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From Flutter to Tumble: Inertial Drag and Froude Similarity in Falling Paper
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In an experiment on thin flat strips falling through a fluid in a vertical cell, two fundamental
motions are observed: side-to-side oscillation (flutter) and end-over-end rotation (tumble). At high
Reynolds number, the dimensionless similarity variable describing the dynamics is the Froude number
Fr, being the ratio of characteristic times for downward motion and pendular oscillations. The
transition from flutter to tumble occurs at.F+= 0.67 = 0.05. We propose a phenomenological model
including inertial drag and lift which reproduces this motion, and directly yields the Froude similarity.
[S0031-9007(98)06387-X]

PACS numbers: 47.27.Vf, 03.40.Gc

Not all falling objects travel straight downwards: a piecel to 32 cm and 1 to 7 g, respectively. We use three dif-
of paper dropped from the table or a leaf as it fluttersferent fluids: water, a glycerglvater mixture 40:60 by
to the ground are two common examples. This is duaveight), and petroleum ether, with densitipsof 1.00,
primarily to the coupling of forward motion to lateral 1.10, and 0.67 f£m?, and viscosities of 0.010, 0.036, and
oscillations by the surrounding fluid [1-3]. The resulting 0.003 P, respectively. Two thin stabilizing rings attached
dynamics are relevant to systems ranging from aircrafto each side (typically of 1 mm diameter steel wire; see
stability [3,4] to rising bubbles [5]. The problem of falling inset of Fig. 2) keep the strip from turning over in the
paper is rich in hydrodynamic effects, including lift, drag, third (narrow) dimension. The ring radiu® is chosen
vortex shedding, and stall, and has a history dating backo that its main effect is to increase the total mass [20].
to Maxwell, who noticed in 1854 that the combination of Grazing or sticking to the wall is rarely seen due to lu-
gravity and lift results in a torque [6]. Despite subsequenbrication layer effects. The motion of the strip is imaged
theoretical work by Helmholtz, Kelvin, and others [1,3], with a video camera, and recorded for later analysis.
including a formal irrotational analysis due to Kirchhoff We observe two fundamental motions: side-to-side
[1], a solution of the complete problem is impractical, oscillation (flutter) and end-over-end rotation (tumble),
and the correct description remains undetermined. Thishown in Fig. 1. By digitizing every frame, we obtain
extensive theoretical background has not been matchdte strip position vs time; the stabilizing rings are black
experimentally. Previous falling object experiments haveand therefore not visible. In Fig. 2a we show the time
been fully three dimensional [7—11], reporting fluttering, variation of the angle® that the strip makes with the
gyrating, or tumbling, but few quantitative specifics of thehorizontal (see inset); it ranges betweer®.,,x. The
dynamics were given. While it is clear that vortices arevertical velocityV, reaches its maximal downward value
shed simultaneous to the oscillations, it is unknown if theas ® approache® .« (Fig. 2b), corresponding to the
vortices result from or cause the oscillations [12,13].

More recently, phenomenological models have successg
fully elicited qualitative aspects of the motion [14-18], al-
though with some debate on the role of viscosity and the
existence of chaotic tumbling. However, these models ei
ther ignore the vortices by treating the flow as irrotational,
or assume a viscous drag, or omit drag altogether. Su
prisingly, in almost 150 years, there is no experimentally
verified description for this rather basic phenomenon. <

We present here a simple laboratory experiment on flg ==
strips dropped in a quasi-2D geometry [19]. Our experi-|
mental cell is a narrow fluid-filled glass aquarium, 60 cm
in height and length and 0.8 cm wide, into which thin g
strips made of various materials are dropped. The strips ] ] ] ,
are constructed of plastic, brass, or steel, each with abo%'ﬂG- 1. Collage of consecutive video fielda«(= 0.02 sec)
the same thickness (0.1-0.2 cm) and width (0.75 cm) bu(f)Ir strips falling in water: ()L = 3.1 cm, M == 2.9 g (Fr =

. : - ; s ’ 37); (b) L=41cm, M =279 (Fr=045); (c) L=
with a range of lengthd.. Using different materials al- 20cm, M = 1.4 g (Fr=0.65); (d) L = 1.0cm, M = 0.7 g
lows us to varyL and the masd/ independently, from (Fr = 0.89).
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a) vt e a single curve given by sify,..) = (1.50 = 0.03)Fr.
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FIG. 2. Measured dynamics of a falling strip/(= 2.0 g,
L =3.0cm, Fr=10.53). (a) Angle ® vs time. The inset
shows the strip, the stabilizing rings and the angle (b) Ver-

The tumbling transition [sif®..x) > 1] occurs at a value
of Fr. = 0.67 = 0.05. This corresponds to a pendulum
driven at resonance, = 7, (Fr = 1) [23].

