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We study transport in a class of physical systems possessing two conserved chiral charges. We
describe a relation between universality of transport properties of such systems and the chiral anomaly.
We show that the nonvanishing of a current expectation value implies the presence of gapless modes,
in analogy to the Goldstone theorem. Our main tool is a new formula expressing currents in terms of
anomalous commutators. Universality of conductance arises as a natural consequence of the nonrenor-
malization of anomalies. To illustrate our formalism we examine transport properties of a quantum
wire in 1 + 1 dimensions and of massless QED in a background magnetic fidld+inl dimensions.
[S0031-9007(98)07366-9]
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Transport properties of a physical system are usuallgonclusions, we examine the transport properties of a
linked to complicated dynamical processes (such as imguantum wire inl + 1 dimensions and of massless QED
purity scattering, interparticle interactions, etc.) and, inin a background magnetic field thh+ 1 dimensions.
general, are not universal. Systems not exhibiting any The main tool we are using is a new formula (5) which
dissipative processes may, however, exhibit some univerelates the dc current to the anomalous commutators.
sal transport coefficients that are insensitive to changes ilm order to obtain this formula we use the methods of
the microscopic constitution of the system. When oneequilibrium statistical mechanics—an approach that has
encounters a universal transport coefficient one shouldroven to be effective at the description of some transport
look for a physical principle explaining its universality. phenomena in solids [4—6]. The only condition imposed
In the quantum Hall effect, for instance, the universalityon the dynamics of the system is the existence of two
of the Hall conductance can be linked to gauge invarianceommuting conserved charg@s and Qg,

[1]. Another example is superconductivity, where it is the _ _ _

spontaneous breaking of the U(1) gauge symmetry [2] that (3,001 = [H.0s] = 0. [Q1.0r] =0. (1)
leads to the vanishing of the longitudinal resistivity and toHere #{ is the Hamiltonian of the theory. We denote the
the Meissner effect. In both examples the conductivity isconserved Noether currents corresponding to the charges
universal with amazing accuracy, which is the result ofQ. andQx by ji andjz. In the examples below, and

the existence of a gap in the spectrum of bulk chargedr are chiral currents corresponding to the fermions of
excitations. Note, however, that an incompressible quaneft and right chirality (inl + 1 orin3 + 1 dimensions).

tum Hall system with an edge must support a branch oﬂ'he observable we are interested in is the electric current
compressible edge states, which play an essential role iit = e(ji. + jr) (e is the elementary electric charge)
understanding Hall quantization. Henceforth, we will refer to the differencg’ = e(j; —

In this paper we consider a class of physical systemg;R) as the axial current.
having no gap for charged excitations, yet exhibiting Physically, the conservation of the charg@s and Qg
universal transport properties. At low energies thesaneans that there is no scattering of the particles of left
systems are assumed to possessdmmamuting conserved chirality to the right ones and vice versa.
chiral chargesQ; and Qr corresponding to the particles  The conserved charg€y andQr are conjugate to the
of left and right chirality. Although our method is not chemical potentialg:; and ug of the external reservoirs
limited to the electric transport, we consider the electricof the particles of left and right chirality. The thermal
conductance as a representative example. The latter #ate of the system connected to the external reservoirs is
defined asG = 1/V, wherel is the electric current and given by the density matrix,
eV = up — ug is the difference between the chemical _ —BH, —
potentialsu; and ug of the reservoirs of the particles of W€ . }[" H o+ w1+ urQr.
left and right chirality. We show that the conductance (2)

G is independent of the dynamics of the system as longnd its transport properties are describedelyilibrium
as the charge®; and Qx are conserved. The principle statistical mechanics.

that protects the universality is the nonrenormalization of The continuity equation for the electric currejit =
chiral anomalies by interactions [3]. To illustrate our (p, j) readsaﬂjé‘ = 0. Ind + 1 dimensions it can be
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solved in terms of an antisymmetric tensor fiéldf rank trace on the rhs of (4), because, after regularizat@n,
d—1), jé‘ = et Vg, by,...,, Wheree#” ¢ js Levi-  andQg do no longer commute witIﬂ-[,L.

Civita's antisymmetric tensor. Note that the fiebdis Finally, formula (4) yields the universal result

not a physical observable of the system. A sliift> je

b + h, where the tensoh satisfiese*” "4, h,,.,, = (i), = _E<[/J«LQL + urQr.a(x)),

0, does not change the physical quantitigs and can

be interpreted as a gauge transformation. This gauge _ i _ / d. 0

freedom results in the field having only d physical 24 (o = p) | &y (LJaly)a@) b ()

degrees of freedom. One may choose a specific gaugeormula (5) expresses the electric current in terms of the
for the potentialb which allows one to explicitly express anomalous commutator of the time component of the axial
the physical degrees of freedom of the fiéldn terms of  current with the fielca solving the continuity equation.
ad-vector fielda: Next, we want to show how nontrivial physical conclu-
p=eV-a, j= —eda. (3)  sions can be arrived at by applying formula (5) to concrete

