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Superinsulator Phase of Two-Dimensional Superconductors
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Using path-integral quantum Monte Carlo we study the low-temperature phase diagram of a two-
dimensional superconductor within a phenomenological model, where vortices have a finite mass
and move in a dissipative environment modeled by a Caldeira-Leggett term. The quantum vortex
liquid at high magnetic fields exhibits superfluidity and thus corresponds soparinsulatingphase
which is characterized by a nonlinear voltage-current law for an infinite system in the absence of
pinning. This superinsulating phase is shifted to higher magnetic fields in the presence of dissipation.
[S0031-9007(98)07418-3]

PACS numbers: 74.60.Ge, 74.76.—w

Quantum fluctuations of vortices play an important roletion in the presence of strong disorder. We will show
for the low-temperature physics of two-dimensional (2D)numerically that at finite temperature the superinsulator
superconductors. It has been established that dissipatigives way to a classical vortex liquid via a Kosterlitz-
[1], inertial [2,3], or Hall-type [4] zero point motion is Thouless (KT) transition. In the presence of dissipation
able to melt the vortex lattice at sufficiently high magneticthis phase transition is shifted to higher magnetic fields
fields and gives way to a quantum vortex liquid phasepossibly giving rise to an intermediate nonsuperfluid vor-
in principle at7 = 0. In the presence of disorder this tex liquid phase af" = 0.
melting transition is a continuous one and corresponds In the nondissipative case the vortex system is de-
to the localization or crystallization of Cooper pairs in scribed by the Euclidean Lagrangian
the theory of the superconductor-insulator transition [5,6]. m dr; \2
However, for a systewithout disorderthe melting of the L = — Z(—) - To z In(lry, — x;D), Q)
vortex lattice is discontinuous if2 + 1) dimensions [3]. 2 G\dr k>1

In this Letter, using path-integral quantum Monte Carlowhere r;(r) are the vortex positionsy is the vortex
(QMC), we will study a phenomenological model wheremass, andr,, controls the strength of the logarithmic
the vortices have a finite mass and move in a dissipativiyteractions. We assume the system to be embedded
environment, which is modeled by a Caldeira-Leggetin a neutralizing background which corresponds to the
term. Both vortex mass and dissipation are assumed tBresence of a uniform external magnetic fidld= ®yo
originate from electronic contributions while the vortices 5o that the long-range interaction in Eq. (1) is well defined
themselves are considered as bosons. For the simulatioggen for periodic boundary conditions. Hegeis the
we focus on the situation where the Magnus force is zerggrtex density, andb, is the flux quantum.r;(r) obeys
which is appropriate for the case of granular systemgeriodic boundary conditions in imaginary time that
or Josephson junction arrays (JJA) where experimentgcludes a bosonic exchange of the particles.
suggest that the transverse force is very small [7]. The Finjte-temperature QMC simulations have been per-
effect of a weak Magnus force will then be discussedigrmed for systems with up to 128 time slices aMd=
afterwards. 16, 28, and 36 particles on a grid 856 X 222 sites in a

In a thin film superconductor at high magnetic fieldsrectangular periodic box which was commensurable with
vortices effectively interact logarithmically. So the ques-a triangular vortex lattice. A bisection algorithm was used
tion arises whether the vortices can form a superfluid o{yhere several particles are updated in several imaginary
not. We will show using QMC that a 2D system of loga- time slices simultaneously in order to allow for cutting
rlthm|Ca”y interacting partides indeed exhibits SUperﬂU'and reconnection of the paths [9] The Superﬂuid den-
idity at low temperatures and high densities even in thejty o, was then obtained from the distribution of winding

presence of dissipation [8]. This means that the quannumbersw; (i = x, y) around the periodic cell by [10]
tum vortex liquid actually corresponds to saperinsu- 12

lating phase in which an infinitesimal current will cause g _ m—z’ (W), 2
an infinite voltage in the absence of pinning effects in e BH"N

analogy with sliding charge density waves. This superinwhere L; is the periodic box length in theé direction,
sulating phase exhibits a nonlinear voltage-current lavand B is the inverse temperature. For the lowest-
with a nonuniversal exponent and is different from thetemperature data reported in this work typically about
insulating Cooper pair glass phase in Fisher's [5] treat10° sweeps were needed to equilibrate the winding