In general, the motion of the strips should also depend
on the Reynolds number Re pUL/n, which for our
experiments ranges from abdut< 10 to4 X 10*. Our
scaling in terms of Fr, however, shows that the fluttering
is independent of viscosity. This result is in agreement
with previous observations that, for high enough Re, the
motion is Re independent [7,13].

The role that Fr plays in our analysis is common to
systems which are controlled by the competition of a speed
of propagation and a dissipative speed [24], and in our case
it provides a physically relevant equivalent to the scaling
firstimplied in [7]. It was first defined by Froude in 1874
as the similarity variable for surface ships [1,25,26], being
the ratio of ship to wave speed. A more surprising example

tical velocity V, vs ®. (c) Horizontal velocityV, vs ©. . tumijle ' '
flutter

minimal drag of a small “angle of attack” [4]. A® ~ 081 1
decreases so dods,, which reaches its minimum not ® osl |
at ® = 0, when the strip faces broadside into the flow, c
but at ® = 20°. A similar effect was observed in the @ 04| _
pioneering work of Eiffel [21]. The butterfly shape in
Fig. 2b indicates tha¥, oscillates at half the period & . 021 a) 1
The horizontal velocity, oscillates around zero with the oL ® . . .
same period a® (Fig. 2c); at® = 20° V, is maximum. 0 0.2 0.4 0.6 0.8

This description applies to all strips with),,x < Fr
90°. Beyond this value the strip tumbles end over end 2 . . .
(Fig. 1d). We therefore us®.,,x as the order parameter
for this transition. We then find that the control parameter 15l i

is given by the ratio of characteristic times for the
downward fall and the rotational flutter. For large enough =)
velocities, the terminal downward velocity is determined

by gravity and the “form” or inertial drag’y, = CpV?>S
[21], whereS is the cross-sectional area of the objécis

the velocity, andC is a constant of the order of 1. For our

strips the terminal velocity scale i& = (M'g/pLw)'/?,
where M’ is the buoyancy corrected mass amd is
the width of the strip [22].
characterized by the time scalg = L/U,. The pendular

motion of fluttering is characterized by the time scale of g eter

buoyant pendulumt, = (ML/M'g)"/?. The ratio of the
two time scales is the Froude number
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FIG. 3. (a) The order parameter @) vs the control pa-
Fr. (b) The velocity ratit' /U, vs Fr. Fluids are wa-
ter (circles), petroleum ether (open squares), and igiyarerol

(crossed squares). The straight lines are linear fits.
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of Fr similarity is the pendulum model of walking, which D ag 2w?
accounts for the exchange between gravitational potential “ = —“« g2

and swinging kinetic energy of the leg during a forWardNote that the Fr scaling is clearly evident in the equations;

stride [24]. The comparative analysis of gait for a wide, .~ oo trom the dependence of both lift and drag on

variety of animals [26,27] shows that the transition frosz. The sign conventions ensure that the strip is always

walking to running in bipeds, or to trotting in quadrupeds,. : . .
occurs at Fr = 0.8 [27]. inside the right angle formed by the lift and velocity

To verify our Fr scaling, we measure the average Veryectors, and that rotation byr does not change the

tical downwards velocity:U = —(v,). Plotting U/Uq equations. We empha5|ze.that our equations are no’t a
— . , . particular case of the potential flow solutions to Laplace’s
vs Fr in Fig. 3b, we find that all points fall onto a sin- . . .
. _ equation [1,18], but the result of including the effects of
gle curve, given by /Uy = (1.25 = 0.09)Fr + (0.45 = . o . . ;
. vortex shedding via inertial drag and variable circulation.
0.04). Note thatU = U, over the range of Fr in our ; . )
experiment Employing a standard Runge-Kutta integration scheme,

For strips with Fr> Fr,, we observe a continuous tum- we obtain trajectories that are very close to the experi-

. o . mental ones, as shown in Fig. 4 for the parameters of
bling rotation; for values just above Fwe also some- _. o .

