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A three-component reaction-diffusion model is proposed as the first example to exhibit chem
turbulence with multiaffine fractal structures, the underlying mechanism being the same as for sim
turbulence discovered recently in some nonlocally coupled oscillator systems. The role played by
strongly diffusive component can be substituted by a long-wave random force, and this idea leads to
proposal of the second, far simpler reaction-diffusion model given by the randomly driven FitzHu
Nagumo nerve conduction equation. [S0031-9007(98)07376-1]
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Spontaneous spatiotemporal disorder through chemi
reaction and diffusion is called chemical turbulence arou
which considerable amounts of work have been done o
the last two decades [1,2]. Some possible forms of chem
cal turbulence have been proposed, though without cl
evidence for their existence in real chemical reactions.

The goal of this paper is to propose yet another for
of chemical turbulence which, besides being conceptua
new, could be much easier to realize experimentally. T
main characteristic of our chemical turbulence is the sp
tial multiscaling and intermittency reminiscent of fully de
veloped fluid turbulence [3]. We found that it belongs t
the same class of spatiotemporal chaos that was discove
recently in various models of nonlocally coupled elemen
and also in arrays of chaotic maps subjected to long-wa
random forces [4–6]. The discovery of the same behav
in reaction-diffusion systems, i.e., a representative class
nonlinear dissipative media withlocal coupling, will there-
fore strengthen the indication that the related phenome
are so universal in the real world.

We shall propose two illustrative reaction-diffusion
models. The first is a three-component oscillatory syste
near the onset of oscillation. Our model is particular
instructive in that it reveals a limitation of the com
plex Ginzburg-Landau (CGL) equation in its applicatio
to self-oscillatory media even for the purpose of a mo
qualitative understanding. The second model, which w
be discussed only briefly, is given by a nonautonomo
two-component system of the FitzHugh-Nagumo type [7
This model seems more relevant to experiment, beca
we learn from it a practical advantage of working wit
forced reaction-diffusion systems. With such system
one may in fact circumvent the most difficult problem o
producing intrinsic spatiotemporal chaos; singular turb
lent fluctuations are generated from long-wave nonsing
lar fluctuations fed into the system by random forcing.

We will not attempt detailed analysis of the multiaffine
multifractal properties themselves. This could be do
much more efficiently with the use of arrays of cha
otic maps.

Consider a reaction-diffusion system in one spati
dimension:
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≠X
≠t

­ A 2 sB 1 1dX 1 X2Y 1 KXS ,

≠Y
≠t

­ BX 2 X2Y 1 KY S , (1)

e
≠S
≠t

­ 2S 1 D
≠2S
≠x2 1 X ,

where A, B, KX , KY , D, and e are constants. Under
the condition B . 1 1 A2, the set of the first two
equations withS ­ 0 represents a limit-cycle oscillator
called the Brusselator [8]. Thus, the above system m
be viewed as a large population of oscillators interacti
indirectly via an inactive diffusive component. Simila
situations may be met in a variety of cellular assemblies
living systems [9], where the cell activity, assumed tim
periodic, is controlled by the local concentration of som
diffusive chemical substance which in turn is produce
from each cell with the rate of production dependin
on the cell activity. It was speculated earlier [4] tha
reaction-diffusion systems of this class might give rise
turbulence with spatial multiscaling. Equations (1) indee
provide the first example justifying this anticipation.

