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Asymmetric Squares as an Attracting Set in Rayleigh-Bénard Convection
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Properties of asymmetric square convection in a horizontal fluid layer heated from below are studied
numerically with a Galerkin method. Since the Boussinesq approximation is used and symmetric rigid
boundaries are assumed, both types of asymmetric square convection—those with rising and those
with descending motion in the center—are physically equivalent. It is shown that asymmetric square
convection becomes stable with respect to arbitrary three-dimensional infinitesimal disturbances for
Rayleigh numbers in excess of 3 to 4 times the critical value. [S0031-9007(98)06556-9]

PACS numbers: 47.20.Ky, 47.27.—i

In the investigation of attracting manifolds of solutions Like the dual hexagons in a symmetric convection
describing convection in fluid layers heated from belowlayer the asymmetric squares appear in two physically
the attention has been focused on two-dimensional rollequivalent forms which differ by the sign of the vertical
and solutions bifurcating from that manifold. It is well motion in the center of the cells. In the following we
known that rolls represent the only stable form of con-shall first derive the basic equations and describe the
vection at Rayleigh numbem® close to the critical value method of the numerical analysis. We then proceed to the
R. when the Boussinesq approximation can be assumeatesentation of the results for selected Prandtl numbers.
[1]. But at higher values of the control parame&eother We consider a horizontal fluid layer of depitwith the
manifolds of stable solutions exist which may not be contemperature§’; andT, fixed at the upper and lower rigid
nected through bifurcations to the manifold of rolls. An boundaries. Using the length scalgthe time scalé?/«
example of such a manifold of solutions is convectionwhere k is the thermal diffusivity, and the temperature
flows with hexagonal symmetry in their two manifesta-scale 7, — T;, we write the Boussinesq equations of
tions with either up- or downgoing motions in the cen-motion for the velocity vectoii: and the heat equation
ter of the hexagonal cell. Assenheimer and Steinberg [2for the deviation# of the temperature from its static
have realized both types of hexagonal convection in alistribution in the dimensionless form
Rayleigh-Bénard experiment at values Bfin excess of P R
twice the critical value. Through a stability analysis [3] it P‘1<—Z¢ +u- Vﬁ) = —Va + A0R + Vi, (la)
has later been established that these dual types of hexago- !

nal convection do indeed become stable in regions of the V-u=0, (1b)
Rayleigh-wave number space where they have been ob- P R
served in the experiment. Because the Boussinesq ap- 50 + -V =2A-u+ V0, (1c)

proximation was employed in the theoretical analysis the

results of the latter clearly demonstrate that the cause fqfhere ) is the vertical unit vector opposite to the direction
the realization of the dual type of hexagons is quite dif-of gravity, 7 is the deviation of the pressure from its static

ferent from the non-Boussinesq effects that lead to a prefza|ye, and where the Rayleigh numierand the Prandtl
erence for either up or down hexagons near the criticghymberp are defined by
value ofR. 3

In this paper we intend to demonstrate that a similar R = ¥ — T)gh” p=2 )

’

property holds for convection flows in the form of asym- VK K

metric squares. Asymmetric squares differ from the dual, ,, and» denote the acceleration of gravity, the coef-
hexagons essentially only in that the hexagonal boundarcient of thermal expansion, and the kinematic viscosity,
is replaced by a square boundary. Like hexagonal cellgaspectively. In order to eliminate Eq. (1b) we introduce

asymmetric square convection cells, usually with risingne following general representation for solenoidal vector
motion in the center, are observed in convection layergie|ds in the absence of mean flows:

with strong asymmetries with respect to the midplane as, . - -

for instance, in the case of fluids with strongly tempera- u=VX({VXp)+VXAp. ®3)
ture dependent viscosity [4] or in the case of Marangonisteady three-dimensional solutions of Egs. (1) can be
convection [5]. For corresponding theoretical work seepptained through the Galerkin ansatz,

