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Multiaffine Chemical Turbulence

Yoshiki Kuramoto, Dorjsuren Battogtokh,* and Hiroya Nakao

Department of Physics, Graduate School of Sciences, Kyoto University, Kyoto 606-8502, Japan
(Received 2 June 1998

A three-component reaction-diffusion model is proposed as the first example to exhibit chemical
turbulence with multiaffine fractal structures, the underlying mechanism being the same as for similar
turbulence discovered recently in some nonlocally coupled oscillator systems. The role played by the
strongly diffusive component can be substituted by a long-wave random force, and this idea leads to our
proposal of the second, far simpler reaction-diffusion model given by the randomly driven FitzHugh-
Nagumo nerve conduction equation. [S0031-9007(98)07376-1]

PACS numbers: 82.20.Fd, 05.45.+Db, 47.27.—i, 47.53.+n

Spontaneous spatiotemporal disorder through chemical ox )
reaction and diffusion is called chemical turbulence around FYE A—(B+ DX + XY + KxS,
which considerable amounts of work have been done over
the last two decades [1,2]. Some possible form; of chemi- v _ BX — XY + KyS. 1)
cal turbulence have been proposed, though without clear at
evidence for their existence in real chemical reactions. oS 928
The goal of this paper is to propose yet another form €. =S + Dﬁ + X,

of chemical turbulence which, besides being conceptually
new, could be much easier to realize experimentally. Thevhere A, B, Kx, Ky, D, and € are constants. Under
main characteristic of our chemical turbulence is the spathe condition B > 1 + A%, the set of the first two
tial multiscaling and intermittency reminiscent of fully de- equations withS = 0 represents a limit-cycle oscillator
veloped fluid turbulence [3]. We found that it belongs tocalled the Brusselator [8]. Thus, the above system may
the same class of spatiotemporal chaos that was discoverbéd viewed as a large population of oscillators interacting
recently in various models of nonlocally coupled elementsndirectly via an inactive diffusive component. Similar
and also in arrays of chaotic maps subjected to long-wavsituations may be met in a variety of cellular assemblies in
random forces [4—6]. The discovery of the same behavioliving systems [9], where the cell activity, assumed time-
in reaction-diffusion systems, i.e., a representative class gferiodic, is controlled by the local concentration of some
nonlinear dissipative media withcal coupling, will there-  diffusive chemical substance which in turn is produced
fore strengthen the indication that the related phenomen@om each cell with the rate of production depending
are so universal in the real world. on the cell activity. It was speculated earlier [4] that
We shall propose two illustrative reaction-diffusion reaction-diffusion systems of this class might give rise to
models. The first is a three-component oscillatory systenturbulence with spatial multiscaling. Equations (1) indeed
near the onset of oscillation. Our model is particularlyprovide the first example justifying this anticipation.
instructive in that it reveals a limitation of the com-  Our numerical analysis of (1) was carried out on a sys-
plex Ginzburg-Landau (CGL) equation in its applicationtem of unit length satisfying periodic boundary conditions.
to self-oscillatory media even for the purpose of a mosiThe uniqueness of the turbulence discovered may be seen
gualitative understanding. The second model, which willfrom Fig. 1 where space-time patternsoénds are illus-
be discussed only briefly, is given by a nonautonomousrated in the gray scale. While the spatial smoothness of
two-component system of the FitzHugh-Nagumo type [7].S could be understood from its diffusive nature, the highly
This model seems more relevant to experiment, becausetermittent pattern ok is remarkable and needs to be ex-
we learn from it a practical advantage of working with plained. The strong resemblance of the latter with some
forced reaction-diffusion systems. With such systemspatterns obtained in nonlocally coupled systems [4] implies
one may in fact circumvent the most difficult problem of the equivalence in the nature of turbulence between these
producing intrinsic spatiotemporal chaos; singular turbutwo classes of systems. In particular, we expect that the
lent fluctuations are generated from long-wave nonsingupatterns ofX (and alsoY) at given: are characterized, as
lar fluctuations fed into the system by random forcing.  far as their spatial continuity is preserved, by multiaffine
We will not attempt detailed analysis of the multiaffine/ fractals [10] over some range of length scale up to the diffu-
multifractal properties themselves. This could be donesion lengthy/D of S. This means that various moments of
much more efficiently with the use of arrays of cha-the amplitude increment = |X(xy + x) — X(x¢)| over a

otic maps. sufficiently short distance obey a power lawy?) ~ x«@
Consider a reaction-diffusion system in one spatiakg > 0) with the exponent:(g) having nonlinear depen-
dimension: dence ong. A theory developed previously [5,6], based
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FIG. 2. Log-log plot of the probability densitie®(y) of
the coarse-grained spatial derivatiye = y/x obtained for
different x indicated in the figure. Parameter values are the
same as in Fig. 1. Estimated value @fis 0.55.