Our numerical analysis of (1) was carried out on a sy
tem of unit length satisfying periodic boundary condition
The uniqueness of the turbulence discovered may be s
from Fig. 1 where space-time patterns ofX andS are illus-
trated in the gray scale. While the spatial smoothness
S could be understood from its diffusive nature, the high
intermittent pattern ofX is remarkable and needs to be ex
plained. The strong resemblance of the latter with som
patterns obtained in nonlocally coupled systems [4] impli
the equivalence in the nature of turbulence between th
two classes of systems. In particular, we expect that
patterns ofX (and alsoY ) at givent are characterized, as
far as their spatial continuity is preserved, by multiaffin
fractals [10] over some range of length scale up to the dif
sion length

p
D of S. This means that various moments o

the amplitude incrementy ; jXsx0 1 xd 2 Xsx0dj over a
sufficiently short distancex obey a power lawkyql , xasqd

(q . 0) with the exponentasqd having nonlinear depen-
dence onq. A theory developed previously [5,6], base
© 1998 The American Physical Society 3543
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FIG. 1. Spatiotemporal patterns ofX (top) and S (bottom)
in gray scale, where the darker (lighter) regions correspo
to larger (smaller)X or S. The space and time spans ar
1.0 and 327.7, respectively. The patterns were obtained a
a temporal coarse graining of the time sequences at eacx
over the periodDt ­ 3.2, the average period of the individua
oscillation. Parameter values areA ­ 1.8, B ­ 6.5, KX ­
0.28, KY ­ 20.058, D ­ 0.02, ande ­ 0.01.

on the assumption of a multiplicative stochastic proce
obeyed byy, predicts a simple multiscaling

asqd ­

Ω
q sq # bd
b sq . bd , (2)

whereb is a parameter-dependent positive constant.
As a quantity which contains a little more information

than kyql, we introduce the probability distributionPsxd
of coarse-grained spatial derivativex ; yyx. Figure 2
showsPsxd obtained numerically from (1) for three dif-
ferent levels of coarsening; i.e.,x ­ 228, 2211, and2214.
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FIG. 2. Log-log plot of the probability densitiesPsxd of
the coarse-grained spatial derivativex ; yyx obtained for
different x indicated in the figure. Parameter values are th
same as in Fig. 1. Estimated value ofb is 0.55.

We first check the consistency of this result with the fo
mula in (2). It is clear from the figure thatPsxd obeys
a power lawPsxd , x2s11bd for intermediate values of
x; its power-law tail has a cutoff at aboutx , x21, while
its power-law divergence with decreasingx starts to be
suppressed around some value independent ofx. Con-
sequently, the probability distributionQsyd ; Psyyxdx21

of y should obey the same power law for intermediatey,
but showing a sudden drop near somey independent of
x and saturating belowy , x. Such behavior ofQsyd
may be cast into a simple modelQsyd ­ const (y , x),
~ x2s11bd (x # y , 1), and 0 (y $ 1), thus yielding ana-
lytic expressions forkyql with the exponents identical to
the formula in (2) [6].

The first momentkyl or the corresponding exponen
as1d is of particular interest for its relation to the fracta
dimension of the pattern. In fact, the dimensionDf of the
X versusx curve is defined byx21kyl , x12Df , which
implies the relationDf ­ 2 2 as1d. Via (2), the last
equality meansDf ­ 2 2 b providedb , 1. Thus, the
pattern is fractal if0 , b , 1. It is interesting to note
that, in contrast to the usual fractal curves, the sp
tial derivative dXydx or its absolute valuejdXydxj ;
limx!0 x seems generally to exist, because from the pro
erty of Psxd described above the limiting distribution
limx!0 Psxd should exist and be normalizable. Neve
theless, the expectationkxl in the same limit diverges if
b , 1, and the last inequality is precisely the conditio
for the fractality of the pattern.

Qsyd may have a negative exponentb. Then
limx!0kyql will not vanish, implying that the pattern is
discontinuous everywhere.

The above numerical analysis of the modified Brusse
tor (1) was carried out for smalle and near the onset of
uniform oscillation, i.e., the situation where the reductio
of (1) to the complex Ginzburg-Landau equation may b
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possible [1]. Under the parameter conditions described
low, however, this naive reduction idea breaks down d
to the appearance of another small parameter compara
with the bifurcation parameter, leading to completely di
ferent behavior from what is expected from CGL.

