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From Flutter to Tumble: Inertial Drag and Froude Similarity in Falling Paper
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In an experiment on thin flat strips falling through a fluid in a vertical cell, two fundament
motions are observed: side-to-side oscillation (flutter) and end-over-end rotation (tumble). At h
Reynolds number, the dimensionless similarity variable describing the dynamics is the Froude num
Fr, being the ratio of characteristic times for downward motion and pendular oscillations. T
transition from flutter to tumble occurs at Frc ­ 0.67 6 0.05. We propose a phenomenological model
including inertial drag and lift which reproduces this motion, and directly yields the Froude similari
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Not all falling objects travel straight downwards: a piec
of paper dropped from the table or a leaf as it flutte
to the ground are two common examples. This is d
primarily to the coupling of forward motion to latera
oscillations by the surrounding fluid [1–3]. The resultin
dynamics are relevant to systems ranging from aircr
stability [3,4] to rising bubbles [5]. The problem of falling
paper is rich in hydrodynamic effects, including lift, drag
vortex shedding, and stall, and has a history dating ba
to Maxwell, who noticed in 1854 that the combination o
gravity and lift results in a torque [6]. Despite subseque
theoretical work by Helmholtz, Kelvin, and others [1,3]
including a formal irrotational analysis due to Kirchhof
[1], a solution of the complete problem is impractica
and the correct description remains undetermined. T
extensive theoretical background has not been match
experimentally. Previous falling object experiments ha
been fully three dimensional [7–11], reporting fluttering
gyrating, or tumbling, but few quantitative specifics of th
dynamics were given. While it is clear that vortices a
shed simultaneous to the oscillations, it is unknown if th
vortices result from or cause the oscillations [12,13].

More recently, phenomenological models have succe
fully elicited qualitative aspects of the motion [14–18], a
though with some debate on the role of viscosity and t
existence of chaotic tumbling. However, these models
ther ignore the vortices by treating the flow as irrotationa
or assume a viscous drag, or omit drag altogether. S
prisingly, in almost 150 years, there is no experimenta
verified description for this rather basic phenomenon.

We present here a simple laboratory experiment on fl
strips dropped in a quasi-2D geometry [19]. Our expe
mental cell is a narrow fluid-filled glass aquarium, 60 c
in height and length and 0.8 cm wide, into which thi
strips made of various materials are dropped. The str
are constructed of plastic, brass, or steel, each with ab
the same thickness (0.1–0.2 cm) and width (0.75 cm), b
with a range of lengthsL. Using different materials al-
lows us to varyL and the massM independently, from
0031-9007y98y81(2)y345(4)$15.00
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1 to 32 cm and 1 to 7 g, respectively. We use three d
ferent fluids: water, a glycerolywater mixture (40:60 by
weight), and petroleum ether, with densitiesr of 1.00,
1.10, and 0.67 gycm3, and viscosities of 0.010, 0.036, an
0.003 P, respectively. Two thin stabilizing rings attache
to each side (typically of 1 mm diameter steel wire; s
inset of Fig. 2) keep the strip from turning over in th
third (narrow) dimension. The ring radiusR is chosen
so that its main effect is to increase the total mass [2
Grazing or sticking to the wall is rarely seen due to lu
brication layer effects. The motion of the strip is image
with a video camera, and recorded for later analysis.

We observe two fundamental motions: side-to-si
oscillation (flutter) and end-over-end rotation (tumble
shown in Fig. 1. By digitizing every frame, we obtain
the strip position vs time; the stabilizing rings are blac
and therefore not visible. In Fig. 2a we show the tim
variation of the angleQ that the strip makes with the
horizontal (see inset); it ranges between6Qmax. The
vertical velocityVy reaches its maximal downward valu
as Q approachesQmax (Fig. 2b), corresponding to the

FIG. 1. Collage of consecutive video fields (Dt ­ 0.02 sec)
for strips falling in water: (a)L ­ 5.1 cm, M ­ 2.9 g (Fr ­
0.37); (b) L ­ 4.1 cm, M ­ 2.7 g (Fr ­ 0.45); (c) L ­
2.0 cm, M ­ 1.4 g (Fr ­ 0.65); (d) L ­ 1.0 cm, M ­ 0.7 g
(Fr ­ 0.89).
© 1998 The American Physical Society 345
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FIG. 2. Measured dynamics of a falling strip (M ­ 2.0 g,