. ; .. Fig. 1b [28]. Just near Erthe model exhibits additional
times observe random reversals of the rotation directio

similar to what is observed in simulations [15,16]. How—?gfiﬂuenqglgesls Ff 4zipip;fj1.rir]1;sceh2(r):(;]ct;teglsg/éc;\r/,e(sjlne1)|(lagrti<r)n3<]-_
ever, the length of the trajectories is insufficient to deter-taII 9 The coefficienm’ affects not onlv the value gf Er
mine if they are strictly chaotic [11]. Y. @ y g

X but also the smoothness of the curves; small differences in
We also directly measure the parallefj and per- A, may explain qualitative differences in the trajectories
pendicular ) drag force by towing the strips in each /© y exp q J

direction with a known force, while restraining the flutter- ;?g'nt?n_elri?él ?aqeeégLfgsZ%rg\?vzr:ﬁg?tﬁg t:i;;ﬁi”:g%ﬁgs
ing. The drag force is indeed quadratic in velocity [21]: ) P

Fj = —AppwLV2 and F. = —A, pwLV2, with A, = the fluttering dynamics extremely well. A slight deviation

4.1 % 0.1 andAj = 0.88 = 0.03. Our experimental con- does occur at the turning points, whé&echanges rapidly.

clusion that the relevant drag force is quadratic and no}—hIS tendency towards apparently singular behavior grows

linear in velocity constitutes a fundamental departure fromlnversely withd,,, and must also depend on the magnitude

existent models, in which drag terms originate from eithermc the lift coefficients. This effect points to the necessity

viscosity [16] or an irrotational representation [1,18]. of explicitly treat_ing thg vortex shed. at each turning_ point,
We therefore modify the model in [16] to include only for example, by including another differential equation for

lift, gravity, andinertial drag. Although added mass ef- the lift [12].

. - What are the dynamics of the surrounding fluid? The
fects are surely present [1,15,18], our experiments mdlcatlealling strip creates a zigzag wake by shedding vortices
that they are not significant. The drag parallel and per-

pendicular to the strip i) = —AypwLV?cody — ©) synchronized with its fluttering oscillations, as shown by
_ > . alumina particle visualization in Fig. 5. A small whirl
andF, = —A, pwLV-sin(y — ©®), wherey is the an- : . D S
. - develops behind the side which is swinging upwards, and
gle of the velocity vector(V,,V,) from the positivex . 4
i s oo 2 . . i is shed when the angle reach@s,,x. This attached
axis, andv- = V: + V7. The rotational drag iF, = : ! o
42 v ) vortex may be a major factor in stabilizing the moment
—A,pwL*w*, where w is the angular velocity. These

replace the viscous forces in [16]; the lift force is thednvmg rotation [13], and may also modify the lift [29]

. An oscillating lift could drive the fluttering motion, since
steady state value given by the Kutta-Joukowsky theo- g g

rem [1,4,16], where the circulation depends on the ve-

— 67V2sin2¢); 0 =w.

locity, and thus can vary. From our simulations we 2
chooseAd,, = 0.0674, which fixes the tumbling transition w0 a) \7% -8 . , .
at Fr. = 0.67. I 1 b) A
Using U, and 7, to nondimensionalize our model, and -31{ 1 v PN
writing ¢ = y — 0, the equations are Y o /‘\/
. V2 L | ] LM 1
Ve = E[AL sing sin® — Aj cos¢ cos® .l | \—’.}\ o
19 18 -17 16 15
. T -34L i X
+ 47T|sm¢|cos<y + —)} \
2 s\ L
-1 0 1
2 X

. 174 . .
=-— +
Yy Fr [Al sing cos® + Ay cosé sin® FIG. 4. Two collages of the simulation (see [28]), with Fr
1 corresponding to the data in Figs. 1(b) and 1(d). The strips are
— 4ar|sing| sin(y + l)} _ = shown everyAt = 0.47,: (a) Fr= 0.45, L = 0.75 (flutter); (b)

2 Fr Fr = 0.89, L = 0.19 (tumble).
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