Physical systems. Our first example is a one-dimensional
Interacting electron liquid (quantum wire). It had long
been understood [4] that the conducta6te= 1/V (where
I is the electric current an¥ is the voltage drop) of a

: - _ pure noninteracting quasi-one-dimensional electron system
G {9t must be quantized in units a&2/h [4]; i.e.,

2

In the equilibrium state characterized by the chemica
potentialsw; andug, the expectation value of the current
is given by

ie
= = (3 a0)Du G=2n%, n=012,..., (6)
ie __, _gH wheree is the elementary electric charge ani Planck’s
5 Z, Trie “[Hy al0)] constant. The factor of 2 on the rhs of (6) originates in
) the spin of electrons, the factor af corresponds to the
_ e Z,' Tr{e Pl 01 + urQr.a)}, number of filled energy bands of transversal quantization
h which form one-dimensional conducting channels.
(4) It was far from clear, however, how the electron-

where Z, = Tr3,. Note that, in the quantum theory electron interaction influenced the conductance. For a
of thermal equilibrium states (see, e.g., [7]), imaginary-long time it was believed that repulsive electron-electron
time Green functions in the grand-canonical ensemblélteractions should suppress the conductance. Recent ex-
are constructed in terms of the “Hamiltonian?{,,.  Periments [9] indicate that the suppression of conductance
However, the physical time evolution of operators in theca@nnot be caused by electron-electron interactions alone,
Heisenberg picture is determined by the Hamiltonfh ~ but is due to the presence of disorder coupling left- to
For operators which commute with conserved chargedight-movers and depends on the disorder potential and on
the time evolutions determined by, and by J{  témperature. o
coincide. But for general operators, such as creation and It was argued in [10] that the nonrenormalization of
annihilation operators, the true time evolution is the oneconductance by electron-electron interactions was due to
determined by# . the strong influence of the boundary conditions imposed
At first sight both terms on the right-hand side (rhs) ofby the reservoirs. This idea was supported by calculating
(4) must vanish by cyclicity of the trace, becaus€, and the current-current correlation function of a model one-
uLQL + mrQr commute with exp-B#H,). However, dimensional system where the reservoirs were modeled
we are not allowed to use the formula[drb]c = Dy turning off electron-electron interactions outside some
Tr(abc) — Tr(bac), because the products of three operadinite region of the system. Conductance quantization
tors define unbounded operators which are not of trac# quantum wires and quantum Hall systems has been

class [8]. This problem is a manifestation of zero-modecompared in [6]. _ ' _
divergences. We shall show that a pure quantum wire (with no im-

A more careful analysis shows that only the first tracePurity backscattering) satisfies the dynamical requirement
on the rhs of (4) vanishes. Indeed, if we regularize thd1) and the universality of conductance quantization, as
system by modifying the Hamiltoniaf in such a way €xpressed in Eq. (6), follows directly from formula (5).
that a small spectral gap above the ground state enerd(}i)r simplicity, we shall consider spinless fermions and
is opened then, for a system in a finite bax,f*» is  drop the factor of 2 in (6). , o
of trace class, and the appropriately smeared fi¢ld is The Hamiltonian of a general one-dimensional interact-
bounded by some function of,,. Then the first trace on iNg fermionic system is given by
the left-hand side (lhs) of (4) vanishes, by cyclicity of the ) . .
trace. But this argumermannotbe applied to the second H = ’ﬁ”Ff dx(roxpr = Yrdxihr) + Hin, (7)

3504



VOLUME 81, NUMBER 16 PHYSICAL REVIEW LETTERS 19 O©TOBER 1998

where ¢ and ¢ are left- and right-moving electrons This concludes the derivation of the universal conduc-
of the noninteracting model, and{;, is the interac- tance formula (6).

tion Hamiltonian. It includes higher order terms ih Next, we test formula (5) on 8 (+ 1)-dimensional ex-
corresponding to electron-electron scattering as well aample of massless Dirac fermions coupled to the electro-
quadratic terms responsible for nonlinearity of disper-magnetic field. This system is described by the Lagrangian
sion. We refer to modes created By and iy as left- | .

and right-movers in spite of the fact that dynamically L=—-—F!F,, + zpzcrf(ihaM — —AM>¢L
they are not necessarily quasiparticles of the interacting 4 ¢

model. One can introduce densities of left- and right-

w M. _ i
moversy; ;. = ny, yryr = ng. The total charge den- + Rk (lﬁa" c A")"//R’ (14)
sity is given byp = e(_nL. + ng). The expression for the where ol = (I,oy), 0k = (I, —o,). Chiral currents
electric current density in terms ofy;, and ¢ is not . . H, q s R i d
universal and depends on the particular formddf,;. ju = Yo, ¢ and jg = yro,dr are not conserve

If we assume that the junctions between the onebecause of the chiral anomaly. The conservation is

dimensional system and the electron reservoirs are adié(_ecovered upon adding a Chern-Simons term [12]:
batic, the conserved charges conjugate to the chemical ~u a?