We first check the consistency of this result with the for-
mula in (2). It is clear from the figure tha(y) obeys
a power lawP(y) ~ x A for intermediate values of
X, its power-law tail has a cutoff at aboyt ~ x~!, while
its power-law divergence with decreasingstarts to be
suppressed around some value independent. ofCon-
sequently, the probability distributiop(y) = P(y/x)x~!
of y should obey the same power law for intermediate
but showing a sudden drop near soméndependent of
x and saturating below ~ x. Such behavior oD(y)
may be cast into a simple modél(y) = const (y < x),
« y 4B (x =y < 1),and 0 ¢ = 1), thus yielding ana-
lytic expressions foy?) with the exponents identical to
the formula in (2) [6].
The first momenty) or the corresponding exponent
a(1) is of particular interest for its relation to the fractal
space dimension of the pattern. In fact, the dimensiop of the
X versusx curve is defined by~ !'(y) ~ x!7Pr, which
FIG. 1. Spatiotemporal patterns &f (top) andS (bottom) implies the relationD; = 2 — «(1). Via (2), the last

in gray scale, where the darker (lighter) regions correspon ; — 5 _ ;
to larger (smaller)X or S. The space and time spans are%quallty meand, =2 — f providedg < 1. Thus, the

1.0 and 327.7, respectively. The patterns were obtained aftdyattern is fractal if0 < g < 1. It is interesting to note
a temporal coarse graining of the time sequences at each that, in contrast to the usual fractal curves, the spa-

over the periodAr = 3.2, the average period of the individual tial derivative dX/dx or its absolute valuddX/dx| =
oscillation.  Parameter values 3”‘3? 1.8, B =065, Kx =  im,_ y seems generally to exist, because from the prop-
028, Ky = —0.058, D = 0.02, ande = 0.01. erty of P(y) described above the limiting distribution

on the assumption of a multiplicative stochastic procesdM«—o P(x) should exist and be normalizable. Never-

time —

obeyed byy, predicts a simple multiscaling theless, the expectatigry) in the same limit diverges if
B < 1, and the last inequality is precisely the condition
alg) = {q (¢ = B) i ) for the fractality of the pattern.
B (qg>pB) Q(y) may have a negative exponeng. Then
where B is a parameter-dependent positive constant. lim,—o(y?) will not vanish, implying that the pattern is
As a quantity which contains a little more information discontinuous everywhere.
than(y7), we introduce the probability distributioA(y) The above numerical analysis of the modified Brussela-

of coarse-grained spatial derivatiye= y/x. Figure 2 tor (1) was carried out for smad and near the onset of
showsP(y) obtained numerically from (1) for three dif- uniform oscillation, i.e., the situation where the reduction
ferent levels of coarsening; i.ec,= 278, 2711 ‘and2™'%.  of (1) to the complex Ginzburg-Landau equation may be
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possible [1]. Under the parameter conditions described be- Coming back to the original Eqgs. (1), it may also be
low, however, this naive reduction idea breaks down duavondered whether the smallness ofis crucial to the
to the appearance of another small parameter comparalbbdecurrence of the type of turbulence concerned. Detailed
with the bifurcation parameter, leading to completely dif-arguments will be developed elsewhere, but we simply
ferent behavior from what is expected from CGL. show here(y?) obtained numerically for some different
To give a more detailed account, we simplify the prob-e (Fig. 3). Whene is increased, no qualitative change
lem by considering the limit of smad and infinite system in the power-law behavior can be seen upete= 0.2,
size. This enables one to elimingté&om (1) adiabatically while its sudden breakdown seems to occur somewhere
and obtain a nonlocally coupled two-component system obetweene = 0.2 and 0.3, the reason for which is yet to

the form be explained.
9x The final remark on our first model concerns the nu-
o A—-(B+1-KxX + XY merical scheme employed. In contrast to the types of

reaction-diffusion dynamics concerned in most of the

foregoing studies, the unigue feature of our chemical tur-

bulence is the emergence of complicated fine structures at
(3)  scales much shorter than the diffusion length. Therefore,

]

+ Ky [, olx — x[X(x") — X(x)]dx’,

Y

— = (B + Ky)X — XY the usual numerical scheme based on space discretization
at will not work. Given a set of data of(x, 1), Y(x, ¢), and
* , , , S(x,t), our method proceeds as follows. Taking advan-
+ Ky f_x ol = x)[X() = X(x)]dx', tage of the linearity of the equation fat, we work with

| _ the solution of that equation in (1) in the wave number
whereo(x) = ENG) exp(—|x|/~/D). Define new parame- space; i.e.,
tersa = A/(1 — Kx — Ky)*?andb = (B + Ky)/(1 — _ _
Kx — Ky), whereKy + Ky < 1 is assumed. The criti- St + A1) = Si(t) exp(= kA1)
cal condition for the onset of oscillation is then given
by b = b,., whereb. = 1 + a>. The standard reduction
technique [1] is applied to (3) neat, leading to a CGL-
type equation with nonlocal coupling. In terms of a suit-
ably defined complex amplitud® and scaled time, this  whereS; andX; are the spatial Fourier transforms$ix)