L ­ 3.0 cm, Fr ­ 0.53). (a) Angle Q vs time. The inset
shows the strip, the stabilizing rings and the angleQ. (b) Ver-
tical velocity Vy vs Q. (c) Horizontal velocityVx vs Q.

minimal drag of a small “angle of attack” [4]. AsQ
decreases so doesVy, which reaches its minimum not
at Q ­ 0, when the strip faces broadside into the flow
but at Q . 20±. A similar effect was observed in the
pioneering work of Eiffel [21]. The butterfly shape in
Fig. 2b indicates thatVy oscillates at half the period ofQ.
The horizontal velocityVx oscillates around zero with the
same period asQ (Fig. 2c); atQ . 20± Vx is maximum.

This description applies to all strips withQmax ,

90±. Beyond this value the strip tumbles end over en
(Fig. 1d). We therefore useQmax as the order parameter
for this transition. We then find that the control paramet
is given by the ratio of characteristic times for th
downward fall and the rotational flutter. For large enoug
velocities, the terminal downward velocity is determine
by gravity and the “form” or inertial dragFd ­ CrV 2S
[21], whereS is the cross-sectional area of the object,V is
the velocity, andC is a constant of the order of 1. For ou
strips the terminal velocity scale isU0 ­ sM 0gyrLwd1y2,
where M0 is the buoyancy corrected mass andw is
the width of the strip [22]. The downward motion is
characterized by the time scalety ­ LyU0. The pendular
motion of fluttering is characterized by the time scale of
buoyant pendulum:tp ­ sMLyM 0gd1y2. The ratio of the
two time scales is the Froude number
346
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In our experiments Fr varies from 0.02 to 1.0. A plot o
sinsQmaxd vs Fr is shown in Fig. 3a; all data collapse ont
a single curve given by sinsQmaxd ­ s1.50 6 0.03dFr.
The three fluids used differ in viscosity (factor of 10) an
density (factor of 0.6), but only the density as include
in Eq. (1) could account for the changes in sinsQmaxd.
The tumbling transition [sinsQmaxd . 1] occurs at a value
of Frc ­ 0.67 6 0.05. This corresponds to a pendulum
driven at resonance:ty . tp (Fr . 1) [23].

In general, the motion of the strips should also depe
on the Reynolds number Re­ rULyh, which for our
experiments ranges from about3 3 103 to 4 3 104. Our
scaling in terms of Fr, however, shows that the flutterin
is independent of viscosity. This result is in agreeme
with previous observations that, for high enough Re, t
motion is Re independent [7,13].

The role that Fr plays in our analysis is common t
systems which are controlled by the competition of a spe
of propagation and a dissipative speed [24], and in our ca
it provides a physically relevant equivalent to the scalin
first implied in [7]. It was first defined by Froude in 1874
as the similarity variable for surface ships [1,25,26], bein
the ratio of ship to wave speed. A more surprising examp
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FIG. 3. (a) The order parameter sinsQmaxd vs the control pa-
rameter Fr. (b) The velocity ratioUyU0 vs Fr. Fluids are wa-
ter (circles), petroleum ether (open squares), and wateryglycerol
(crossed squares). The straight lines are linear fits.
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of Fr similarity is the pendulum model of walking, which
accounts for the exchange between gravitational poten
and swinging kinetic energy of the leg during a forwar
stride [24]. The comparative analysis of gait for a wid
variety of animals [26,27] shows that the transition from
walking to running in bipeds, or to trotting in quadruped
occurs at Frc . 0.8 [27].

To verify our Fr scaling, we measure the average ve
tical downwards velocity:U ; 2kVyl. Plotting UyU0
vs Fr in Fig. 3b, we find that all points fall onto a sin
gle curve, given byUyU0 ­ s1.25 6 0.09dFr 1 s0.45 6

0.04d. Note thatU . U0 over the range of Fr in our
experiment.

For strips with Fr. Frc, we observe a continuous tum
bling rotation; for values just above Frc we also some-
times observe random reversals of the rotation directio
similar to what is observed in simulations [15,16]. How
ever, the length of the trajectories is insufficient to dete
mine if they are strictly chaotic [11].

