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The isotropic limit of spin systems with orbital degeneracy has global SU(4) symmetry. On many
lattices, the ground state does not possess long-range order, which may explain the observed spin
properties of LiNiO2. In the SU(4) Néel-ordered state, spin-spin correlations can be antiferromagne
between two neighboring sites with parallel magnetic moments. [S0031-9007(98)07416-X]
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In many transitional metal oxides, the electron config
uration on the metal ions has orbital degeneracy in ad
tion to spin degeneracy. In these systems, the sign a
magnitude of the spin-spin couplings depend on the orbi
occupancy. This may result in interesting magnetic pro
erties of the Mott insulating phase, and is believed to b
relevant to unusual properties of many vanadium, titanium
manganese, and nickel oxides [1–12]. It may be also re
vant to the quasi-one-dimensional tetrahis-dimethylamin
ethylene (TDAE)-C60 [13], and to artificial quantum dot
arrays [14]. Orbitals are much more difficult to measur
in experiments than spins. Recent successful measurem
of orbitals using a reflection technique in x ray [15] ha
opened a new avenue in the study of orbitals in spin sy
tems. The Hamiltonian describing spins  1y2 systems
with a twofold orbital degeneracy (isospint  1y2) was
derived by Castellaniet al. [2]. The Hamiltonian is gener-
ally rotationally symmetric in$s space, but not in$t space.
The anisotropy of the latter is due to Hund’s rule and th
anisotropy in orbital wave functions.

In this Letter we study a simplified Hamiltonian, Eq. (1)
which has SU(4) symmetry. The insight learned from th
higher symmetric model should shed light on our unde
standing of more realistic systems. The model provides
new possibility for spin liquid ground states in higher di
mensions. For the square lattice, using the fermion me
field theory, we find the flavor liquid state to be stabl
against flavor or generalized spin density wave formatio
By comparing the energies of long-ranged ordered sta
to short-ranged ones on the triangular lattice, we arg
the ground state is likely to be a resonant plaquette flav
liquid. In the SU(4) Néel ordered state, the spin-spin corr
lations can be antiferromagnetic (AF) between two neig
boring sites withparallel magnetic moments.

The simplest AF quantum spin-1y2 system with
twofold degenerate orbitals (t-1y2) and rotational invari-
ance in both$s and $t spaces is given by [5]

H 
X
ki,jl

s2$si ? $sj 1 1y2d s2 $ti ? $tj 1 1y2d , (1)

wherekijl is the nearest neighbor (nn) pairs. Apparently
(1) has SUs2d 3 SUs2d symmetry, representing rotationa
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invariance in both spin and orbital spaces, and a
interchange symmetry between spins and orbitals. As
will see, the full symmetry of (1) is actually the highe
symmetry group SU(4), which unifies the spin and orbit
degrees of freedom. An intuitive way to see the SU(
symmetry is to rewrite (1) as

H  s1y4d
X
ki,jl

0@ 15X
g1

A
g
i A

g
j 1 1

1A , (2)

whereAg  2sa , 2ta , 4satb for a, b  x, y, z. Ag can
be considered as the 15 generators of the SU(4) gro
[13]. The symmetry can be examined in terms of the mo
standard generators of group theory. The Hamiltonian
acts on a Hilbert space of four basis states at each s
Choosing these asjsz , tzl, we label them as

j1l  j1y2, 1y2l, j2l  j 2 1y2, 1y2l ,

j3l  j1y2, 21y2l, j4l  j 2 1y2, 21y2l .
(3)

These basis states form a fundamental representation
SU(4). The conventional SU(4) generatorsSn

m act on
a basis statejml according toSn

mjml  dn,mjml. The
SU(4) algebra is given byfSn

m, Sl
kg  dn,kSl

m 2 dm,lS
n
k .

In terms of electron operators,Sn
msid  c

y
i,mci,n, where

ci,m is the annihilation operator of an electron at sitei and
statejml. The operators$s and $t can be expressed in term
of Sn

m. For example,2sz 
P

m1,3sSm
m 2 Sm11

m11d, and
s1 

P
m1,3 Sm11

m . The expressions for$t are similar.
In terms ofSn

m, (1) becomes

H 
X
ki,jl

Sn
msidSm

n s jd . (4)

The repeated indicesn, m are summed in Eq. (4) and
hereafter. It is clear from (4) thatH has global SU(4)
invariance.

