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We study the interplay among disorder, RKKY, and Kondo interactions inf-electron alloys. We
argue that the non-Fermi liquid behavior observed in these systems is due to the existence o
Griffiths phase close to a quantum critical point. The existence of this phase provides a unifi
picture of a large class of materials. We also propose new experiments that can test these id
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The observation of non-Fermi-liquid (NFL) expo
nents in the thermodynamic and transport properties
f-electron alloys has stimulated considerable interest
the study of these materials [1]. The alloys in which NF
behavior is observed fall into two categories: (1) Kond
hole systems, in which thef-electron atomssRd are
replaced by nonmagnetic metallic atomssMd according to
the formulaR12xMx, and (2) disordered ligand systems
in which the metallic atoms are substituted for a differe
metallic atom according to the formulaRsM1d12ysM2dy.
Notice that due to alloying these compounds have
high probability of being disordered. That disorder
indeed a very important factor in bringing about the NF
behavior in these compounds has been shown in rec
experiments [2]. This is in addition to the fact that mo
of these systems are close to a phase transition. Th
we claim that the NFL properties of these compounds a
a consequence of the competition between the intra
Kondo and the intersite Ruderman-Kittel-Kasuya-Yosid
(RKKY) interactions taking place in the midst of a
disordered environment. If disorder were not prese
there are two possibilities: the compound will hav
long-range magnetic order when the RKKY interactio
is sufficiently large compared with the Kondo interac
tion or the compound will be paramagnetic due to th
quenching of the magnetic moments of the rare ea
atoms. However, the experimental observations sh
that the NFL behavior generally appears between th
two phases [1]. Several proposals have been put forw
as the possible explanations for the NFL behavior.
possible scenario is based on single impurity mod
with particular symmetries such as the multichann
Kondo effect of magnetic [3] and electric origin [4,5]
Another possible scenario attributes the NFL behavior
proximity to a quantum critical point [6,7]. Recently, a
route to NFL behavior that emphasizes a disorder-driv
mechanism, known as “Kondo disorder,” has been su
gested [8,9]. All of these proposals have had part
success in explaining some of the experiments [1].
particular, conformal invariance scaling gives a goo
description of the dynamic susceptibilityx 00sv, T d and
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the electrical resistivity in UCu52xPdx [10], a Kondo
disorder model can explain the temperature dependen
of the electrical resistivity [9], and the phase diagram
of spin glass models is qualitatively similar to the on
observed in these alloys [7]. Nevertheless, there is
final word as to the origin of the NFL behavior in these
alloys. Here, we propose a framework that incorporat
what we believe are the essential aspects of the proble
disorder and the competition between RKKY and Kond
effect. In this framework the presence of disorder lead
to the coexistence of a metallic (paramagnetic) pha
with a granular magnetic phase. We show that this
coexistence phase is equivalent to theGriffiths phase
of dilute magnetic systems [11]. In our scenario, w
have two electronic fluids: one of them is quenche
by the Kondo interaction, behaving as a Fermi liquid
and the other is dominated by the RKKY interaction
leading to ordered regions of two-level systems. W
have, therefore, an inhomogeneous environment which
brought about by disorder. This scenario is reminisce
of the one found in compensated doped semicondu
tors (Si:P, Ge:Sb) [12–14]. In these systems, disord
leads to local density fluctuations which result in th
formation of magnetic moments. The Griffiths phase
characterized by the formation of rare strongly couple
magnetic clusters which have large susceptibilities.
this phase the thermodynamic functions show essent
singularities with strong effects at low temperatures. A
these low temperatures, clusters of interacting magne
moments can be thought of as “giant” spins which ca
tunnel over classically forbidden regions. In the Griffith
phase magnetic clusters withN spins have a relaxation
time which is given by [15] (we use units such tha
h̄ ­ kB ­ 1)

tR ­ v21
0 eNz , (1)

wherev0 is an attempt frequency andz is a characteristic
parameter that we discuss below. Because of clus
formation in the paramagnetic phase of these system
we have the following predictions for the thermodynami
© 1998 The American Physical Society 3531
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functions:

