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Soliton Creation and Destruction, Resonant Interactions,
and Inelastic Collisions in Shallow Water Waves
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Shallow water waves are studied using a nonlinear wave equation (W2) derived from Eu
equations by Whitham’s method: W2 is the Korteweg–de Vries (KdV) equation plus higher-or
correction terms. By projecting numerical simulations of W2 onto the soliton and radiation mo
of the inverse scattering transform for the KdV equation we (i) generalize the soliton concep
higher order, (ii) provide a rigorous interpretation of a new soliton resonance effect, (iii) demonst
that solitons and radiation undergo inelastic collisions, and (iv) find evidence for soliton creation
destruction. [S0031-9007(98)07500-0]

PACS numbers: 03.40.Kf, 03.40.Gc, 47.20.Ky, 47.35.+ i
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The study of shallow water waves in1 1 1 dimensions
has often focused on the Korteweg–de Vries (KdV) equ
tion ut 1 6uux 1 uxxx ­ 0, for which solitons were dis-
covered by Zabusky and Kruskal [1] (ZK). These resul
subsequently led to the discovery of the inverse scatteri
transform (IST), a method for solving theCauchy problem
for soliton equations [2,3]. To investigate higher-orde
wave behavior one can use the method of Whitham [
(see also Taniuti [5]) to carry out a multiscale expansio
of the Euler equations in shallow water. At 1 order o
approximation higher than the KdV equation one finds
normalized form

ut 1 ´s6uux 1 uxxxd 1 ´2sa1u5x1

a2uuxxx 1 a3uxuxx 1 a4u2uxd ­ Os´3d . (1)

The constant coefficients are given bya1 ­ 19y10, a2 ­
10, a3 ­ 23, and a4 ­ 26. We refer to (1) as the
second Whitham equation (W2), which is valid for sma
values of the dimensionless parametersa ­ ayh and
b ­ shyld2, for a the wave amplitude,l the wave length,
andh the water depth. In (1) one assumes that´ , a ,
b in the multiscale expansion. The simple transformatio
x !

p
´ x, t !

p
´ t, andu ! uy´ renders (1) (and our

numerical study) independent of the expansion parame
´. W2 has the same form as the second Lax equati
[6] (L2) in the infinite hierarchy of higher KdV flows;
L2 is integrable by IST and is identical to (1) excep
that it has different coefficient values,a1 ­ 1, a2 ­ 10,
a3 ­ 20, and a4 ­ 30. It is generally thought that the
particular coefficients in thephysical equationW2 render
(1) nonintegrable [7]. Asymptotic integrabilityfOs´2dg
has been established by showing that W2 can be deriv
(a) from the second Lax equation [6] (L2) by aLie
transformation[7] and (b) from the KdV equation by a
master symmetry transformation[8]. In the present paper
we numerically study the physical behavior and possib
(near) integrability of Eq. (1).

We study W2 in much the same way that ZK studie
the KdV equation originally, i.e., by carrying out numeri
cal experiments with periodic boundary conditions fo
0031-9007y98y81(17)y3559(4)$15.00
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sine wave initial conditions. We have developed a Four
spectral code for numerically integrating KdV, L2, an
Eq. (1) [9]. In order to check out the code we use
the specific coefficient values for both KdV and L2 an
projected the numerical solutions onto the IST mode
These modes are known theoretically to be constants
the motion for KdV and L2 evolutions [6] and were als
found by us to be numerically constant to high precision

In the numerical study for W2 we use 1024 spati
points with time discretizationDt ­ 2 3 1025, and we
graph space series everyDt ­ 5 3 104 time steps (estab-
lishing the arbitrary time unitt ­ 1). We havea ­ 0.12
andb ­ 2.8 3 1024 for the initial sine wave. Our mo-
tivation for studying this particular case is that it reduc
the number of solitons from nine [1,10] to five which a
lows us to observe the solitons while simultaneously vis
alizing other nonlinear effects which we have found to b
important. Figure 1 gives the results of the numerical i
tegration for the KdV equation: In panel (a) we show th
space-time evolution of the wave amplitude starting fro
the initial sine wave at timet ­ 0. Panel (b) shows the
colored contours of this evolution. Five solitons are se
to emerge from the sine wave initial condition and to u
dergo integrable, nonlinear dynamical motions, includin
interaction phase shifts [1].