Equation (1), or equivalently (4), gives the effectiv
Hamiltonian for the corresponding Hubbard model in th
largeU-limit and at 1y4 filling. Equation (4) is equivalent
to the model studied by Pokrovskii and Uimin [16]
and to one of a class of models that has been solv
by Sutherland in one dimension (1D) [17]. This mod
© 1998 The American Physical Society 3527
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was also studied by Arovas and Auerbach in connecti
with the quasi-one-dimensonal TDAE-C60, and recently
by Yamashitaet al. [18].

We remark that the AF SU(4) model here is differen
from the SUsNd model studied using the largeN expan-
sion method in [19] and in [20]. These authors consider
the AF SUsNd model on bipartite lattices, where the two
sublattices have conjugate representations with respec
each other (“quarks” and “antiquarks”). In the presen
model, all of the sites have the same representation, wh
is not self-conjugate.

To get insight on the physical properties, we first con
sider systems with a few sites. SinceH has global SU(4)
invariance, the eigenstates are given by irreducible re
resentations of SU(4). In Fig. 1, we show the Youn
tableaux for two- and four-site systems. In the two-si
system, the lower energy (e  21) states are sixfold de-
generate (total spins  1 and total orbitalt  0 or s  0
andt  1), and higher energy (e  0) states are tenfold
degenerate (s  t  1 or both 0). In the four-site sys-
tem, the ground state is a unique SU(4) singletjSGLl,
which is rotationally invariant under the SU(4) generatorX

i

A
g
i jSGLl  0 . (5)

In terms of Sn
m, the singlet satisfies

P
ifSn

msid 2

dmny4g jSGLl  0. A SU(4) singlet is a singlet of
spin, orbital, and the orbital-spin crossing operato
Ua,b  4satb , and is a generalization of the SU(2
singlet of spin only systems. The energy of the SU(4
singlet of the four-site is found to be2Nb , with Nb

the number of pairskijl in (1). Hence,Nb  4 for a
four-site ring,Nb  3 for an open chain, andNb  6 for
a tetrahedron. It is interesting to note that the energy
each bond in the four-site system iseb  21, the best
energy a single bond can have. This would be difficu
to understand from the conventional valence bond pictu
for spin only systems, and again indicates the differen
between (1) and spin only models including the four-si
plaquette resonating-valence-bond state recently discus
in the literature [21]. In terms of the fermion operator
cim, the SU(4) singlet can be written as

6 10

1 15(3) 20(2) 45(3) 35

(a)

(b)

FIG. 1. Young tableaux for SU(4) model (1); (a) in a two
site system, and (b) in a four-site system. The dimensional
of representations is indicated for each tableau, and inside
parenthesis is the number of distinct representation.
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jSGLl 
1

p
24

X
hijklj

c
y
i1c

y
j2c

y
k3c

y
l4j0l , (6)

where the sum is over all of the permutations of the fo
sitesijkl  1234.

The SUsNd model in 1D was solved by Sutherland [17
Affleck and Lieb [22] generalized the Lieb-Wu theorem
[23] that the ground state is either gapless or has brok
translational symmetry (dimerization) for SU(2) spin-1y2
chain to all 1y2-integerS, and to SUsNd chain. Their
theorem for SU(4) can be extended to 2D in the same w
as for the SU(2) case, but requires a long narrow strip
discussed by Affleck [24].

The SU(4) symmetry identified for model (1) has in
teresting consequences. Provided there is no symm
breaking, it follows from the symmetry that the thermo
dynamic correlation functions, denoted byk. . .l,

ksa
i sa

j l  kta
i ta

j l  k4sa
i t

b
i sa

j t
b
j l  wij , (7)

where wij is a function of i and j, independent of the
indices a and b  x, y, z. This symmetry has been
observed in quantum Monte Carlo calculations of the 1
system [25]. For translational invariant systems, the
correlation is related to the energy per bond,eb ,

w 
1

15

µ
eb 2

1
4

∂
. (8)

The nature of the ground state of (1) is of great potent
interest. There have been numerous theoretical activi
since the discovery of high temperature superconductiv
to find possible spin liquid ground states in two or thre
dimensions. The additional orbital degrees of freedo
provide a new possibility for such states. Since there a
four equivalentsingle site statesjml in (1) in comparison
with two states in the spin only systems, we expe
quantum fluctuations to be stronger, making it mo
difficult to establish long-range order, hence, favorin
flavor liquid states.

