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Modulational Interaction of the Lower-Hybrid Waves with a Kinetic-Alfvén Mode
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Physics Department of UCSD, La Jolla, California 92093
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A system of equations describing the coupling and modulational interaction of kinetic Alfvén mode
with lower-hybrid waves is constructed and analyzed. A coupling mechanisms is created by the densi
modulation forced by Reynolds stresses of the lower-hybrid waves. The modulational instability
resulting from the coupling of the lower-hybrid and kinetic-Alfvén waves has been investigated.
The nonlinear evolution of the modulational instability leads to the formation of the magnetic-field-
aligned envelope soliton of Alfvén waves with typical transverse dimension of the order of the electron
skin depth, and with much shorter in wavelength lower-hybrid oscillations trapped inside the soliton.
[S0031-9007(98)07303-7]

PACS numbers: 94.20.Vv, 52.35.Sb
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A mechanism of transverse ion acceleration (TAI)
an important component of the magnetospheric physi
The mechanism provides injection in the magnetosphe
of the energetic heavy ions of the ionospheric origin (e.
energeticO1 ions). Rocket observations performed b
Kintner and his group revealed that the TAI phenom
non is localized in the narrow regions of the intensiv
lower-hybrid wave (LHW) activity located at the altitude
about 1000 km in the auroral ionosphere [1] with the fre
quencies close to the so-called lower-hybrid resonance
TAI events usually occur during periods of field aligne
electron bursts, which therefore can be identified as t
driver for the LHW [3]. Two mechanisms are consid
ered now as the most plausible explanation of the LH
excitation by the precipitated auroral electrons. They a
two-stream instability driven by Cherenkov resonance b
tween the lower-hybrid waves and the beam part of t
precipitated electrons energy distribution [4], and the s
called “fan” instability driven by anomalous Doppler reso
nance with the energetic tail of the precipitated electro
[5]. Observations described in Ref. [1] have shown th
regions of localization of the lower-hybrid waves and io
acceleration are thin field aligned filaments with the dime
sion across geomagnetic field on the order of the seve
hundred meters comparable for the ionospheric conditio
with the hot ion gyroradiusyTiyvci or the electron skin
depth cyvpe. These regions of localization are usuall
interpreted as the LH cavitons (see, e.g., [6]), and the
fore the above-described rocket experiments are the fi
clear demonstration of the self-modulational instability an
cavity formation for the LHW.

At first, a theoretical interpretation has been propos
that these observations result from the modulation
interaction of the LHW with the large-scale quasineutr
density perturbations similar to ion acoustic oscillation
(see, e.g., [7,8]). Modulational interaction causes t
short wavelength cascading of the LHW resulting in TA
due to ion resonant interaction with waves. Howeve
the typical transverse caviton size comparable with t
electron skin depth remained unexplained in this theory
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A new outlook on the picture of modulational interac-
tion has been initiated by the wave data from the recent
launched Freja satellite [9]. The data show a strong co
relation in the auroral energization regions between e
hancement in shorter wavelength and higher frequen
electrostatic LHW turbulence and Alfvén wave activity
In some cases the observed caviton structures are ide
fied as localizations of the kinetic Alfvén waves (KAW).

A kinetic Alfvén wave is created from obliqueskk ø kd
to the ambient magnetic field shear Alfvén wave when th
transverse frequency dispersion is important. In our ca
of an extremely lowb ø meymp plasma (b is the ratio
of the plasma kinetic pressure to the magnetic pressur
this dispersion is due to electron inertia, resulting in th
following dispersion law of KAW [10]:

v ­
kkyAr

1 1
k2

'c2

v2
pe

. (1)

The goal of this Letter is to show that the observe
solitary KAW structures can be produced by the Reynold
stresses exerted on a plasma by the lower hybrid or (clo
to them in nature) electrostatic whistler waves obeying th
following dispersion law:

v ­ vLH

√
1 2

v2
pe

k2c2 1 k2r2 1
mp

me

k2
k

k2

!1y2

. (2)

In this expression the second term in brackets d
termines a small electromagnetic correction to th
lower-hybrid frequency, the third term-short wavelength
dispersion which is due to thermal motion (k is the wave
number,r is an electron gyroradius), and the last term
is the frequency dispersion due to deviation from th
transverse direction of wave propagationkk ­ 0. All
corrections are small in comparison with unity, so Eq. (2
describes waves at the frequencies close to the low
hybrid resonancevLH. Reynolds stresses created by th
LHW result in the modulational interaction with KAW
and formation of fairly deep plasma density modulatio
s,10%d, in which a broadband electrostatic noise at th
© 1998 The American Physical Society 3415
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LH frequency,10 15 kHz is trapped. The threshold for
modulational instability is definitely below the observe
amplitudes of the LHW, and therefore, above describ
modulational interaction is an inalienable feature of th
auroral ionosphere.