To give a more detailed account, we simplify the prob
lem by considering the limit of smalle and infinite system
size. This enables one to eliminateS from (1) adiabatically
and obtain a nonlocally coupled two-component system
the form

≠X
≠t

­ A 2 sB 1 1 2 KXdX 1 X2Y

1 KX

Z `

2`

ssx 2 x0d fXsx0d 2 Xsxdgdx0,

(3)
≠Y
≠t

­ sB 1 KY dX 2 X2Y

1 KY

Z `

2`

ssx 2 x0d fXsx0d 2 Xsxdgdx0,

wheressxd ­ 1
2
p

D
exps2jxjy

p
Dd. Define new parame-

tersa ­ Ays1 2 KX 2 KY d3y2 andb ­ sB 1 KY dys1 2

KX 2 KY d, whereKX 1 KY , 1 is assumed. The criti-
cal condition for the onset of oscillation is then give
by b ­ bc, wherebc ­ 1 1 a2. The standard reduction
technique [1] is applied to (3) nearbc, leading to a CGL-
type equation with nonlocal coupling. In terms of a sui
ably defined complex amplitudeW and scaled timet0, this
is expressed as

≠W
≠t0

­ W 2 s1 1 ic2d jW j2W

1 ks1 1 ic1d
Z `

2`

ssx 2 x0d

3 fW sx0d 2 Wsxdgdx0, (4)

where k ­ KXyfmbcs1 2 KX 2 KY dg, c1 ­ 2as1 1

K21
X KY d, c2 ­ s4 2 7a2 1 4a4dyf3as2 1 a2dg, andm ­

sb 2 bcdybc. Note, however, that the bifurcation parame
ter m has not been scaled out from (4) due to them depen-
dence ofk. We usually recover the scale invariance of th
equation by assuming long-wavedW such that the integral
may give a quantity ofOsmd. Then the local-coupling
approximation (LCA) is allowed, and after the rescalin
x ! xyp

m (4) is reduced to the usual CGL. In the
present case, in contrast, the scale invariance holds sim
becauseKX ­ Osmd or k ­ Os1d so that LCA is gener-
ally not allowed. Actually, the parameter values used
our simulation of (1) givem ­ 0.0464, k ­ 0.988, c1 ­
22.09, and c2 ­ 2.09, Moreover, we are rather deep
in the Benjamin-Feir unstable regime1 1 c1c2 , 0
[1,2] where the difference in behavior between the loc
and nonlocal CGLs becomes decisive. The last thr
parameter values in fact fall into the domain where (
was found to exhibit turbulence with nontrivial scaling
properties [4,5].
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Coming back to the original Eqs. (1), it may also b
wondered whether the smallness ofe is crucial to the
occurrence of the type of turbulence concerned. Detai
arguments will be developed elsewhere, but we simp
show hereky2l obtained numerically for some differen
e (Fig. 3). Whene is increased, no qualitative chang
in the power-law behavior can be seen up toe ­ 0.2,
while its sudden breakdown seems to occur somewh
betweene ­ 0.2 and 0.3, the reason for which is yet t
be explained.

The final remark on our first model concerns the n
merical scheme employed. In contrast to the types
reaction-diffusion dynamics concerned in most of th
foregoing studies, the unique feature of our chemical tu
bulence is the emergence of complicated fine structure
scales much shorter than the diffusion length. Therefo
the usual numerical scheme based on space discretiza
will not work. Given a set of data ofXsx, td, Y sx, td, and
Ssx, td, our method proceeds as follows. Taking adva
tage of the linearity of the equation forS, we work with
the solution of that equation in (1) in the wave numb
space; i.e.,

Skst 1 Dtd ­ Skstd exps2gkDtd

1 e21
Z t1Dt

t
expf2gkst 1 Dt 2 tdg

3 Xkstddt , (5)

whereSk andXk are the spatial Fourier transforms ofSsxd
and Xsxd, respectively, andgk ­ e21s1 1 4p2Dk2d.
CalculatingXkstd approximately from the data ofXsx, td
and ÙXsx, td, we thus obtainSkst 1 Dtd and, hence,
Ssx, t 1 Dtd. On the other hand, we work with thex
space when dealing with the first and second equatio
of (1); numerical integration of these ordinary differentia
equations with the use of the second order Euler sche