[6] and [7]. By contrast the analysis of the present pa-

per focuses on the unexpected occurrence of asymmetric o = Z Aimn COLlax) cOmay)fu(z),  (4Q)
squares in layers with symmetry about the midplane. L
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U= Z Cimn SiN(lax) Sin(may) sinnar(z + %), (4b)

l,m,n

0= Z binn cOlax) codmay) sinnm(z + %), (4c)
l,m,n
where a Cartesian system of coordinates has been in-
troduced with thez coordinate in the vertical direction
and wheref,(z) denotes the Chandrasekhar functions [8]
which obey the conditiong, = df,/dz = Oatz = * %
The boundary conditions
o =dp/dz=h=60=0 forz=i% (5)
at the rigid, isothermal boundaries are thus satisfied by
the representations (4). Since the functigfi$z) form
a complete set like the trigonometric functions, general
dependences satisfying the conditions (5) can be described
by the representations (4). :
Once thez components of the curlcurl and of the curl FIG. 1. Lines of constant vertical velocity in the planes
of Egs. (1a) and (1c) have been projected onto the sets0.4 (upper left),z = 0.4 (upper right),z = 0 (lower left),
of expansion functions introduced in expressions (4), @&nd isotherms in the plane= 0 (lower right) in the case of

; ; ; symmetric down-square convection ®r= 10*, P = 7, a =
system of nonlinear algebraic equations for the unknowng(). Solid (dashed) lines indicate positive (negative) values.

Aimn> Dimn, Cimn 18 ODYAINEd.  This system can be S_OlvedThe plots also describe asymmetric up-square convection when
through a Newton-Raphson method after a truncation hage planes; = +0.4 are interchanged and dashed (solid) lines

been introduced. We shall disregard all coefficients andre interpreted as positive (negative) values.
corresponding equations satisfying

l+m+n>Nr, (6)

where N7 is chosen sufficiently high in order that sensi- ric square convection on the Rayleigh number are shown
tive integral properties such as the convective heat transfén Fig. 2. It is of interest to see that the Nusselt num-
do not change by more than 1% wha# is replaced by ber exceeds that of two-dimensional rolls with the same
Nr — 2. Typically values between 10 and 14 have beerwave number. As in the case of hexagonal convection
used forN7, depending on the Rayleigh number. we attribute this effect to stronger contributions of higher
Among the solutions described by the representatiofiarmonics in asymmetric square convection.

(4) those with a square symmetry are characterized by In order to study the stability of asymmetric square
the property that the coefficients are symmetric in theconvection we superimpose onto the steady solutions of
subscripts/ andm. A subset of these solutions with the the form (4) infinitesimal disturbances of the general form
property

aipm = by =0 forl + m + n = odd

7 - . .
comn =0 forl +m+ n= even () X Z Aimn €XPlilax + imaylf,(z),  (9)

. . . . l,m,n
describe symmetric square convection. With= «.,
this kind of solution exists at the critical value. of  with analogous expressions faF, 8. After projection
R, but it is unstable [1], and it is generally believed of the linearized equations fo,#, and ¢ onto the
that it remains unstable at higher valuesffexcept at expansion functions, a system of linear homogeneous
very high values ofR and P [9]. Convection in the equations for the coefficien®,,, biun, Cimn IS Obtained
form of asymmetric squares exists as up squares or agith the growth rates as eigenvalue. For a given
down squares, corresponding to opposite signs of theteady asymmetric square solution characterized by the
coefficientsay,, with odd ! + m + n, while those with  parametersR, P, and« the eigenvaluer with maximum

@ = exflidx + iby + ot}

even/ + m + n have the same values, real parto, is determined as a function of the Floquet
(W (—q)ttmtn gl p = (—)ltmnpd wave numbers$ andd. Whenever an eigenvalue exists
Aimn Aimn > Imn Imn > . .. . . .
W loman (@ (8)  with positive s, the steady solution is unstable, otherwise
Cimn = —(=1) Clmn - it is stable with respect to infinitesimal disturbances.