As usual (see, e.g., [11]), components of the elect
and magnetic fields in KAW can be expressed through t
scalar potentialC and the longitudinal component of the
vector potential A:

Bz ­ B0, Bx ­
≠A
≠y

, By ­ 2
≠A
≠x

,

Ex ­ 2
≠Cp

≠x
, Ey ­ 2

≠C

≠y
, Ez ­ 2

≠C

≠z
2

1
c

≠A
≠t

.

(3)

It follows from Maxwell equations for curlB that a
deviation of Cp from C is a pure nonlinear effect due
to the curl of the nonlinear diamagnetic currentjD:

≠

≠t
≠2

≠x≠y
sC 2 Cpd ­

eB2
0

n0mic2

√
≠

≠y
jDx 2

≠

≠x
jDy

!
.

(4)
Here a diamagnetic currentj!D ­ 2ekdny!el, dn is an
envelope amplitude for the density variation in the LHW
with the fast time dependence at the lower hybrid fr
quency singled out:

dnLH ­
1
2

dnst, r!d exps2ivLHtd 1 c.c.

It can be expressed through the corresponding elect
static potentialw with the help of the following relation-
ship:

dn ­ 2
n0mec2

eB2
0

=2
'w ,

y!e ­
c

B2
0

B
!

0 3 =w is an envelope amplitude for the
electron drift velocity, and brackets denote averagin
over the fast times,v

21
LHd. Using relationships (3) it is

possible to rewrite transverse components of the Maxw
equations for curlB in the form of the following equation
coupling vector and scalar potential in the KAW:

≠

≠y

µ
≠C

≠t
1

B2
0

4pn0mpc
≠A
≠z

∂

­
me

4mp

c
B0

*
≠w

≠x
=2

'wp 1 c.c.

+
. (5)

In the KAW an electron field aligned motion is important
the velocity of this motion is determined by the following
equation:

me
≠uze

≠t
­

e
c

≠A
≠t

1 e
≠C

≠z

1
ec

iB0vLH

∑
s=wp 3 =dz

≠w

≠z
2 c.c.

∏
,

where we also included a nonlinear term describin
Reynolds stress created by electron field aligned motion
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the lower hybrid waves $ye ? =dyez . Then the longitudinal
component of the Maxwell equation gives the following
relationship couplingC andA in the kinetic Alfvén wave:

≠

≠t

∑
1 2

c2

v2
pe

=2
'

∏
A ­ 2c

≠

≠z

3

∑
C 1

c
4iB0vLH

s=wp 3 =wdz

#
. (6)

There are two nonlinear terms in Eqs. (5) and (6) drivin
modulational interaction of KAW with the lower hybrid
oscillations. A nonlinearity in Eq. (5) is produced by an
average component of the electron diamagnetic curren
in Eq. (6) it is due to the Reynolds stresses in the electro
field aligned motion. It is easy to see that input from
the first nonlinearity is small asmevLH

mpvA
(vA is the Alfvén

frequency), and we shall neglect it. Therefore, the fina
system of equations describing the nonlinear coupling o
the fast lower hybrid oscillations with the kinetic Alfvén
wave can be written as follows: An equation for the lowe
hybrid potential has the form (e.g., compare with [12]):

2
2i

vLH

≠

≠t
=2

'w 1
mp

me

≠2w

≠z2 1
v2

pe

c2 w 2 r2=4
'w

­ i
v2

pe

vcevLH

µ
='w 3 ='

h

n0

∂
z

. (7)

Here h

n0
is the relative plasma density variation in the

KAW, which can be expressed through the vector poten
tial of the wave with the help of the following relation-
ship:

≠

≠t
h

n0
­ 2

c
4pen0

≠

≠z
=2

'A . (8)

Finally, an equation for Alfvén wave vector potential is of
the form

≠2A
≠t2 2

c2

v2
pe

=2
'

≠2A
≠t2 2 y2

A
≠2A
≠z2

­ i
c2

4B0vLH
s=wp 3 =wdz , (9)

whereyA ­ B0y
p

4pn0mp is the Alfvén velocity.
Nonlinear coupling of the lower hybrid waves with

the kinetic Alfvén mode results in the modulational
instability. Small density depletions associated with th
initial KAW serve as the potential wells for the LH
oscillations. Trapping of these oscillations inside the
potential wells results in modulation of their intensity.
Because of modulation, Reynolds stresses exerted
plasma electrons by the LH mode are created. Und
their action wells are deepening, leading to stronge
modulation.