t+At
+ e“f exd—vyi(t + At — 7)]
t

X Xp(7)dT, (5)

is expressed as and X(x), respectively, andy, = e '(1 + 47>Dk?).
aW CalculatingX; () approximately from the data of (x, ¢)
o W (1 + ic) IWI*W and X(x,7), we thus obtainSi(+ + Az) and, hence,
. S(x,t + At). On the other hand, we work with the
+ k(1 + o space when dealing with the first and second equations
( ie1) [—ao olx = x) of (1); numerical integration of these ordinary differential

X W) — W)ldd, (4) equations with the use of the second order Euler scheme

where k = Kx/[/.LbC(l — Ky — Ky)], ¢y = —a(l +
Kx'Ky), o = (4 — 7a% + 4a*)/[3a(2 + a?)], andp = 01 |
(b — b.)/b.. Note, however, that the bifurcation parame-
ter u has not been scaled out from (4) due to thdepen-
dence ofk. We usually recover the scale invariance of the pe
equation by assuming long-wav#@d such that the integral e
may give a quantity of0(x). Then the local-coupling N,A\
approximation (LCA) is allowed, and after the rescaling X
x —x//m (4) is reduced to the usual CGL. In the \7" , *
present case, in contrast, the scale invariance holds simply 0.01 ¢ e ** ¢ (0,01
because&Ky = O(u) or k = O(1) so that LCA is gener- e £ -a01
ally not allowed. Actually, the parameter values used in A .02
our simulation of (1) giveuw = 0.0464, k = 0.988, ¢; = :
—2.09, and ¢, = 2.09, Moreover, we are rather deep * =% 0.3
in the Benjamin-Feir unstable regimé + cic; <0 ‘ ‘

[1,2] where the difference in behavior between the local 0.001 0.01

and nonlocal CGLs becomes decisive. The last three X

parameter values in fact fall into the domain where (4)g g 3. Log-log plot of the second momerits(x)2) vs x for
was found to exhibit turbulence with nontrivial scaling some values of indicated in the figure. The values of the
properties [4,5]. other parameters are the same as in Fig. 1.
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givesX(x,t + Ar) andY(x,t + Ar) to the same approxi- 1 .
mation as forS(x,z + Ar). Note that our method is also
not hampered by the smallnesseof

In the model discussed abov® acts similar to a long-
wave stochastic field driving the individual oscillators
which are themselves uncoupled with each other. Thi 0.1 ¢ ]
dynamics ofS and that of the individual elements must
be self-consistently interrelated. For certain theoretica
as well as empirical reasons [5,6], however, such self
consistency is not important to the occurrence of the type ¢ 0.01
turbulence in question. One may then expect similar turbu
lent behavior simply by replacing with some space-time ¢
dependent field of purely external origin. Experimentally,
this fact seems particularly important because applying X
external random forces would be much easier in prac 0.001 : :
tice than finding out systems with intrinsic spatiotemporal 0.001 0.01 0.1 1
chaos. We are thus led to the study of the following non- X
autonomous system which is the FitzHugh-Nagumo nerve |G, 4. Log-log plot of the second momeft(x)?) vs x for
conduction equation under long-wave stochastic forcing: the randomly forced FitzHugh-Nagumo Egs. (6). Comparison

-~

Na]
Y
\%

oU U between the cases with and without diffusion (i.= 0 and
—=e'U~-U-V)+D— 4.7 X 107%) is made. The values of the other parameters are
at dx a=10b=055€=01K=50 o =0,y=20, and

+ Ksifwr + x + ¢(1)], Jo=50.
v U+ b 6) length27 of the driving field which is much longer than
o ¢ : JVeD = 6.9 X 107*. Whether such a scaling regime with

Our choice of the FitzHugh-Nagumo system rather than theufficient extension between two cutoff lengths is available
Brusselator is due to its stronger similarity to the Belousovi" real systems (e.g., light-sensitive Belousov-Zhabotinsky
Zhabotinsky reaction system. In the first equation in (6)reaction) will be a matter for a separate study.

the forcing is given by a simple sine wave, while its One of the authors (D.B.) has been supported by The
temporal variation is random through the phasassumed Monbusho’s Grant-in-Aid for JSPS Postdoctoral Fellows.
to obey the Langevin equation

dv _ o dv

v, — = —yv + f(1). @ *Present address: Physics and Technology Institute,
di dt Mongolian Academy of Sciences, Ulanbator 51,
Here f(¢t) are the uniform random numbers over an in- Mongolia.
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