An example of steady down-square convection is shown Results for stability of asymmetric square convection
in Fig. 1, which also serves to illustrate up-square convecare shown as a function @&t and « in the caseP = 7
tion after an appropriate transformation. The dependenda Fig. 3. Two kinds of stability boundaries in the-
of the Nusselt number and kinetic energies of asymmeta plane are displayed. The outer stability boundaries
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FIG. 2. Nusselt number (thick solid line) and kinetic energies 2 3
of the poloidal (thin solid line, left ordinate) and of the a

toroidal (dotted line, left ordinate) components of motion({

; . : . FIG. 3. The region of stable asymmetric squares (shaded) in
corresponding to the first and second terms in the representati ) _ : :
(3), respectively, for asymmetric square convection in the eR-c space folP = 7 is bounded by the singly subharmonic

caseP — 7,a = 2.2. Also shown by dashed lines are the instability (A) from below and by the doubly subharmonic

: X - instability (V) from above. The boundary towards high
corresponding values for two-dimensional rolis. indicates the transition to rolls. Also shown are the boundaries

(denoted byx or +) beyond which disturbances are growing
that do not change the horizontal periodicity of asymmetric

correspond to disturbances with= b = 0, i.e., they square convection.

do not tend to change the periodicity interval of the

steady sglution. 'These stability boundaries coulq be ofs shown in Fig. 4. Again a range of stable asymmetric
physical interest in the case of a small aspect ratio 'ayeéquare convection exists for Rayleigh numbers alfove
where only a few square cells are realized. For angs \when the Prandtl number is decreased to 2.5 a range
extended layer, however, the general stability analysigs staple asymmetric square convection can be obtained

with no restriction on the wave numbets and d is  oply when disturbances are restricted to those with
relevant. Figure 3 demonstrates the fact that there exists

a region of Rayleigh numbers extending from abéve
10° to about27 X 103 where steady asymmetric square :
convection is stable with respect to general infinitesimal 5.104 |
disturbances. The wave number of the stable square
cells is considerably smaller than the critical valug

and tends to decrease with increasing Rayleigh number.
Problems of numerical convergence for solutions with

a = 1.2 have prevented us from determining the stability 2104 17 1
boundary towards low values of. It is of interest to note R

that the most strongly growing disturbances outside the

stability region are subharmonic disturbances. Towards 104 -

lower values ofR, the strongest growing disturbances
are usually subharmonic in one dimension, i.e., they
correspond tod = a/2,b =0 or b = a/2,d = 0 for
reasons of symmetry. Towards higher value® afoubly 5108 I
subharmonic disturbances with = b = «/2 are the i
most critical ones. The boundary towards high wave
numbers corresponds to disturbances with= d = 0.
These disturbances tend to provide the transition to rolls 2.103
in one of the two directions defined by the squares. 2 3
Results analogous to those found in the c&se 7
are obtained when the Prandtl number is increased to 16 FIG. 4. Same as Fig. 3, but in the caRe= 16.
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hexagonal cells—is shown in Fig. 5. This photograph of
a shadowgraph image of convection in methyl alcohol was
taken in connection with experiments described in [10].
Since cells with rising motion in the center and those
with descending motion have the same stability proper-
ties, it is unlikely that a periodic pattern will be found in
experiments with extended symmetric convection layers
unless controlled initial conditions are used. Instead do-
mains with either types of cells are expected to be realized
as has been demonstrated in [2] or can be seen in Fig. 5.
The observation of Fig. 5 was made after the convection
layer had been left at a constant valueRot= 45 X 10°

for 12 hours. Because this value is higher than those stud-
ied theoretically and because the convection motion in the
interior of the cells is not steady in the experiment, the
observations cannot be compared directly with the theory.
They just serve as a reminder that several kinds of attrac-
tors compete in realizations of Rayleigh-Bénard convec-
tion at elevated Rayleigh numbers and domains of these
attractors separated by roll-like boundaries appear to be a
typical feature of extended convection layers.
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