g ; CV yT ~ fxsT dgav ~ T211l,

fxnlsT dgav ~ T231l,

fxLsvd00gav ~ v211l tanhsvyT d ,

T21
1 svd ~ v221lT tanhsvyT d ,

dxsT dyxsT d ~ T2ly2, (2)

where f· · ·gav means average over disorder.CV is the
specific heat,xsT d is the static susceptibility,xnlsT d
is the nonlinear static susceptibility,xLsvd is the local
frequency dependent susceptibility,1yT1 is the NMR
relaxation rate, anddxsT d is the mean square deviation o
the susceptibility due to the distribution of susceptibilitie
in the system [16]. Herel ­ 2z 21 lnscd, where c
denotes the density of the spins. The Griffiths pha
is characterized byl , 1 so that the susceptibilities
diverge at zero temperature. We propose that Griffit
singularities dominate the physics of the system at lo
temperatures leading to NFL behavior. Let us note he
that power-law behaviors forg and x have also been
obtained by other researchers using different approac
[10,13,14]. Notice that the logarithmic behavior observe
in some NFL compounds [1] can as well be fitte
by small power laws (l ø 1). Also, it follows from
(2) that NFL systems should havepositively divergent
nonlinear susceptibilities (l , 3). Indeed, U0.9Th0.1Be13
shows a tendency to a positively divergent susceptibil
[17], in contrast to the usual negative divergence
the paramagnetic susceptibility of UBe13. Systems like
UCu52yPdy show even stronger divergent behavior an
can be considered “deep” inside of the Griffiths phas
Recent neutron scattering experiments show that
imaginary part of the susceptibility, the specific heat, an
the static susceptibility can be exactly fitted by the resu
(2) with l ­ 2y3 [18]. To compare this result with NMR
andmSR, we calculated the variation of the Knight shif
dKyK ~ dxyx, for the same material [8]. Our result is
shown in Fig. 1 forl ­ 2y3.

The agreement between theory and experiment is v
good. Our predictions are robust in the sense thatall the re-
sults in (2) have to be self-consistent. Moreover, we ha
a definite prediction for the NMR relaxation rate1yT1svd,
which should be largely frequency dependent. We al
predict that under pressure the exponentl should change
inside of the Griffiths phase [19]. It would be interestin
to plot the logarithmic derivative of the susceptibility (and
or specific heat) as a function of temperature and pressu
lsT , Pd ­ 1 1 ≠ ln xsT , Pdy≠ ln T , for various NFL sys-
tems to verify our predictions. The main characteristi
of f-electron systems studied here are interplay betwe
RKKY and Kondo effects, magnetic anisotropy, and di
order due to alloying. It is well known thatf-electron sys-
tems are characterized by their strong magnetic propert
This magnetism arises from the crystal field interactio
and the strong spin-orbit coupling; in some of these m
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FIG. 1. Mean square deviation of the Knight shift as
function of temperature given in (2). Diamonds: Experimen
for UCu4Pd from Ref. [7].

terials, the largef-electronic clouds lead to an anisotrop
comparable in magnitude to the exchange energy. In
dition to this ion anisotropy, one expects a Dzyaloshinsk
Moriya (DM) exchange interaction [20] generated by th
spin-orbit coupling. This type of interaction is forbidde
only in highly symmetric situations which are not com
monly realized in alloys with very complex unit cells [21
That this is the case, it can be seen from the coexiste
of weak parasitic ferromagnetism within the antiferroma
netic phase in some materials such asR-CrO3 systems
[22]. We believe that this DM interaction accounts fo
the recent neutron scattering data in the NFL compou
CeCu62yAuy [23]. Consequently the RKKY and Kondo
interactions will be strongly anisotropic in thef-electron
systems. The simplest Hamiltonian that describes the s
ation above is the anisotropic Kondo model