In Fig. 2 we show the evolution of the W2 equatio
starting from the same sine wave initial condition. Whi
there are five “solitons” which occur in the higher-orde
dynamics, we note that the evolution is considerab
different than that for the KdV equation, as can be se
by comparing the respective (a) panels of Figs. 1 and
[compare also (b) panels]. For times prior tot , 40 both
KdV and W2 evolutions are quite similar. For the W
equation, fort .̃ 45, the evolution changes dramaticall
from that described by the KdV equation: A row o
very regular oscillatory waves appears whose crests
parallel to the time axis (they have zero phase speed)
which run from about 64 to 224 along the space ax
The oscillatory component is then subsequently “mixe
and “dragged” rather uniformly over thex-t domain
© 1998 The American Physical Society 3559
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FIG. 1(color). (a) Space-time evolution of the KdV equatio
for a sine wave initial condition. (b) Smoothed contours of th
dynamics shown in panel (a).

by the solitonic component. The numerical simulation
suggest that there is a “nonlinear resonant excitatio
of the oscillatory modes which is effectively initiated
and “driven” by the solitons for a brief interval of time
near t , 45. Thereafter the W2 dynamics consists o
the five soliton modes evolving and interacting in th
background field of oscillatory waves (Fig. 2). Note tha
the expression “nonlinear resonance” as used herein re
to theresonant excitation of oscillatory modes by soliton.
Thus the present resonant behavior occurs at 1 (singu
perturbative) order of approximation higher than classic
resonances in which linear sine waves exchange ener
In the present study it is the solitons which underg
energy exchange.
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In order to better understand how the nonlinear solito
resonance occurs we show in Fig. 3 thespace seriesof
the evolution of the KdV and W2 equations att ­ 45,
which is the moment in time when we estimate that th
resonantly produced wave packet has reached its maximu
size. The evolution of both the KdV and W2 equations
appears quite “normal” for earlier times (i.e., “KdV-like”),
but neart , 45 the W2 evolution resonantly emits the
packet of oscillatory waves which is seen to emerge at th
right-hand, leading edge of the largest soliton.

Up to the present point we have investigated th
evolution of the W2 wave trains inconfiguration space.
We now use the inverse scattering transform of the KdV

FIG. 2(color). (a) Space-time evolution of the W2 equation
for a sine wave initial condition. (b) Smoothed contours of the
dynamics shown in panel (a).
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FIG. 3. Comparison between the nonlinear evolution of th
KdV equation (dotted line) and the W2 equation (solid line
for t ­ 45. While the KdV equation dynamically evolves five
solitons in classical fashion, the W2 equation instead initiat
a soliton/radiation resonance which injects energy into a wa
packet lying to the immediate right of the largest soliton.

equation to analyze the numerical results inwave number
space[11,12]. For the periodic boundary conditions use
here the IST modes arecnoidal waves(the Jacobian
elliptic function cn) which have the form ofsine waves
when their moduli are small with respect to 1 and
are solitons for moduli near 1. The results are given
in Fig. 4(a) for KdV evolution, where we show the
IST spectrum in wave-number space as it evolves
time. The actual spectral components consist of fiv
soliton modesat low wave number, while the nearby
components aresmall amplitude radiation(modes 6–8).
Mode numbers 9 and above do not significantly contribu
to the dynamics because they have very small amplitud
We see that all spectral components are constants of
motion for the KdV equation during the entire period
of the simulations [total timeT , 880, or about one
Fermi-Pasta-Ulam (FPU) recurrence time]. These latt
results are gratifying because the IST mode amplitud
are theoretically constants of the motion for pure KdV
dynamics: Fig. 4(a) thus demonstrates the accuracy
the numerical algorithm used to integrate the equation
motion: The numerical code conserves the IST spect
amplitudes for at least one FPU recurrence period. W
have also checked L2 evolution for the same sine wa
initial condition; we find the modes to be identical to thos
of Fig. 4(a), as theoretically required [6].

In Fig. 4(b) we show the time evolution of the IST
spectrum for the W2 equation. Note that in this casethe
IST modes for W2 are not constants of the motion. This
is of course to be anticipated, since we are projecting t
motion of the W2 equation (which we presume not t
e
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be integrable) onto the IST modes for the KdV equatio
(which is integrable). We conduct our IST analysis in
the hope that W2 dynamics will, in some sense, be
relatively small perturbation of KdV dynamics, at leas
to the extent thatany time variation in the projection of
the W2 dynamics onto the IST modes will be sufficient
slowso that useful physical information may be obtained
This turns out to be the case as we now discuss.

