar_e _not Constants of the mOFid—miS transform for the evolution of the W2 equation. Each nonlinear
is of course to be anticipated, since we are projecting thehode, in contrast to that for the KdV equation, is seen to have
motion of the W2 equation (which we presume not torather complex wave-number/time dynamics.
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~16. Continued nonlinear evolution smears out the radiaresult. Perturbation theory for infinite-line boundary con-
tion components over a band of wave numbegs-18, for  ditions [8] must give way to periodic boundary conditions
which the IST mode amplitudes are never constant duringn the present case. The periodic theory for the KdV equa-
the remainder of the evolution. Nevertheless, these colledion [2,3,11,13] is quite technical in that it requires the im-
tive radiation modes maintain a rather energetic presengdementation of Riemann theta functions for constructing
over this range of wave numbers. spectral solutions. Floquet theory and Block eigenfunc-

In Fig. 4(b) we see that there is considerable variatiortions are necessary for tldérect IST spectral problerand
in the soliton amplitudes throughout the evolution of thethe construction of the theta function parameters using
W2 equation. Basically, each soliton-soliton interaction(a) physical effectivization [11], (b) algebraic geometry
results in a relatively small change in soliton amplitude[3,13], or (c) the theory of Schottky groups [3] are highly
(and energy), indicating that solitons in the W2 equa-ontrivial for the generajenusN case. Perturbation the-
tion do not preserve their identities and phase speeds afry is therefore clearly not an easy task, but we hope
ter a collision, as is the case for the KdV equation. Wethat subsequent theoretical work will be stimulated by our
therefore interpret the W2 soliton-soliton interactions toresults.
be somewhatnelastic although not drastically so. Fur- We thank A.S. Fokas, Y. Kodama, P. Santini, and
thermore, it is clear that the soliton-radiation interactionsE. R. Tracy for fruitful discussions. This work was sup-
are themselves inelastic, since the radiation mode amplported by ONR Grant No. N00014-98-1-0192, the CON-
tudes continue to vary slowly throughout their evolution. SORTIUM, and Ministero Universita e Ricerca Scientifica
However, the band of excited radiation modes is relativelyTecnologica.
persevering as can be seen in Fig. 4(b). While the largest
soliton is found to oscillate erratically in amplitude as a
function of time, it alsoslowly grows in amplitudever [1] N.J. Zabusky and M. D. Kruskal, Phys. Rev. L€, 240
the simulation period, evidently at the expense of its two  (1965).
nearest-neighbor solitons whose amplitudes also oscillatg2] C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M.
in time while slowly decreasing Miura, Phys. Rev. Lettl9, 1095 (1967).

We have also checked the moduli of the IST spectral [3] V.E. Zakarov, S.V. Manakov, S.P. Novikov, and L.P.
(cnoidal wave) components to see how they vary in Pit_aevskii,SoIiton Theory-Method of The Inverse S_cat-
time. Does a soliton at = 0 remain a soliton for all ter:j”?_l PgOb'erg('\I',?“ka* Mdofﬁo"l‘” 1980):;3'\"&‘]' ,Ab'c%w'tz

: : : : : an . Degurpoolitons an e lnverse sScatterin rans-
future times in W2 evolution? This does not necessarily = (SIAI\%, Philadolphia, 1981): R K. Dodd, J.gc. oty
happen, as we see in the present case, since the smaller

: . h beck, J.D. Gibbon, and H.C. MorrisSolitons and
of the five solitons loses so much energy near 350 Nonlinear Wave Equation§Academic Press, London,

that, for a period of about 300 time units, it ceases to  1982); A. C. Newell,Solitons in Mathematics and Physics
be a soliton, i.e., its modulus falls substantially below (SIAM, Philadelphia, 1985); P.G. Drazin and R.S. John-

~0.99 during this time interval [see Fig. 4(b)]. At a later son, Solitons:  An Introduction(Cambridge University
time it becomes re-energized (by inelastic collisions with Press, Cambridge, 1989); E. D. Belokolos, A. E. Bobenko,
other solitons and radiation) and subsequently becomes V.Z. Enol'skii, A.R. Its, and V.B. MatveevAlgebro-

a soliton again: The modulus, after decreasing-a2 Geometric Approach _to Nonlinear Integrable Equations
at the beginning of this period, later increases~t6.99 (Springer-Verlag, Berlin, 1994). _

for times >650. We suspect this to be a rather generic [41 G-B. Whitham, Linear and Nonlinear WavegWiley,
effect in higher-order nonlinear systems. In fact if we had New York, 1974).

- - N : . [5] T. Taniuti, Suppl. Prog. Theor. PhyS5, 1 (1974).
started our simulation at ~ 400 (using the appropriate [6] P.D. Lax, Commun. Pure Appl. Mat21, 467 (1968).

wave form at that moment in_time) we wquld have [7] Y. Kodama, Phys. Lett112A 193 (1985);112A 245
concluded that the fifth W2 projected mode in the IST (1985).

spectrum wasot initially a soliton, but at a later time  [g8] A.S. Fokas and Q.M. Liu, Phys. Rev. Leff7, 2347
it evolved into a soliton thanks to the nonlinear inelastic (1996).
interactions. Thus botBoliton creation and destruction [9] B. Fornberg and G.B. Whitham, Philos. Trans. R. Soc.
are possible outcomes of interactions in the W2 equation. ~ London A289, 373 (1978).

The higher-order dynamics studied here are found td10] A.R. Osborne and L. Bergamasco, Physica (Amsterdam)
be quite rich in their complexity, although nonintegrable. 18D, 26 (1986).
It is tempting to conclude that the results might be inter{11] J.P. Boyd, J. Math. Phys. (N.Y.5 3390 (1984);
preted as the “KdV equation plus a small perturbation.” 2> 3402 (1984); A.R. Bishop, M.G. Forest, D.W.
We have resisted this interpretation for a number of rea- McLaughlin, and E. A. Overman Il, Physica (Amsterdam)

; . 18D, 293 (1986); A.R. Bishop and P. S. Lomdahl, Physica

sons, primarily because some effects are cleadiyper- (Amsterdam)L8D, 26 (1986).
turbative over long time scales, e.g., soliton creation angh2] A R. Osborne, Phys. Rev. &, 1105 (1995).
destruction. Based upon our numerical results the long13] s.P. Novikov, S.V. Manakov, L. P. Pitayevsky, and V. E.
time evolution of (1) probably consists of only one large Zakharov, Theory of Solitons. The Inverse Scattering
soliton plus background “radiation,” hardly a perturbative Method(Consultants Bureau, New York, 1984).
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