H ­ He 1
X
n

"
Jz

nSz
nsz

n 1
J'

n

2
sS1

n s2
n 1 S2

n s1
n d

#
, (3)

where the sum is over all theR atoms with spin
Sn. He is the conduction electron Hamiltonian tha
can be obtained from band structure calculations, a
sa

n ­
P

s,s0 cy
n,st

a
s,s0cn,s0 with a ­ x, y, z is the con-

duction electron spin (ta are Pauli matrices). The main
difference between Kondo hole and disordered liga
systems is the alloying process. In the Kondo hole t
magnetic atom is replaced which leads to a reduction
the number of magnetic moments. Moreover, the sub
tute atom has a different size from the originalR atom
which will lead to local changes in the lattice structur
In disordered ligand systems the lattice spacing is a
affected by the substitution of the ligand atoms. As
well known, hybridization matrix elements between th
conduction band and thef-electron system are exponen
tially sensitive to changes such as the type of lattice a
characteristics of the substitute atom, and this will in tu
affect the local values of the exchange constants in (
Therefore, alloying leads to a situation where local var
tions result in parts of the sample having larger exchan
interactions than others. The magnetism in these syst
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can be understood by looking at the effective interactio
between theR atoms due to the conduction electrons
The magnetic Hamiltonian in second order perturbatio
theory relative to the free electron problem is

HM ø
X

n,m,a,b

Sa
n Ga,b

n,m Sb
m , (4)

where Ga,b
n,m is the RKKY interaction mediated by the

conduction electrons. In the limit of large anisotropy
Jz ¿ J', we have Gz,z , O fsJzd2yEFg where EF is
the Fermi energy. In a cleand-dimensional system this
interaction decays like1yrd. In the presence of disorder,
however, it decays likee2ry, where , is the spin-orbit
diffusion length [24]. Since we are dealing with disordere
systems the effective interactionGa,b

n,m is actually short
ranged. The important point here is that the orderin
temperature of the magnetic system,Tc, is of order of
the exchange interaction, that is,TcsJzd ~ G ~ sJzd2yEF .
The critical ordering temperature is not the only energ
scale in the problem since the Kondo effect can take pla
and quench the magnetic moment.

Consider, for instance, a particular position in the sy
tem, say,n ­ M, where, due to the alloying,Jz

M is much
larger than average. For simplicity we disregard all th
other sites and look at the physics at this particular sit
The Hamiltonian of interest can be written asHM ­ H0 1

HI , where

H0 ­ He 1 Jz
MSz

n

°
nM," 2 nM, #

¢
,

HI ­
J'

M

2
sS1

Ms2
M 1 S2

Ms1
Md , (5)

and in the limit of large anisotropy we treatHI as a pertur-
bation ofH0. Observe thatH0 can be easily diagonalized
in theSz basis. If theR atom is in a state such thatSz is
* (+) the energy of the system is minimized by making
bound state with an electron with spin# ( "), respectively.
The bound state energy is just the Kondo temperature

TK sMd ­ We21yNs0dJz
M , (6)

where Ns0d is the renormalized density of states at th
Fermi energy, andW is the conduction electron bandwidth.
This situation is similar to the approach to NFL behavio
which takes into account a disordered distribution o
Kondo temperatures [8,9]. The ground state ofH0 is
doubly degenerate corresponding to the spin configuratio
j *, #l and j + , "l. Application of first order perturbation
theory inHI shows that the singlet statej * , #l 2 j + , "l is
lower in energy than the triplet statej * , #l 1 j + , "l by an
amountJ'

M . In this caseHI acts as atransverse fieldand
lifts the degeneracy of the bound state. In fact, using th
bosonized version [25] of Hamiltonian (5) and mapping th
problem into the dissipative two-level system [26], we ca
show that tracing out the electrons of the problem resu
in a Sx

M operator for theR atoms spin degrees of freedom
[27]. The competition between the RKKY interaction and
the Kondo effect can be understood in terms of the tw
relevant energy scales, that is,TK sM, Jzd andTcsJzd: (i) If
n
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TK sMd ¿ Tc as we lower the temperature of the system
below TK sMd the local magnetic moment is quenched
and order is inhibited; and (ii) ifTK sMd ø Tc and the
temperature is lowered belowTc there is local magnetic
order and the Kondo effect is suppressed [28]. If we no
take into account the magnetic moments that are left
interact via RKKY, as in (4), together with the sites which
are quenched by the Kondo effect, as in (5), we see th
the magnetism of the original problem in the limit where
Jz

n ¿ J'
n is described by

Heff ø
X
ki,jl

Gi,jSz
i Sz

j 1
X

i

tiS
x
i , (7)