Note in Fig. 4(b) that the IST modes for the W2 equa
tion are relatively constant up to the early timet , 40;
during this short time interval the W2 spectrum is seen t
remain similar to that for the spectrum of the KdV equa
tion as shown in Fig. 4(a). Timest .̃ 45 are character-
ized simultaneously by (a) a rapid, momentary reduction
the amplitudes of the two largest solitons [Fig. 4(b)] an
(b) a rapid growth in radiation modes near wave numbe

FIG. 4. (a) Inverse scattering transform for the evolution o
the KdV equation. Note that the nonlinear mode amplitude
(as a function of wave number) are constants of the motio
for the entire simulation time,t ­ 880. (b) Inverse scattering
transform for the evolution of the W2 equation. Each nonlinea
mode, in contrast to that for the KdV equation, is seen to hav
rather complex wave-number/time dynamics.
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,16. Continued nonlinear evolution smears out the rad
tion components over a band of wave numbers,8 18, for
which the IST mode amplitudes are never constant duri
the remainder of the evolution. Nevertheless, these coll
tive radiation modes maintain a rather energetic presen
over this range of wave numbers.

In Fig. 4(b) we see that there is considerable variati
in the soliton amplitudes throughout the evolution of th
W2 equation. Basically, each soliton-soliton interactio
results in a relatively small change in soliton amplitud
(and energy), indicating that solitons in the W2 equ
tion do not preserve their identities and phase speeds
ter a collision, as is the case for the KdV equation. W
therefore interpret the W2 soliton-soliton interactions
be somewhatinelastic although not drastically so. Fur-
thermore, it is clear that the soliton-radiation interaction
are themselves inelastic, since the radiation mode am
tudes continue to vary slowly throughout their evolution
However, the band of excited radiation modes is relative
persevering as can be seen in Fig. 4(b). While the larg
soliton is found to oscillate erratically in amplitude as
function of time, it alsoslowly grows in amplitudeover
the simulation period, evidently at the expense of its tw
nearest-neighbor solitons whose amplitudes also oscill
in time whileslowly decreasing.

We have also checked the moduli of the IST spectr
(cnoidal wave) components to see how they vary
time. Does a soliton att ­ 0 remain a soliton for all
future times in W2 evolution? This does not necessar
happen, as we see in the present case, since the sm
of the five solitons loses so much energy neart , 350
that, for a period of about 300 time units, it ceases
be a soliton, i.e., its modulus falls substantially belo
,0.99 during this time interval [see Fig. 4(b)]. At a late
time it becomes re-energized (by inelastic collisions wi
other solitons and radiation) and subsequently becom
a soliton again: The modulus, after decreasing to,0.2
at the beginning of this period, later increases to,0.99
for times .650. We suspect this to be a rather gener
effect in higher-order nonlinear systems. In fact if we ha
started our simulation att , 400 (using the appropriate
wave form at that moment in time) we would hav
concluded that the fifth W2 projected mode in the IS
spectrum wasnot initially a soliton, but at a later time
it evolved into a soliton thanks to the nonlinear inelast
interactions. Thus bothsoliton creation and destruction
are possible outcomes of interactions in the W2 equatio

The higher-order dynamics studied here are found
be quite rich in their complexity, although nonintegrable
It is tempting to conclude that the results might be inte
preted as the “KdV equation plus a small perturbation
We have resisted this interpretation for a number of re
sons, primarily because some effects are clearlynot per-
turbative over long time scales, e.g., soliton creation a
destruction. Based upon our numerical results the lo
time evolution of (1) probably consists of only one larg
soliton plus background “radiation,” hardly a perturbativ
3562
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result. Perturbation theory for infinite-line boundary con
ditions [8] must give way to periodic boundary conditions
in the present case. The periodic theory for the KdV equ
tion [2,3,11,13] is quite technical in that it requires the im
plementation of Riemann theta functions for constructin
spectral solutions. Floquet theory and Block eigenfunc
tions are necessary for thedirect IST spectral problemand
the construction of the theta function parameters usin
(a) physical effectivization [11], (b) algebraic geometry
[3,13], or (c) the theory of Schottky groups [3] are highly
nontrivial for the generalgenusN case. Perturbation the-
ory is therefore clearly not an easy task, but we hop
that subsequent theoretical work will be stimulated by ou
results.
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