0.001 0.01
x

0.01

0.1

<
y(

x)
2 >

0.01
0.1
0.2
0.3

FIG. 3. Log-log plot of the second momentskysxd2l vs x for
some values ofe indicated in the figure. The values of the
other parameters are the same as in Fig. 1.
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givesXsx, t 1 Dtd andY sx, t 1 Dtd to the same approxi-
mation as forSsx, t 1 Dtd. Note that our method is also
not hampered by the smallness ofe.

In the model discussed above,S acts similar to a long-
wave stochastic field driving the individual oscillator
which are themselves uncoupled with each other. T
dynamics ofS and that of the individual elements mus
be self-consistently interrelated. For certain theoretic
as well as empirical reasons [5,6], however, such se
consistency is not important to the occurrence of the type
turbulence in question. One may then expect similar turb
lent behavior simply by replacingS with some space-time
dependent field of purely external origin. Experimentall
this fact seems particularly important because applyi
external random forces would be much easier in pra
tice than finding out systems with intrinsic spatiotempor
chaos. We are thus led to the study of the following no
autonomous system which is the FitzHugh-Nagumo ner
conduction equation under long-wave stochastic forcing

≠U
≠t

­ e21sU 2 U3 2 V d 1 D
≠2U
≠x2

1 K sinfvt 1 x 1 cstdg ,

≠V
≠t

­ aU 1 b .
(6)

Our choice of the FitzHugh-Nagumo system rather than t
Brusselator is due to its stronger similarity to the Belouso
Zhabotinsky reaction system. In the first equation in (6
the forcing is given by a simple sine wave, while it
temporal variation is random through the phasec assumed
to obey the Langevin equation

dc

dt
­ y,

dy

dt
­ 2gy 1 fstd . (7)

Here fstd are the uniform random numbers over an in
terval f f0, 2f0g and chosen independently at each tim
step. Thus,c behaves similar to the position of a Brown
ian particle on a line, ensuring at the same time the sta
tical uniformity over the entire system. The system siz
is fixed at 2p and periodic boundary conditions are as
sumed. IfD ­ 0, there is no spatial coupling, and this
particular case corresponds to our first model where dir
diffusive coupling was absent among the constituent o
cillators. Figure 4 shows the second momentsky2l of the
incrementy ; jUsx0 1 xd 2 Usx0dj as a function ofx in
the presence and absence of diffusion. The numerical s
ulation was carried out with parameter values for which th
individual elements are nonoscillatory but excitable. W
confirmed that, as far as the statistics of the turbulent flu
tuations are concerned, there is no qualitative differen
between the cases with and without spontaneous osci
tion. As expected, in the absence of diffusion,ky2l obeys
a power law with nontrivial exponentas2d . 0.84. This is
compared in the same figure with the case of nonvanish
D for which the power law is valid only forx sufficiently
larger than the diffusion length

p
eD. Note that the power-

law regime is also limited from the above by the wave
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FIG. 4. Log-log plot of the second momentkysxd2l vs x for
the randomly forced FitzHugh-Nagumo Eqs. (6). Compariso
between the cases with and without diffusion (i.e.,D ­ 0 and
4.7 3 1026) is made. The values of the other parameters a
a ­ 1.0, b ­ 0.55, e ­ 0.1, K ­ 5.0, v ­ 0, g ­ 2.0, and
f0 ­ 5.0.

length2p of the driving field which is much longer thanp
eD . 6.9 3 1024. Whether such a scaling regime with

sufficient extension between two cutoff lengths is availab
in real systems (e.g., light-sensitive Belousov-Zhabotinsk
reaction) will be a matter for a separate study.
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