
VOLUME 81, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 13 JULY 1998

tudied
rigid
those

quare
es for
Asymmetric Squares as an Attracting Set in Rayleigh-Bénard Convection
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Properties of asymmetric square convection in a horizontal fluid layer heated from below are s
numerically with a Galerkin method. Since the Boussinesq approximation is used and symmetric
boundaries are assumed, both types of asymmetric square convection—those with rising and
with descending motion in the center—are physically equivalent. It is shown that asymmetric s
convection becomes stable with respect to arbitrary three-dimensional infinitesimal disturbanc
Rayleigh numbers in excess of 3 to 4 times the critical value. [S0031-9007(98)06556-9]

PACS numbers: 47.20.Ky, 47.27.– i
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In the investigation of attracting manifolds of solution
describing convection in fluid layers heated from belo
the attention has been focused on two-dimensional ro
and solutions bifurcating from that manifold. It is wel
known that rolls represent the only stable form of con
vection at Rayleigh numbersR close to the critical value
Rc when the Boussinesq approximation can be assum
[1]. But at higher values of the control parameterR other
manifolds of stable solutions exist which may not be con
nected through bifurcations to the manifold of rolls. An
example of such a manifold of solutions is convectio
flows with hexagonal symmetry in their two manifesta
tions with either up- or downgoing motions in the cen
ter of the hexagonal cell. Assenheimer and Steinberg
have realized both types of hexagonal convection in
Rayleigh-Bénard experiment at values ofR in excess of
twice the critical value. Through a stability analysis [3] i
has later been established that these dual types of hexa
nal convection do indeed become stable in regions of t
Rayleigh-wave number space where they have been
served in the experiment. Because the Boussinesq
proximation was employed in the theoretical analysis th
results of the latter clearly demonstrate that the cause
the realization of the dual type of hexagons is quite di
ferent from the non-Boussinesq effects that lead to a pr
erence for either up or down hexagons near the critic
value ofR.

In this paper we intend to demonstrate that a simil
property holds for convection flows in the form of asym
metric squares. Asymmetric squares differ from the du
hexagons essentially only in that the hexagonal bounda
is replaced by a square boundary. Like hexagonal ce
asymmetric square convection cells, usually with risin
motion in the center, are observed in convection laye
with strong asymmetries with respect to the midplane a
for instance, in the case of fluids with strongly tempera
ture dependent viscosity [4] or in the case of Marango
convection [5]. For corresponding theoretical work se
[6] and [7]. By contrast the analysis of the present p
per focuses on the unexpected occurrence of asymme
squares in layers with symmetry about the midplane.
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Like the dual hexagons in a symmetric convectio
layer the asymmetric squares appear in two physica
equivalent forms which differ by the sign of the vertica
motion in the center of the cells. In the following we
shall first derive the basic equations and describe t
method of the numerical analysis. We then proceed to t
presentation of the results for selected Prandtl numbers

We consider a horizontal fluid layer of depthh with the
temperaturesT1 andT2 fixed at the upper and lower rigid
boundaries. Using the length scaleh, the time scaleh2yk

where k is the thermal diffusivity, and the temperature
scale T2 2 T1, we write the Boussinesq equations o
motion for the velocity vector$u and the heat equation
for the deviationu of the temperature from its static
distribution in the dimensionless form

P21

µ
≠

≠t
$u 1 $u ? = $u

∂
­ 2=p 1 $luR 1 =2 $u , (1a)

= ? $u ­ 0 , (1b)

≠

≠t
u 1 $u ? =u ­ $l ? $u 1 =2u , (1c)

where $l is the vertical unit vector opposite to the direction
of gravity,p is the deviation of the pressure from its stati
value, and where the Rayleigh numberR and the Prandtl
numberP are defined by

R ­
gsT2 2 T1dgh3

nk
, P ­

n

k
. (2)

g, g, and n denote the acceleration of gravity, the coef
ficient of thermal expansion, and the kinematic viscosit
respectively. In order to eliminate Eq. (1b) we introduc
the following general representation for solenoidal vecto
fields in the absence of mean flows:

$u ­ = 3 s= 3 $lwd 1 = 3 $lc . (3)

Steady three-dimensional solutions of Eqs. (1) can b
obtained through the Galerkin ansatz,

w ­
X

l,m,n

almn cosslaxd cossmaydfnszd , (4a)
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c ­
X

l,m,n

clmn sinslaxd sinsmayd sinnpsz 1
1
2 d , (4b)

u ­
X

l,m,n

blmn cosslaxd cossmayd sinnpsz 1
1
2 d , (4c)

where a Cartesian system of coordinates has been
troduced with thez coordinate in the vertical direction
and wherefnszd denotes the Chandrasekhar functions [8
which obey the conditionsfn ­ dfnydz ­ 0 at z ­ 6

1
2 .