where the bracketski, jl imply nearest neighbor coupling.
Notice that Gi,j , O ssssJzd2yEFddd and ti , O sJ'd are
random (but intercorrelated) variables dependent on t
alloying and lattice structure. Thus we have mappe
our problem into the random Ising model in a random
transverse magnetic field [15]. The phase diagram of th
model follows: at small doping the RKKY interaction
dominates and the system can order magnetically (t
ordered phase can be antiferromagnetic, ferromagnetic,
spin glass [7] depending if the mean value ofGi,j in (7) is
positive, negative, or null, respectively). With increasing
doping the quantum fluctuations grow due to the Kond
effect and the bulk critical temperature decreases un
it vanishes for some critical value of doping. At this
quantum critical point the system percolates. For larg
values of doping, inside of the paramagnetic phase, on
finite clusters of magnetic atoms can be found. Amon
these clusters there are some rare ones which are la
and strongly coupled. Within these clusters the spin
behave coherently as a giant spin or a magnetic gra
We can describe the cluster in terms of a “classica
degree of freedom which can be parametrized by Eul
anglessu, fd. The classical energy,Esu, fd, will have
at least two minima due to the original degeneracy of th
magnetic ground state. In the simplest of cases,Esu, fd
can be written in terms of a classical spin withX-easy
axis andXY -easy plane,

Esu, fd ­ Ns2e' 1 ejj sin2fd sin2u , (8)

wheree' . ejj . 0 are the anisotropy energies perpen
dicular and parallel to the easy axis, respectively. The
energies depend on the microscopic coupling constants
(7). Observe that the energy has two minima atspy2, 0d
andspy2, pd with an energy barrier between them. When
the temperature is higher than the barrier height the clu
ter is thermally activated and behaves classically. A
lower temperatures the cluster can undergo quantum tu
neling between the two minima. Using standard instan
tons methods [29], we can calculate the parameters th
appear in (1):

v0 ­ 2
p

ejje' ,

z ø ln

√
1 1

p
ejjye'

1 2
p

ejjye'

!
. (9)
3533
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Notice that in the absence of anisotropy (ejj ­ e') tun-
neling cannot occur (z ! ` and tR ! `), as expected.
Then, the low energy physics for a clusterV with N spins
reduces to the Hamiltonian

HVsNd ­ DVsNdt
x , (10)

where DVsNd ­ 1ytR is the tunneling energy and is
given in (1), and it can be related to the anisotrop
energies by (9). Using (10) and averaging over clus
with different sizes, we arrive at the predictions give
in (2) [16]. In conclusion, we propose that the NFL
behavior observed inf-electron systems can be attribute
to the existence of Griffiths singularities close to th
quantum critical point. These singularities have the
origin on the interplay between the RKKY and Kond
interactions in the presence of magnetic anisotropy a
disorder. These conclusions have similarities with tho
discussed recently by Sachdev [30]. We were also a
to map the disordered Kondo lattice problem into th
random Ising model in a random transverse magne
field where disorder is correlated. In the paramagne
phase of this Ising model the physics of clusters can
understood in terms of the quantum tunneling of intrins
magnetic grains which are described by a classical s
model. At low temperatures the spin degrees of freedo
of a magnetic grain can tunnel over classically forbidde
regions and at finite temperatures they can be therma
activated. At very low temperatures the problem reduc
to a two-level system problem which, when appropriate
averaged over disorder, leads to the Griffiths singulariti
and to the predictions in (2). This Griffiths phase wi
depend strongly on the type of lattice structure and val
of the local microscopic exchange constants. This wou
explain why systems like CeCu62yAuy have to be fine-
tuned for NFL behavior to be observed, while other
like Th12xUxPd3, have large regions of NFL behavior
It is indeed possible, as in 1D systems [15], that Griffith
behavior can extend over large regions of doping [31].
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D. Huse, M. B. Maple, P. Nozières, H. Rieger, an
P. Young for illuminating discussions. A. H. C. N. ac
knowledges support from the A. P. Sloan Foundation a
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Note added.—After this paper was completed, experi
mental indications of possible Griffiths phase behavi
have been reported [32].
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