The initial stage of modulational instability can be de-
scribed using the standard procedure of the linear stabili
analysis. A test Alfvén wave with the vector potential in
a form of a plane wave at the frequencyv and with the
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wave vectork
!

is coupled with the main (pump) lower hybrid wave at the frequencyv0 and with the wave vectork
!

0,
and results in LH modulation by two satellites—redsv0 2 v, k

!
0 2 k

!
d and bluesv0 1 v, k

!
0 1 k

!
d. The dispersion

relation describing this process is of the following form:

v2

"
1 1

k2
'c2

v2
pe

#
­ k2

ky2
A

"
1 2

k2
'c2

4sv2
pe 1 v2

ced
E2

0

E2
TH

sk
!

3 k
!

0d2

k2k2
0

3

√
k2

sk
!

0 2 k
!

d2

1
D2 1 2vyvLH

1
k2

sk
!

0 1 k
!

d2

1
D1 2 2vyvLH

!#
. (10)
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The following notations are used in this equation:E0 ­
k0w0 is an electric field of the pump wave,ETH is a
typical electric field strength characterizing efficiency o
the modulational coupling:

E2
TH ­ 4pn0T

v2
ce

v2
pe

m2
e

m2
pb

­
v2

ce

v2
pe

B2
0

m2
e

m2
p

. (11)

Finally, D1, D2 are dimensionless frequency mismatche
D6 ­

v62v0

vLH
, between the frequencies of the LH sate

lites determined by Eq. (2) for the wave vectorsk
!

0 6 k
!

and that of the LH pump with a wave vectork
!

0.
For small amplitudes of the pump wave dispersio

equation (10) describes the parametric decay of a low
hybrid wave into another lower hybrid wave and KAW
Substituting into the dispersion equationv ­ vA 1 ´,
wherevA is an eigenfrequency of the kinetic Alfvén mod
and using a paremetric decay condition for frequencie
v6 ­ v0 6 vA, it is easy to obtain the following rela-
tionship for´ ø vLH:

´2
6 ­ 6

vAvLH

8
E2

0

E2
TH

sin2a
k4c2

sv2
pe 1 v2

ced sk
!

6 k
!

0d2
,

(12)
where a is an angle betweenk

!
and k

!
0 vectors. It

follows from this relationship that a parametric instabilit
s´2 , 0d is possible, as usual, only in the case of a re
satellite excitation. Equation (12) is valid only for sma
amplitudes of the pump, whenj´jyvA ø 1, or

E0 , ETH

q
vAyvLH ø ETH .

For pump wave amplitudes comparable withETH
coupling is stronger resulting in the so-called “modifie
decay instability” with the growth rate exceeding a
eigenfrequency of the Alfvén mode (e.g., see discuss
of a similar situation for the decay of Langmuir wave
in [12]). If we assume for simplicity that pump wave
is sufficiently short wavelengthk0 ¿ k and propagates
strictly perpendicular to the magnetic fieldsk0dk­0, then

D1 ­ D2 ­
k2

k

k2
0
, and dispersion equation (10) can b

written in a simpler form:

sv2 2 v2
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√
4v2

v
2
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!
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A DG , (13)
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It follows from a solution of this dispersion rela-
tion, that for sufficiently large amplitudes of a pump
wave, whenG . D, strong aperiodicsv2 , 0d instability
develops leading to the excitation of the kinetic Alfvén
mode from the LH pump.

It is also noteworthy that sinceD , vAyvLH ø 1,
both parametric and strong aperiodic instabilities ar
possible for the values of the pump amplitude belowETH.
The latter value for the typical conditions of the aurora
ionosphere ranges in the interval300 mVym 2 1 Vym.
Estimation of the magnetic field in the KAW can be easily
obtained from Eq. (9) for the vector potential. It follows
from this equation that a pump LHW with an amplitude
comparable withETH drives the magnetic field in the
kinetic Alfvén mode of the order

Bp ,
k'c
vpe

E2
0

B0

v2
pe

v2
ce

,
me

mp
B0 , s1 3d nT .

The relative modulation of the plasma density can b
estimated from Eq. (8) as follows:

h

n0
,

k2
'c2

v2
pe

µ
mp

me

∂3y2 E2
0

B2
0

, s3 10d% .