ment of the field-tuned superconductor-insulator transinumber moves. Equilibration was checked by carefully
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monitoring the distribution of¥; which can be fitted by a energy scale of the logarithmic interaction of dual vor-
Gaussian at lowW'. In the following we use dimensionless tices is given byl', = 27 /%@ /m, the transition tempera-
variables, where the temperatufeis given in units of ture thus scales witlB. Because of the fundamental
Ty, and the magnetic field® is given in units ofBy =  duality between vortices and charges [13] the dual vortices
(mTo®o)/ (/3 h3). are actually related to the Cooper pair degrees of freedom
The phase diagram of the model (1) is shown inin the system as will be discussed below.
Fig. 1a. It consists of three phases: a superconducting Following Ceperley and Pollock [14] further numeri-
vortex solid phase at low densities and temperatures, eal evidence for the existence of a KT transition can
classical vortex liquid (VL) at high temperatures, and abe obtained by performing a finite-size analysis that
guantum vortex liquid (QVL) at high densities and low explicitly invokes the KT recursion relations [15] which
temperatures. The vortex solid thermally melts via aare integrated up to the system radilug2. There are
KT transition mediated by the unbinding of dislocation only two independent fit parameters for all numerical data
pairs which takes place dfxt = 0.0071 [11] and is involved in this procedure: the dual vortex core energy
approximately independent of the magnetic fi@ld At  E, and the dual vortex radiug. The resulting fits are
low temperatures quantum fluctuations melt the vortexhe solid curves in Figs. 2a and 2b. Figure 2b shows
solid via a discontinuous transition at the melting fielddata forN =16, 28, 36, and also extrapolatedNo= <.
By = 0.0077 [2] which is approximately independent of From this the KT-transition temperature is obtained as
the temperature [3]. In order to check our numericalTkr = 1.451h%0/m, whereEy = 6.49%%*¢ /m, andd =
algorithm we measured the internal energy at variou$.634¢ ~'/2. Interestingly it is observed that the core
fields and low temperature and also estimafeg by  size d scales with the vortex spacing™'/? which is a
calculating the Bragg-peak intensity. The results wereonsequence of the logarithmic interactions which provide
found to be in good quantitative agreement with the zerao additional length scale.
temperature results reported in Ref. [2]. In order to interpret these numerical results we note
The inset of Fig. 1a shows the superfluid fractmn’o  that the vortex superfluid actually should be considered
as a function of the magnetic fiel8 at T = 0.005 as as a charged superfluid where the flux quantur®,
obtained in our simulations. At the quantum melting plays the role of a “charge” and the “flux quantum” of
transition g;/¢ jumps from zero to one which quan- the dual vortices is given bge. In a homogeneous
titatively reproduces the result of Nordborg and Blat-superconductor the corresponding gauge field related
ter [12] and shows that the QVL actually is a vortexto the 2D superfluid density of Cooper pairs V X a =
superfluid withg, = ¢. In the following we will fo-  2en,, which gives rise to the Magnus force acting on
cus on the transition from the QVL phase to the VL the vortices [16]. To be consistent with the assumption
phase. The behavior of the superfluid fraction is showrof a zero transverse force in a granular system we
in Fig. 2a whereg,/p is plotted as a function of the therefore suppose that, is replaced by the density of
temperaturel’ for different magnetic field$. It is seen fluctuating charge$n; on the superconducting islands,
that all data collapse onto one single curve when plotV X a = 2eén,, which is a usual assumption in the
ted against the scaling variab®/B. This scaling be- context of granular superconductors or JJA’'s [17]. Static
havior can be understood with a KT-type unbinding offluctuations of the gauge field can approximately be
topological (vortex-antivortex) excitations (which we will included by a contribution of A/4¢?) (V X a)? to the
call dual vortices) in the vortex superfluid. Since the free energy of the vortex superfluid, where is the
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FIG. 1. (B-T) phase diagram of the vortex system in a 2D FIG. 2. Superfluid fractiong,/¢: (a) As a function of the
superconductor (belowB.;). The inset shows the jump in scaling variableT /B for the magnetic fields8 = 0.03, 0.04,
the superfluid density at the quantum melting transition at0.08, and 0.12, and a 28-particle system. (b)BAt 0.04 as
By = 0.0077 (arrow). (a) Zero Magnus force. (b) Weak a function of T for systems with 16, 28, and 36 particles and
Magnus force. extrapolated for an infinite system.
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strength of the &) interaction between the Cooper pairs Wheatley [22] to study the statistics of holons coupled
[18]. The numerical simulations then correspond to theo the background of spinons in the context of high-
case of strong repulsionA = », where én; decays T. superconductivity. With regard to superfluidity there
logarithmically around a dual vortex. For finitd the is one essential assumption in using Eq. (4) to model
vortex-superfluid current flowing around the dual vorticesa dissipative environment. The coupling to independent
is screened on the length = (2Am/h%0)"/2. In the  harmonic oscillator heat baths cannot exactly be valid for
following we assume that this screening length is muchndistinguishable particles. Following [22] we therefore
larger than the dual vortex core side assume that dependencies between separate heat baths
Let us discuss the dynamics of the vortex superfluid innduced by bosonic exchange of the vortices can be
the caseA = «. Since dual vortex excitations carry a neglected.
charge=2e the separation of dual vortex-antivortex pairs We again computed the superfluid fraction which is
leads to an electric current. However, in an infinite shown in Fig. 3 forB = 0.04, 0.08, andn = 0.01, 0.02,
system this process requires an infinite amount of energywherey is given in unitsyy = 7mTy/k. It is seen that
when the electric fieldE is zero, while for a nonzero dissipation leads to a shift of the KT transition to lower
electric field the energy barrier is finite. It is well known temperatures and, more surprisingly, to the suppression
[19] that for T < Tkr, this type of dynamics leads to a of superfluidity at 7 = 0. This reentrance behavior
nonlinear voltage-current law with nonuniversal exponentcan be understood by the contribution of the Caldeira-
/7! Leggett term (4) to the action of vortices involved in
E~ J. B a particle exchange, which can be described in terms