We also directly measure the parallel (Fk) and per-
pendicular (F') drag force by towing the strips in each
direction with a known force, while restraining the flutter
ing. The drag force is indeed quadratic in velocity [21
Fk ­ 2AkrwLV 2 and F' ­ 2A'rwLV 2, with A' ­
4.1 6 0.1 andAk ­ 0.88 6 0.03. Our experimental con-
clusion that the relevant drag force is quadratic and n
linear in velocity constitutes a fundamental departure fro
existent models, in which drag terms originate from eith
viscosity [16] or an irrotational representation [1,18].

We therefore modify the model in [16] to include only
lift, gravity, and inertial drag. Although added mass ef
fects are surely present [1,15,18], our experiments indic
that they are not significant. The drag parallel and pe
pendicular to the strip isFk ­ 2AkrwLV 2 cossg 2 Qd
and F' ­ 2A'rwLV2 sinsg 2 Qd, whereg is the an-
gle of the velocity vectorsVx , Vyd from the positivex
axis, andV 2 ­ V 2

x 1 V 2
y . The rotational drag isFv ­

2AvrwL4v2, wherev is the angular velocity. These
replace the viscous forces in [16]; the lift force is th
steady state value given by the Kutta-Joukowsky the
rem [1,4,16], where the circulation depends on the v
locity, and thus can vary. From our simulations w
chooseAv ­ 0.0674, which fixes the tumbling transition
at Frc ­ 0.67.

Using U0 andtp to nondimensionalize our model, and
writing f ­ g 2 Q, the equations are

ÙVx ­
V 2

Fr

∑
A' sinf sinQ 2 Ak cosf cosQ

1 4pj sinfj cos

µ
g 6

p

2

∂∏
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Fr2
2 6pV 2 sins2fd; ÙQ ­ v .

Note that the Fr scaling is clearly evident in the equation
this arises from the dependence of both lift and drag o
V 2. The sign conventions ensure that the strip is alway
inside the right angle formed by the lift and velocity
vectors, and that rotation byp does not change the
equations. We emphasize that our equations are no
particular case of the potential flow solutions to Laplace’
equation [1,18], but the result of including the effects o
vortex shedding via inertial drag and variable circulation

Employing a standard Runge-Kutta integration schem
we obtain trajectories that are very close to the exper
mental ones, as shown in Fig. 4 for the parameters
Fig. 1b [28]. Just near Frc the model exhibits additional
frequencies and apparent chaotic behavior, similar to e
isting models [14–17]; these are not observed experime
tally. The coefficientAv affects not only the value of Frc

but also the smoothness of the curves; small differences
Av may explain qualitative differences in the trajectorie
(Fig. 1a–1c). A detailed comparison of the experimenta
and numerical trajectories shows that the model reproduc
the fluttering dynamics extremely well. A slight deviation
does occur at the turning points, whereQ changes rapidly.
This tendency towards apparently singular behavior grow
inversely withAv , and must also depend on the magnitud
of the lift coefficients. This effect points to the necessity
of explicitly treating the vortex shed at each turning poin
for example, by including another differential equation fo
the lift [12].

What are the dynamics of the surrounding fluid? Th
falling strip creates a zigzag wake by shedding vortice
synchronized with its fluttering oscillations, as shown b
alumina particle visualization in Fig. 5. A small whirl
develops behind the side which is swinging upwards, an
is shed when the angle reachesQmax. This attached
vortex may be a major factor in stabilizing the momen
driving rotation [13], and may also modify the lift [29].
An oscillating lift could drive the fluttering motion, since
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FIG. 4. Two collages of the simulation (see [28]), with Fr
corresponding to the data in Figs. 1(b) and 1(d). The strips a
shown everyDt ­ 0.4tp: (a) Fr ­ 0.45, L ­ 0.75 (flutter); (b)
Fr ­ 0.89, L ­ 0.19 (tumble).
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FIG. 5. Aluminum particle visualization of the flow behind a
fluttering strip:L ­ 4.1 cm, M ­ 2.7 g (Fr ­ 0.45).

vortex shedding produces an oscillating side thrust [1
A full treatment of these effects is lacking in ou
analysis.

Our experiment has shown that the transition fro
flutter to tumble is determined by the Froude numbe
with a velocity scale set by the inertial drag. The mod
motivated by these observations reproduces this transiti
and implies the Fr similarity. The vortices and the hig
Re flow around the strip are responsible for the inerti
drag, although they do not appear dynamically in o
model. Nonetheless, Fr adequately describes the gr
features of the motion. What remains experimenta
is to explorequantitatively the attached vortex, the lift
dynamics during flutter, and the dynamics of tumble.
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