The boundary conditions

w ­ ≠wy≠z ­ c ­ u ­ 0 for z ­ 6
1
2 (5)

at the rigid, isothermal boundaries are thus satisfied
the representations (4). Since the functionsfnszd form
a complete set like the trigonometric functions, generalz
dependences satisfying the conditions (5) can be descri
by the representations (4).

Once thez components of the curlcurl and of the cur
of Eqs. (1a) and (1c) have been projected onto the s
of expansion functions introduced in expressions (4),
system of nonlinear algebraic equations for the unknow
almn, blmn, clmn is obtained. This system can be solve
through a Newton-Raphson method after a truncation h
been introduced. We shall disregard all coefficients a
corresponding equations satisfying

l 1 m 1 n . NT , (6)

whereNT is chosen sufficiently high in order that sensi
tive integral properties such as the convective heat trans
do not change by more than 1% whenNT is replaced by
NT 2 2. Typically values between 10 and 14 have bee
used forNT , depending on the Rayleigh number.

Among the solutions described by the representati
(4) those with a square symmetry are characterized
the property that the coefficients are symmetric in th
subscriptsl andm. A subset of these solutions with the
property

alnm ­ blmn ­ 0 for l 1 m 1 n ­ odd,

clmn ­ 0 for l 1 m 1 n ­ even
(7)

describe symmetric square convection. Witha ­ ac,
this kind of solution exists at the critical valueRc of
R, but it is unstable [1], and it is generally believed
that it remains unstable at higher values ofR except at
very high values ofR and P [9]. Convection in the
form of asymmetric squares exists as up squares or
down squares, corresponding to opposite signs of t
coefficientsalmn with odd l 1 m 1 n, while those with
evenl 1 m 1 n have the same values,

a
sud
lmn ­ s21dl1m1na

sdd
lmn, b

sud
lmn ­ s21dl1m1nb

sdd
lmn ,

c
sud
lmn ­ 2s21dl1m1nc

sdd
lmn .

(8)

An example of steady down-square convection is show
in Fig. 1, which also serves to illustrate up-square conve
tion after an appropriate transformation. The dependen
of the Nusselt number and kinetic energies of asymme
342
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FIG. 1. Lines of constant vertical velocity in the planesz ­
20.4 (upper left), z ­ 0.4 (upper right),z ­ 0 (lower left),
and isotherms in the planez ­ 0 (lower right) in the case of
asymmetric down-square convection forR ­ 104, P ­ 7, a ­
2.0. Solid (dashed) lines indicate positive (negative) value
The plots also describe asymmetric up-square convection w
the planesz ­ 60.4 are interchanged and dashed (solid) line
are interpreted as positive (negative) values.

ric square convection on the Rayleigh number are sho
in Fig. 2. It is of interest to see that the Nusselt num
ber exceeds that of two-dimensional rolls with the sam
wave numbera. As in the case of hexagonal convectio
we attribute this effect to stronger contributions of high
harmonics in asymmetric square convection.

In order to study the stability of asymmetric squa
convection we superimpose onto the steady solutions
the form (4) infinitesimal disturbances of the general for

w̃ ­ exphidx 1 iby 1 stj

3
X

l,m,n

ãlmn exphilax 1 imayjfnszd , (9)

with analogous expressions for̃c, ũ. After projection
of the linearized equations for̃w, ũ, and c̃ onto the
expansion functions, a system of linear homogeneo
equations for the coefficients̃almn, b̃lmn, c̃lmn is obtained
with the growth rates as eigenvalue. For a given
steady asymmetric square solution characterized by
parametersR, P, anda the eigenvalues with maximum
real partsr is determined as a function of the Floque
wave numbersb and d. Whenever an eigenvalue exist
with positivesr the steady solution is unstable, otherwis
it is stable with respect to infinitesimal disturbances.