7
potentials of the reservoirs are equal to the integrals of JLR = JLR = o555 "7 A, 0)\As (15)
ny andng: where « is the fine structure constant = ¢2/hic. The
0, = /dx ng, Or = ] dx ng . (8)  corresponding charges,
We assume that these charges commute with the interact- 0, = f a3x 59, Ox = / P70, (16)
ing Hamiltonian (7).
It is convenient to use one-dimensional bosonizatiorare conserved. Note that the currents introduced in (15)
formulas [11] for the Fermi fieldg, and g, are conserved, but fail to be gauge invariant. However, the
Y = e 2T, Yr = e>7ix (9) chargesD, andQr are not only conserved but also gauge
The bosonic fieldsp; and ¢ satisfy the commutation invariant. Thus we may mtroduce the chemical potentials
relations mr and ug canonically conjugate to these conserved
; charges. A situation wherg is different from ug is
[dLr(x), dLr(y)] = iﬁ elx — ), encountered in some models of the early Universe [13].

Our goal is to compute the expectation value of the

i electric currentj in the background electromagnetic field
[¢L(X), d’R()’)] - E s (10) AM app'ylng formu'a (5)
wheree(x —y)=1,x>y; ande(x — y) = —1,x < ie

y. The densities of left- and right-moving particles ac- (G0 = Y (ke = pR) QL = Or.a¥)Da. (17)
quire the formn, = d9,¢1, ng = d,¢g. The conserved
chargeD; andQr have the following commutation rela-
tions with the bosonic fields:

The commutators of the densities of the left- and the right-
handed fermions are given by [12]

ia

i i 30 =0 - —
[Qr.dL@]=5—.  [Qr¢r(]=—5—. (A1) ULr@),jLe(] = 2777 adBrx)d(x — )], (18)
The electric charge density is then given by whereas the commutator of the left-handed and the
p = e(drdr + drdpr) = edra, (12) right-handed current is zero. HeB = €7%9;4; is the

. . magnetic field strength. The commutator of axial and
= + ¢dg. . N
wherea is the current potential = ¢ + ¢g. Wenote o charge densities is of the form

that all of the commutation relations and bosonization
rules listed above depend only on the kinematics of Fermi _ lea B
fields and are entirely independent of the dynamics of [Pa(x), pe(y)] 272 B8 (x = y)]. (19)

the system. Our only important dynamical assumptionassyming that the commutator f, with a is local, one
is the commutativity of the charges, and Qg with the 5 remove the divergence on the rhs of (19):
Hamiltonian of the interacting system.

Formulas (5) and (11) can now be combined to yield [ pa(x), ax(y)] = i—aBk(x)é(x — )+ ... 20)
the electrical conductance e 22 ’

. . here the... stand f t f the f f | of
G, = _l%<[,UvLQL + Ok, a0, where the... stand for a term of the form of a curl o

some vector field. Substituting (20) into (17) yields

= (e = me). (13) G = 5 (e = pe)B@). (21)

Th
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Note that only the first term on the rhs of (20) contributeswire. There is, in fact, no spontaneous symmetry
to the current. Another one drops out due to the integrabreaking in the one-dimensional transport problem. The
tion in (16). The result (21) can be easily verified on theaxial symmetry group of this system is U(1). When
example of a noninteracting system in a constant unifornone introduces an operater(x) solving the continuity
magnetic field, where the single-particle picture of [4] canequation, one decompactifies the axial group from U(1)
be implemented. Our derivation implies that formula (21)to R. Indeed, under the action of the symmetry gen-
holds true when the magnetic field is not necessarily unierator 9; — Qg the field a(x) is shifted by a constant,
form. In analogy to the previously considered quantum{Q; — Qg,a(x)] = i/a. The group U(1) has no rep-
wire, the formula for the dc current (21) is not affected byresentations of this type; a constant cannot be in the
interactions preserving charg@s andQy [3]. Coupling same multiplet as a nontrivial field. By introducing the
to the electromagnetic U(1) gauge field in (14) is an ex-unphysical fielda(x), we effectively replace U(1) by its
ample of such an interaction. covering groupR. Of course, it is not surprising to find
Our next goal is to exhibit a relation between thethat the expectation value of a constant is nonvanishing.
conductance formula (5) and the Goldstone theoremBut this fact is not related to any physical symmetry
Recall that the Goldstone theorem states that in a systebreaking. Note, that this situation is special for Abelian
with spontaneous symmetry breaking there is a masslesymmetry groups.
mode (Goldstone boson). At zero temperature the usual We thank J. Adams and J. Mickelsson for useful
proof proceeds as follows (see, e.g., [14]): assume thatiscussions.
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