Equation (3) explicitly shows that the vortex-superfluid ©f & temperature-dependent effective mass,= m +
phase actually is @uperinsulatingphase with infinite B/in(In2/m). For the bare vortex-superfluid density
resistivity even at nonzero temperature. In a realistics (Unrenormalized by dual vortex-antivortex pairs) we
system finite-size effects as well as a finite screenin?_heremre make the ansa@, = ¢(m/m"), which is a
length A will restore a finite resistivityp ~ e£/7 for inear function of T at low temperatures. Since the
small currents where the Arrhenius factor®/” controls ~ interaction of dual vortices scales wit@,, the KT
the number of dual vortex-antivortex pairs in the system{ransition is then shifted to lower temperatur@r =
and the KT transition will be broadened. Txr — (nh/m)(In2/m). Using this ansatz and taking
Let us now briefly consider the case where a weakhe core energy to be&y = E,0,/¢ we perform the
Magnus force is present. This means that the vortice§ame finite-size fit as above which yields the solid curves
on average pick up a phas¢ = zwnggg + 0 when in Fig. 3 and shows a remarkable coincidence with the
encircling a superconducting grain of ar&a[20]. Here humerical data. Again the same values frandd as
2¢n? is the charge density of Cooper pairs contributing tobefore were used so that no new fit parameters appear
the transverse force which plays the role of a fictitioushere. The dashed curves in Fig. 3 show the superfluid
external magnetic field. By analogy with an ordinary
superconductor we therefore expect that dual vortices
will form an Abrikosov lattice. Thermal excitations and
dynamics of this dual vortex lattice will then be governed 1.2
by the unbinding ofdislocationpairs and the KT melting
temperature is given byxr ~ 0.06/>¢ /m. This again 1
is a superinsulating phase described by the nonlinear
voltage-current law (3), wherdy, is replaced by the <08
interaction energy of dislocations. The corresponding \C,D
phase diagram is schematically shown in Fig. 1b. Q06
In what follows we will discuss the influence of
dissipation, which is treated approximately by adding a
Caldeira-Leggett term (time delay) [21]
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to the Lagrangian (1). Equation (4) phenomenologically [

describes the coupling of each single vortex to a separate ) ) _

harmonic oscillator heat bath which is characterized by G- 3- Superfluid fractiong,/¢ as a function of7 for
frictional constantn. This model is appropriate to LonZere dissipationN = 28): B = 0.04, n = 001 (); B =

a Irictional constantn. 1his pprop 0.04, 7 = 0.02 (A); and B = 0.08, 5 = 0.01 (00). Dashed

describe dissipation originating from normal currentscyrves: Finite-size extrapolation 16 = . Inset: 8-T) phase

in the vortex cores [1] and has also been used byliagram (schematically).
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