Results for stability of asymmetric square convectio
are shown as a function ofR and a in the caseP ­ 7
in Fig. 3. Two kinds of stability boundaries in theR-
a plane are displayed. The outer stability boundari
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FIG. 2. Nusselt number (thick solid line) and kinetic energie
of the poloidal (thin solid line, left ordinate) and of the
toroidal (dotted line, left ordinate) components of motio
corresponding to the first and second terms in the representa
(3), respectively, for asymmetric square convection in th
case P ­ 7, a ­ 2.2. Also shown by dashed lines are the
corresponding values for two-dimensional rolls.

correspond to disturbances withd ­ b ­ 0, i.e., they
do not tend to change the periodicity interval of th
steady solution. These stability boundaries could be
physical interest in the case of a small aspect ratio lay
where only a few square cells are realized. For a
extended layer, however, the general stability analys
with no restriction on the wave numbersb and d is
relevant. Figure 3 demonstrates the fact that there exi
a region of Rayleigh numbers extending from above6 3

103 to about27 3 103 where steady asymmetric squar
convection is stable with respect to general infinitesim
disturbances. The wave number of the stable squa
cells is considerably smaller than the critical valueac

and tends to decrease with increasing Rayleigh numb
Problems of numerical convergence for solutions wit
a ­ 1.2 have prevented us from determining the stabilit
boundary towards low values ofa. It is of interest to note
that the most strongly growing disturbances outside t
stability region are subharmonic disturbances. Towar
lower values ofR, the strongest growing disturbance
are usually subharmonic in one dimension, i.e., the
correspond tod ­ ay2, b ­ 0 or b ­ ay2, d ­ 0 for
reasons of symmetry. Towards higher values ofR doubly
subharmonic disturbances withd ­ b ­ ay2 are the
most critical ones. The boundary towards high wav
numbers corresponds to disturbances withb ­ d ­ 0.
These disturbances tend to provide the transition to ro
in one of the two directions defined by the squares.

Results analogous to those found in the caseP ­ 7
are obtained when the Prandtl number is increased to
s
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FIG. 3. The region of stable asymmetric squares (shaded
theR-a space forP ­ 7 is bounded by the singly subharmoni
instability (n) from below and by the doubly subharmoni
instability (,) from above. The boundary towards higha
indicates the transition to rolls. Also shown are the boundar
(denoted by3 or 1) beyond which disturbances are growin
that do not change the horizontal periodicity of asymmet
square convection.

as shown in Fig. 4. Again a range of stable asymmet
square convection exists for Rayleigh numbers above6 3

103. When the Prandtl number is decreased to 2.5 a ra
of stable asymmetric square convection can be obtain
only when disturbances are restricted to those w

FIG. 4. Same as Fig. 3, but in the caseP ­ 16.
343
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FIG. 5. Convection pattern in a layer of methyl alcoholsP ­
7d at about23 ±C with h ­ 5.6 mm heated from below made
visible by a shadowgraph method (for details see [10]) at
Rayleigh number of about 45 000. Dark (white) lines indicat
rising (descending) motions.

d ­ b ­ 0. With respect to the latter-type disturbance
the stability boundaries resemble the corresponding on
in Figs. 3 and 4. Without the restrictionb ­ d ­ 0
growing disturbances are found forP ­ 2.5 in all parts
of the relevant domain in theR-a plane.

Our theoretical results indicate that asymmetric squa
convection should be observable in laboratory expe
ments. Controlled initial conditions may have to be use
to reach the region of stable asymmetric squares in t
parameter space. An experimental observation indicati
a tendency towards asymmetric square cells—as well
344
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hexagonal cells—is shown in Fig. 5. This photograph o
a shadowgraph image of convection in methyl alcohol wa
taken in connection with experiments described in [10]
Since cells with rising motion in the center and those
with descending motion have the same stability prope
ties, it is unlikely that a periodic pattern will be found in
experiments with extended symmetric convection layer
unless controlled initial conditions are used. Instead do
mains with either types of cells are expected to be realize
as has been demonstrated in [2] or can be seen in Fig.
The observation of Fig. 5 was made after the convectio
layer had been left at a constant value ofR ­ 45 3 103

for 12 hours. Because this value is higher than those stu
ied theoretically and because the convection motion in th
interior of the cells is not steady in the experiment, the
observations cannot be compared directly with the theor
They just serve as a reminder that several kinds of attra
tors compete in realizations of Rayleigh-Bénard convec
tion at elevated Rayleigh numbers and domains of thes
attractors separated by roll-like boundaries appear to be
typical feature of extended convection layers.
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