To illustrate this, we consider model (1) on a square la
tice and carry out a fermion mean field theory. In fermio
representation,H  2

P
kijl x

y
ijxij 1 const, wherexij P4

m1 c
y
i,mcj,m. The model is similar to the 2D SUsNd

t-J model of Affleck and Marston [26], with the impor-
tant difference that here one fermion per site implies th
each flavor of fermions is 1y4 filled, while in their study
each flavor of fermions is close to 1y2 filled, the case
relevant to cuprates. We consider a uniform and re
mean field bond amplitudex  kxijl, and examine its
stability against a generalized spin density wave (SDW
state with four sublatticesBn , n  1, 2, 3, 4. The uniform
mean field state describes a flavor liquid. For the spin-1y2
Heisenberg model, the uniform state was found unsta
against thesp , pd SDW state [27]. However, the insta
bility is related to the nesting Fermi surface at 1y2 filling.
We expect the uniform state to become stable against
SDW state at fillings sufficiently far away from 1y2, as in
the present case. Minimizing the mean field energy w
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respect to the generalized SDW order parameterm, de-
fined so that the mean occupation number for the flav
m at site i , Bn, kcy

i,mci,ml  s1 2 mdy4 1 mdn,m, we
find that the uniform bond state is stable against the SD
Thus, the mean field theory suggests the ground state
(1) on the square lattice is disordered. This flavor diso
dered state is gapless within mean field theory. Howev
the 1y4 filled uniform mean field state is unstable again
the commensurate flux phase of fluxhcy4e per plaquette
[28,29]. The flux phase is also a flavor liquid, but has
gap and, hence, also a finite correlation length. The la
of long-range order is also suggested by considering
classical limit of (1) [30]. The classical limit of (1) in
both square and triangular lattices are not frustrated, a
the classical ground state is the same as the ground s
of the corresponding Ising model:

HIsing 
X
ki,jl

s2sz
i sz

j 1 1y2d s2tz
i tz

j 1 1y2d ,

which is identical to the four-component AF Potts mod
[31]. On the square lattice, this model has macroscop
ground state degeneracy, and is expected to be disorde
even atT  0 [32]. This expectation has been confirme
numerically [33].

Energetics also points to a disordered ground state.
consider the model on the triangular lattice. The A
Heisenberg spin-1y2 system on the triangular lattice is
believed to order in a three-sublattice1200 structure [34].
With orbital degeneracy, such a spin ordering is no long
favored. In Fig. 2, we compare the estimated energies
various long-range ordered states, including the classi
SU(4) Néel state [the same as the Ising-like Néel sta
for both triangular and square lattices (see Ref. [30]
the orbital polarized spin ordered state, and a valen
bond state, with the SU(4) singlet plaquette solid sta
Unlike the spin only problem, where the classical Né
state and the valence bond solid state are degenerate,
the plaquette state has much lower energy than all othe
Since the plaquette state can resonate to further lower
energy (and becomes a flavor liquid), we speculate t
ground state to be a resonant plaquette state with neit
spin nor orbital long range order.

It is interesting to note that a spin liquid state wit
twofold orbital degeneracy may have already been realiz
in the best samples of LiNiO2. The compound shows
ferromagnetic spin-spin correlation at high temperatu
but the measurements of magnetic susceptibility, spec
heat, muon spin rotationmSR, and NMR at low tem-
perature show no long-range ordering in spins, and t
mSR also shows that Ni spins remain fluctuating even
20 mK [6,35]. The NMR and specific heat measuremen
have ruled out the possibility of the spin glass phase [3
These evidences strongly indicate a spin liquid grou
state. In that material, a formal Ni31 ion has spins 
1y2 and a twofoldeg orbital degeneracy. The former
is supported from the magnetic susceptibility at hig
temperatures, and the latter is implied from the absence
or
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(d)(c)

ε=0

ε=-1/12

ε=0.142

ε=-13/48

FIG. 2. Average energy per bonde of (1) for various states
for the triangular lattice. (a) Classical four-sublattice SU(4
Néel state, with each flavor shown by its orbital (dashe
arrow) and spin (solid arrow) state. (b) State with orbita
“ferromagnetic” and spin AF. In this case, Eq. (1) is reduce
to H 

P
ki,jls2$si ? $sj 1 1y2d. e is deduced from Ref. [34].