As a result of the nonlinear evolution of the described
modulational interaction, a two-dimensional soliton of the
kinetic Alfvén wave can be formed. The soliton travels
along the magnetic field with Alfvén speed, and acros
the field has the form of the localized dypole structure
For simplicity, we consider the case of the plane solito
geometry. In this case,

w ­ wsz 2 yAt, xd expfiskyy 2 ltdg ,

A ­ Asz 2 yAt, xd .
(14)

Equation (9) for the vector potential in this case can b
easily integrated to give the following relationship for the
magnetic field inside the soliton:

dA
dx

­ 2
v2

peky

4B0yAvLH
jwj2. (15)

We now consider a case where, in Eq. (7) for the
LH potential, it is possible to neglect the left-hand side
term with the longitudinal derivatives of the potential
describing a deviation from strictly transverse polarizatio
of the LH oscillations. Then, a form of traveling wave in
a field aligned direction remains arbitrary determined b
3417
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FIG. 1. Square of the amplitude of the lower hybrid potenti
(top) and the density variation (bottom) inside an Alfvé
soliton.

the initial conditions, while the solitary structure acros
magnetic field is a solution of the following differentia
equation:

d

√
d2

dj2 2
c2k2

y

v2
pe

!2

f 1
2l

vLH

d2f

dj2 2 af

­ bf
d2

dj2 f2, (16)

where the following dimensionless units and notations a
used:

f ­
ew

mey
2
A

, j ­
xvpe

c
, d ­

r2v2
pe

c2 ,

a ­
v2

pe

v2
pe 1 v2

ce
1

2l

vLH

k2
yc2

v2
pe

, b ­
k2

yc2

v2
ce

.

Assuming sufficiently smooth transverse structure w
typical size on the order of the electron skin depth,
is possible to omit a term with the fourth derivative
proportional tod. Then Eq. (16) has a first integral in
the form µ

2
l

vLH
1 bf2

∂µ
df

dj

∂2

­ 2
a
2

f2. (17)

The structure of the soliton is sketched in a Fig. 1. It is
solitary structure with the spike at its centersx ­ 0d. To
avoid this singularity it is necessary to take into accou
a term with the fourth derivative and a small coefficie
3418
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in front of it in Eq. (16). Thus, singularity inw would
be smoothed, forming a narrow region with the following
typical size and the maximum value of the electric field
in it:

Dx ø
s

r
c

vpe
, sExdmax ø ETH

s
c

vper
. (18)

The density structure within the soliton can be dete
mined with the help of Eqs. (8) and (15). It is of
the dypole sh . 0, h , 0d type, and also shown in a
figure.

In conclusion, we have demonstrated in the paper th
the lower hybrid wave activity observed in the aurora
ionosphere is subject to the modulational interaction wit
the kinetic Alfvén waves, as the result of which field
aligned solitary structures of KAW are formed.

This work has been partly supported by NSF Gran
No. ATM 9704193. Useful discussion with Professo
M. Goldman, and the help of Mr. T. Shy in preparation
of the manuscript are also acknowledged.

*E-mail address: vshapiro@ucsd.edu
[1] P. M. Kintner, J. Vago, S. Chesney, R. L. Arnoldy, K. A.

Lynch, C. J. Pollock, and T. E. Moore, Phys. Rev. Lett.68,
2448 (1992).

[2] The frequency of the lower-hybrid resonance isvLH ­
vppvcesv2

pe 1 v2
ced21y2, where vpe and vce are the

plasma frequency and gyrofrequency for electrons,vpp ­q
4pe2n0

mp
is the proton plasma frequency. In the multi-

species auroral plasma1mp
­

1
n0

P sn0da

ma
, summation here

is over all ion components,sn0da , ma are their densities
and particle masses, andn0 is the total density.

[3] R. L. Arnoldy, K. A. Lynch, P. M. Kintner, J. Vago,
S. Chesney, T. E. Moore, and C. J. Pollock, Geophys. Re
Lett. 19, 413 (1992).

[4] T. Chang and B. Coppi, Geophys. Res. Lett.8, 1253
(1981).

[5] Yu. A. Omelchenko, V. D. Shapiro, V. I. Schevchenko,
M. Ashour Abdalla, and D. Schriver, J. Gephys. Res.99,
596 (1994).

[6] T. Chang, Phys. Fluids B5, 2646 (1993).
[7] V. D. Shapiro, G. I. Soloviev, J. M. Dawson, and

R. Bingham, Phys. Plasmas2, 516 (1995).
[8] C. E. Seyler, J. Geophys. Res.99, 19 513 (1994).
[9] J.-E. Wahlund, P. Louarn, T. Chust, H. Fereudy, an

P. Holback, Geophys. Res. Lett.21, 1831 (1994).
[10] B. B. Kadomstev and O. P. Pogutze, Sov. Phys., JET

Lett. 39, 225 (1984).
[11] A. B. Mikhailovskii, Electromagnetic Instabilities of an

Inhomogeneous Plasma,(Institute of Physics Publishing,
Bristol, England, 1992).

[12] V. D. Shapiro and V. I. Shevchenko, inHandbook of
Plasma Physics, edited by R. N. Sudan and A. A. Galeev
(Elsevier Publishers, Amsterdam, 1984), Vol. 2, p. 122.