(c) Valence bond state. Each double line represents a two-s
valence bond of orbital singlet and spin triplet. Note the spi
long-range order. (d) Plaquette state. Each plaquette (link
by four thick lines) represents a four-site SU(4) singlet.

the Jahn-Teller distortion in the NiO6 structure [6]. The
Ni ions form layered triangular-lattices, separated by tw
oxygen and one Li layer, so that the interlayer couplin
is weak. The basic physics can be described by a sp
1y2 system with twofold orbital degeneracy. We believe
the orbital degeneracy is responsible for the observed sp
liquid properties, and Eq. (1) may serve as a simple mod
to illustrate the role of the orbital degeneracy.

The actual system in LiNiO2 has anisotropic terms
due to the Hund’s rule and the anisotropy of the orbita
wave functions, reducing the symmetry to just spin
SU(2) symmetry. In the strong Hund’s rule coupling
limit, all of the spins are parallel while the orbitals
will arrange themselves appropriately to have the lowe
energy, and the system is ferromagnetic. However, sin
the ground state most likely has a gap in the SU(4) limi
it should be stable and remain disordered below a critic
Hund’s coupling. We believe the Hund’s rule coupling in
LiNiO 2 is below (but close to) the critical value, so tha
although the spin-spin correlations are ferromagnetic
indicated by the high temperature susceptibility, the low
temperature physics can still be qualitatively described b
the ground state of the SU(4) limit in that it is a spin
liquid. It will be very interesting to experimentally further
justify the spin liquid nature of the compound.

We now turn to the ordered states where the SU(4
symmetry is spontaneously broken. There are many wa
to break SU(4), and here we discuss the generalized fo
sublattice Néel state such as that shown in Fig. 2a. T
remaining symmetry isUs1d 3 Us1d 3 Us1d. The nn
correlation function can have very unusual properties
states with symmetry breaking. Consider, for example
the four-sublattice Néel state. Let the two nn sitesi
andj belong to the two sublattices withksz

i l  ksz
j l $ 0.
3529
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In spin only systems, this would imply a ferromagneti
coupling and the correlationwsszd ; ksz

i sz
j l . 0. In the

presence of the orbital degeneracy, the situation can
different. Let us start with the disordered state, whe
wsszd , 0 from (8). Provided the transition is continuous
this implies thatwsszd will remain negative at the transition
point, or close to it on the ordered side of the transitio
Therefore the system can haveantiparallelspin correlation
while both spins haveparallel magnetic moments.

Such a broken symmetry state also supports ve
unusual generalized spin wave or flavor wave excitation
The usual linearized semiclassical spin wave approa
[36] can be generalized to the SU(4) case. Assuming
four-sublattice ordered ground state in 2D systems su
as in Fig. 2a. We find all of the flavor waves to be 1D
in nature in spite of the 2D ordering pattern. While thi
behavior is a consequence of SU(4) symmetry, and if t
Hamiltonian contains terms that break this symmetry (e.
due to orbital anisotropy), 2D flavor waves will in genera
be observed; the flavor waves will remain quasi-1D-like
the deviation from the SU(4) limit is weak. The enhance
quantum fluctuations due to reduced dimensionality of th
excitations may also provide a mechanism of disorderin
the ground state, in further support of our mean fie
theory result that the ground state of the SU(4) model (
is a flavor liquid. The details will be the subject of a late
publication. The unusual magnetic properties describ
above can be tested by neutron scattering.

In summary, we have examined the isotropic limit o
spin systems with orbital degeneracy, and showed t
ground states do not have long-range order in many 2
lattices. Our study may serve as a simple theory
illustrate the role of the orbital degeneracy responsib
for the experimentally observed spin liquid properties i
LiNiO 2.
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